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Preface

“Com p l ex ” is a word of the ti m e s , as in the of ten - qu o ted “growing com p l ex i ty of
l i fe .” S c i en ce has begun to try to understand com p l ex i ty in natu re , a co u n terpoint to
the trad i ti onal scien tific obj ective of u n derstanding the fundamental simplicity of
l aws of n a tu re . It is bel i eved ,h owever, that even in the stu dy of com p l ex i ty there ex-
ist simple and therefore com preh en s i ble laws . The field of s tu dy of com p l ex sys tem s
holds that the dynamics of com p l ex sys tems are fo u n ded on universal principles that
m ay be used to de s c ri be dispara te probl ems ra n ging from parti cle physics to the eco-
n omics of s oc i eti e s . A coro ll a ry is that tra n s ferring ideas and re sults from inve s ti ga-
tors in hitherto dispara te areas wi ll cro s s - ferti l i ze and lead to important new re su l t s .

In this text we introduce several of the problems of science that embody the con-
cept of complex dynamical systems. Each is an active area of research that is at the
forefront of science.Our presentation does not try to provide a comprehensive review
of the research literature available in each area. Instead we use each problem as an op-
portunity for discussing fundamental issues that are shared among all areas and there-
fore can be said to unify the study of complex systems.

We do not expect it to be possible to provide a succinct definition of a complex
system. Instead, we give examples of such systems and provide the elements of a def-
inition. It is helpful to begin by describing some of the attributes that characterize
complex systems. Complex systems contain a large number of mutually interacting
parts. Even a few interacting objects can behave in complex ways. However, the com-
plex systems that we are interested in have more than just a few parts. And yet there is
generally a limit to the number of parts that we are interested in. If there are too many
parts, even if these parts are strongly interacting, the properties of the system become
the domain of conventional thermodynamics—a uniform material.

Thus far we have defined complex systems as being within the mesoscopic do-
main—containing more than a few, and less than too many parts.However, the meso-
scopic regime describes any physical system on a particular length scale,and this is too
broad a definition for our purposes. Another characteristic of most complex dynam-
ical systems is that they are in some sense purposive. This means that the dynamics of
the system has a definable objective or function. There often is some sense in which
the systems are engineered. We address this topic directly when we discuss and con-
trast self-organization and organization by design.

A central goal of this text is to develop models and modeling techniques that are
useful when applied to all complex systems. For this we will adopt both analytic tools
and computer simulation. Among the analytic techniques are statistical mechanics
and stochastic dynamics.Among the computer simulation techniques are cellular au-
tomata and Monte Carlo. Since analytic treatments do not yield complete theories of
complex systems, computer simulations play a key role in our understanding of how
these systems work.

The human brain is an important example of a complex system formed out of its
component neurons. Computers might similarly be understood as complex interact-
ing systems of transistors.Our brains are well suited for understanding complex sys-

xi
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tems, but not for simulating them.Why are computers better suited to simulations of
complex systems? One could point to the need for precision that is the traditional do-
main of the computer. However, a better reason would be the difficulty the brain has
in keeping track of many and arbitrary interacting objects or events—we can typically
remember seven independent pieces of information at once. The reasons for this are
an important part of the design of the brain that make it powerful for other purposes.
The architecture of the brain will be discussed beginning in Chapter 2.

The study of the dynamics of complex systems creates a host o f new interdisci-
plinary fields. It not only breaks down barriers between physics, chemistry and biol-
ogy, but also between these disciplines and the so-called soft sciences of psychology,
sociology, economics,and anthropology. As this breakdown occurs it becomes neces-
sary to introduce or adopt a new vocabulary. Included in this new vocabulary are
words that have been considered taboo in one area while being extensively used in an-
other. These must be adopted and adapted to make them part of the interdisciplinary
discourse. One example is the word “mind.” While the field of biology studies the
brain,the field of psychology considers the mind.However, as the study of neural net-
works progresses,it is anticipated that the function of the neural network will become
identified with the concept of mind.

An o t h er area in wh i ch scien ce has trad i ti on a lly been mute is in the con cept of m e a n-
ing or purpo s e . The field of s c i en ce trad i ti on a lly has no con cept of va lues or va lu a ti on .
Its obj ective is to de s c ri be natu ral ph en om ena wi t h o ut assigning po s i tive or nega tive
con n o t a ti on to the de s c ri pti on . However, the de s c ri pti on of com p l ex sys tems requ i res a
n o ti on of p u rpo s e ,s i n ce the sys tems are gen era lly purpo s ive . Within the con text of p u r-
pose there may be a con cept of va lue and va lu a ti on . If , as we wi ll attem pt to do, we ad-
d ress soc i ety or civi l i z a ti on as a com p l ex sys tem and iden tify its purpo s e ,t h en va lue and
va lu a ti on may also become a con cept that attains scien tific sign i f i c a n ce . Th ere are even
f u rt h er po s s i bi l i ties of i den ti f ying va lu e ,s i n ce the very con cept of com p l ex i ty all ows us
to iden tify va lue with com p l ex i ty thro u gh its difficulty of rep l acem en t . As is usual wi t h
a ny scien tific adva n ce ,t h ere are both dangers and opportu n i ties with su ch devel opm en t s .

Finally, it is curious that the origin and fate of the universe has become an ac-
cepted subject of scientific discourse—cosmology and the big bang theory—while the
fate of humankind is generally the subject of religion and science fiction. There are
exceptions to this rule, particularly surrounding the field of ecology—limits to pop-
ulation growth, global warming—however, this is only a limited selection of topics
that could be addressed. Overcoming this limitation may be only a matter of having
the appropriate tools. Developing the tools to address questions about the dynamics
of human civilization is appropriate within the study of complex systems. It should
also be recognized that as science expands to address these issues, science itself will
change as it redefines and changes other fields.

Different fields are often distinguished more by the type of questions they ask
than the systems they study. A significant effort has been made in this text to articu-
late questions, though not always to provide complete answers, since questions that
define the field of complex systems will inspire more progress than answers at this
early stage in the development of the field.
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Like other fields, the field of complex systems has many aspects, and any text
must make choices about which material to include. We have suggested that complex
systems have more than a few parts and less than too many of them. There are two ap-
proaches to this intermediate regime. The first is to consider systems with more than
a few parts, but still a denumerable number—denumerable,that is, by a single person
in a reasonable amount of time. The second is to consider many parts, but just fewer
than too many. In the first approach the main task is to describe the behavior of a par-
ticular system and its mechanism of operation—the function of a neural network of
a few to a few hundred neurons, a few-celled organism, a small protein,a few people,
etc. This is done by describing completely the role of each of the parts. In the second
approach, the precise number of parts is not essential,and the main task is a statisti-
cal study of a collection of systems that differ from each other but share the same
structure—an ensemble of systems. This approach treats general properties of pro-
teins, neural networks, societies, etc. In this text, we adopt the second approach.
However, an interesting twist to our discussion is that we will show that any complex
system requires a description as a particular few-part system.A complementary vol-
ume to the present one would consider examples of systems with only a few parts and
analyze their function with a view toward extracting general principles. These princi-
ples would complement the seemingly more general analysis of the statistical
approach.

The order of presentation of the topics in this text is a matter of taste. Many of
the chapters are self-contained discussions of a particular system or question. The first
chapter contains material that provides a foundation for the rest. Part of the role of
this chapter is the introduction of “simple” models upon which the remainder of the
text is based. Another role is the review of concepts and techniques that will be used
in later chapters so that the text is more self-contained. Because of the interdiscipli-
nary nature of the subject matter, the first chapter is considered to have particular im-
portance. Some of the material should be familiar to most graduate students, while
other material is found only in the professional literature. For example, basic proba-
bility theory is reviewed, as well as the concepts and properties of cellular automata.
The purpose is to enable this text to be read by students and researchers with a vari-
ety of backgrounds. However, it should be apparent that digesting the variety of con-
cepts after only a brief presentation is a difficult task. Additional sources of material
are listed at the end of this text.

Throughout the book, we have sought to limit advanced formal discussions to a
minimum. When possible, we select models that can be described with a simpler for-
malism than must be used to treat the most general case possible. Where additional
layers of formalism are particularly appropriate, reference is made to other literature.
Simulations are described at a level of detail that,in most cases,should enable the stu-
dent to perform and expand upon the simulations described. The graphical display of
such simulations should be used as an integral part of exposure to the dynamics of
these systems. Such displays are generally effective in d eveloping an intuition about
what are the important or relevant properties of these systems.
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0
Overview:
The Dynamics of Complex Systems —

Examples, Questions, Methods and Concepts

The Field of Complex Systems

The study of complex systems in a unified framework has become recognized in re-
cent years as a new scientific discipline, the ultimate of interdisciplinary fields. It is
strongly rooted in the advances that have been made in diverse fields ranging from
physics to anthropology, from which it draws inspiration and to which it is relevant.

Many of the systems that surround us are complex. The goal of understanding
their properties motivates much if not all of scientific inquiry. Despite the great com-
plexity and variety of systems, universal laws and phenomena are essential to our in-
quiry and to our understanding. The idea that all matter is formed out of the same
building blocks is one of the original concepts of science. The modern manifestation
of this concept—atoms and their constituent particles—is essential to our recogni-
tion of the commonality among systems in science. The universality of constituents
complements the universality of mechanical laws (classical or quantum) that govern
their motion. In biology, the common molecular and cellular mechanisms of a large
variety of organisms form the basis of our studies.However, even more universal than
the constituents are the dynamic processes of variation and selection that in some
manner cause organisms to evolve. Thus, all scientific endeavor is based, to a greater
or lesser degree, on the existence of universality, which manifests itself in diverse ways.
In this context,the study of complex systems as a new endeavor strives to increase our
ability to understand the universality that arises when systems are highly complex.

A dictionary definition of the word “complex” is: “consisting of interconnected
or interwoven parts.” Why is the nature of a complex system inherently related to its
parts? Simple systems are also formed out of parts. To explain the difference between
simple and complex systems, the terms “interconnected” or “interwoven” are some-
how essential.Qualitatively, to understand the behavior of a complex system we must
understand not only the behavior of the parts but how they act together to form the
behavior of the whole. It is because we cannot describe the whole without describing
each part, and because each part must be described in relation to other parts, that
complex systems are difficult to understand. This is relevant to another definition of
“complex”: “not easy to understand or analyze.” These qualitative ideas about what a
complex system is can be made more quantitative. Articulating them in a clear way is

0.1
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both essential and fruitful in pointing the way toward progress in understanding the
universal properties of these systems.

For many years, professional specialization has led science to progressive isola-
tion of individual disciplines.How is it possible that well-separated fields such as mol-
ecular biology and economics can suddenly become unified in a single discipline?
How does the study of complex systems in general pertain to the detailed efforts de-
voted to the study of particular complex systems? In this regard one must be careful
to acknowledge that there is always a dichotomy between universality and specificity.
A study of universal principles does not replace detailed description of particular
complex systems. However, universal principles and tools guide and simplify our in-
quiries into the study of specifics. For the study of complex systems,universal simpli-
fications are particularly important. Sometimes universal principles are intuitively
appreciated without being explicitly stated. However, a careful articulation of such
principles can enable us to approach particular systems with a systematic guidance
that is often absent in the study of complex systems.

A pictorial way of illustrating the relationship of the field of complex systems to
the many other fields of science is indicated in Fig. 0.1.1. This figure shows the con-
ventional view of science as progressively separating into disparate disciplines in or-
der to gain knowledge about the ever larger complexity of systems. It also illustrates
the view of the field of complex systems, which suggests that all complex systems have
universal properties. Because each field develops tools for addressing the complexity
of the systems in their domain, many of these tools can be adapted for more general
use by recognizing their universal applicability. Hence the motivation for cross-
disciplinary fertilization in the study of complex systems.

In Sections 0.2–0.4 we initiate our study of complex systems by discussing ex-
amples, questions and methods that are relevant to the study of complex systems.Our
purpose is to introduce the field without a strong bias as to conclusions, so that the
student can develop independent perspectives that may be useful in this new field—
opening the way to his or her own contributions to the study of complex systems. In
Section 0.5 we introduce two key concepts—emergence and complexity—that will
arise through our study of complex systems in this text.

Examples

0.2.1 A few examples
What are com p l ex sys tems and what properties ch a racteri ze them? It is hel pful to start
by making a list of s ome examples of com p l ex sys tem s . Ta ke a few minutes to make yo u r
own list. Con s i der actual sys tems ra t h er than mathem a tical models (we wi ll con s i der
m a t h em a tical models later ) . Ma ke a list of s ome simple things to con trast them wi t h .

Examples of Complex Systems

Governments

Families

The human body—physiological perspective

0.2

2 O ve r v i ew
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Simple systems
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Figure 0.1.1 Conceptual illustration of the space of scientific inquiry. (a) is the conventional
view where disciplines diverge as knowledge increases because of the increasing complexity
of the various systems being studied. In this view all knowledge is specific and knowledge is
gained by providing more and more details. (b) illustrates the view of the field of complex
systems where complex systems have universal properties. By considering the common prop-
erties of complex systems, one can approach the specifics of particular complex systems from
the top of the sphere as well as from the bottom.
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A person—psychosocial perspective

The brain

The ecosystem of the world

Subworld ecosystems: desert, rain forest, ocean

Weather

A corporation

A computer

Examples of Simple Systems

An oscillator

A pendulum

A spinning wheel

An orbiting planet

The purpose of thinking about examples is to develop a first understanding of the
question, What makes systems complex? To begin to address this question we can start
describing systems we know intuitively as complex and see what properties they share.
We try this with the first two examples listed above as complex systems.

Government

• It has many different functions:military, immigration,taxation,income distrib-
ution, transportation, regulation. Each function is itself complex.

• There are different levels and types of government: local, state and federal; town
meeting, council,mayoral. There are also various governmental forms in differ-
ent countries.

Family

• It is a set of individuals.

• Each individual has a relationship with the other individuals.

• Th ere is an interp l ay bet ween the rel a ti onship and the qu a l i ties of the indivi du a l .

• The family has to interact with the outside world.

• There are different kinds of families: nuclear family, extended family, etc.

These descriptions focus on function and structure and diverse manifestation.
We can also consider the role that time plays in complex systems. Among the proper-
ties of complex systems are change, growth and death, possibly some form of life cy-
cle. Combining time and the environment, we would point to the ability of complex
systems to adapt.

One of the issues that we will need to address is whether there are different cate-
gories of complex systems. For example, we might contrast the systems we just de-
scribed with complex physical systems: hydrodynamics (fluid flow, weather), glasses,
composite materials, earthquakes. In what way are these systems similar to or differ-
ent from the biological or social complex systems? Can we assign function and discuss
structure in the same way?
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0.2.2 Central properties of complex systems
After beginning to describe complex systems,a second step is to identify commonal-
ities. We might make a list of some of the characteristics of complex systems and as-
sign each of them some measure or attribute that can provide a first method of clas-
sification or description.

• Elements (and their number)

• Interactions (and their strength)

• Formation/Operation (and their time scales)

• Diversity/Variability

• Environment (and its demands)

• Activity(ies) (and its[their] objective[s])

This is a first step toward quantifying the properties of complex systems.Quantifying
the last three in the list requires some method of counting possibilities. The problem
of counting possibilities is central to the discussion of quantitative complexity.

0.2.3 Emergence: From elements and parts to complex systems
There are two approaches to organizing the properties of complex systems that wil l
serve as the foundation of our discussions. The first of these is the relationship be-
tween elements,parts and the whole. Since there is only one property of the complex
system that we know for sure — that it is complex—the primary question we can ask
about this relationship is how the complexity of the whole is related to the complex-
ity of the parts. As we will see, this question is a compelling question for our under-
standing of complex systems.

From the examples we have indicated above, it is apparent that parts of a com-
plex system are often complex systems themselves. This is reasonable, because when
the parts of a system are complex, it seems intuitive that a collection of them would
also be complex. However, this is not the only possibility.

Can we describe a system composed of simple parts where the collective behav-
ior is complex? This is an important possibility, called emergent complexity. Any com-
plex system formed out of atoms is an example. The idea of emergent complexity is
that the behaviors of many simple parts interact in such a way that the behavior of the
whole is complex.Elements are those parts of a complex system that may be consid-
ered simple when describing the behavior of the whole.

Can we describe a system composed of complex parts where the collective be-
havior is simple? This is also possible, and it is called emergent simplicity. A useful
example is a planet orbiting around a star. The behavior of the planet is quite simple,
even if the planet is the Earth, with many complex systems upon it. This example il-
lustrates the possibility that the collective system has a behavior at a different scale
than its parts. On the smaller scale the system may behave in a complex way, but on
the larger scale all the complex details may not be relevant.

E xa m p l e s 5
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0.2.4 What is complexity?
The second approach to the study of complex systems begins from an understanding
of the relationship of systems to their descriptions. The central issue is defining quan-
titatively what we mean by complexity. What, after all, do we mean when we say that
a system is complex? Better yet, what do we mean when we say that one system is more
complex than another? Is there a way to identify the complexity of one system and to
compare it with the complexity of another system? To develop a quantitative under-
standing of complexity we will use tools of both statistical physics and computer sci-
ence—information theory and computation theory. According to this understanding,
complexity is the amount of information necessary to describe a system. However, in
order to arrive at a consistent definition,care must be taken to specify the level of de-
tail provided in the description.

One of our targets is to understand how this concept of complexity is related to
emergence—emergent complexity and emergent simplicity. Can we understand why
information-based complexity is related to the description of elements,and how their
behavior gives rise to the collective complexity of the whole system?

Section 0.5 of this overview discusses further the concepts of emergence and
complexity, providing a simplified preview of the more complete discussions later in
this text.

Questions

This text is structured around four questions related to the characterization of com-
plex systems:

1. Space: What are the characteristics of the structure of complex systems? Many
complex systems have substructure that extends all the way to the size of the sys-
tem itself. Why is there substructure?

2. Time: How long do dynamical processes take in complex systems? Many complex
systems have specific responses to changes in their environment that require
changing their internal structure. How can a complex structure respond in a rea-
sonable amount of time?

3. Self-organization and/versus organization by design: How do complex systems
come into existence? What are the dynamical processes that can give rise to com-
plex systems? Many complex systems undergo guided developmental processes
as part of their formation. How are developmental processes guided?

4. Com p l ex i ty: What is com p l ex i ty? Com p l ex sys tems have va rying degrees of com-
p l ex i ty. How do we ch a racteri ze / d i s tinguish the va rying degrees of com p l ex i ty ?

Chapter 1 of this text plays a special role. Its ten sections introduce mathematical
tools. These tools and their related concepts are integral to our understanding of com-
plex system behavior. The main part of this book consists of eight chapters,2–9. These

0.3
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chapters are paired.Each pair discusses one of the above four questions in the context
of a particular complex system. Chapters 2 and 3 discuss the role of substructure in
the context of neural networks. Chapters 4 and 5 discuss the time scale of dynamics
in the context of protein folding. Chapters 6 and 7 discuss the mechanisms of orga-
nization of complex systems in the context of living organisms. Chapters 8 and 9 dis-
cuss complexity in the context of human civilization. In each case the first of the pair
of chapters discusses more general issues and models. The second tends to be more
specialized to the system that is under discussion. There is also a pattern to the degree
of analytic, simulation or qualitative treatments. In general,the first of the two chap-
ters is more analytic, while the second relies more on simulations or qualitative treat-
ments. Each chapter has at least some discussion of qualitative concepts in addition
to the formal quantitative discussion.

Another way to regard the text is to distinguish between the two approaches sum-
marized above. The first deals with elements and interactions. The second deals with
descriptions and information. Ultimately, our objective is to relate them,but we do so
using questions that progress gradually from the elements and interactions to the de-
scriptions and information. The former dominates in earlier chapters, while the lat-
ter is important for Chapter 6 and becomes dominant in Chapters 8 and 9.

While the discussion in each ch a pter is pre s en ted in the con text of a spec i f i c
com p l ex sys tem , our focus is on com p l ex sys tems in gen era l . Thu s , we do not at-
tem pt (nor would it be po s s i ble) to revi ew the en ti re fields of n eu ral net work s , pro-
tein fo l d i n g, evo luti on , devel opm ental bi o l ogy and social and econ omic scien ce s .
Si n ce we are intere s ted in universal aspects of these sys tem s , the topics we cover
n eed not be the issues of con tem pora ry import a n ce in the stu dy of these sys tem s .
Our approach is to motiva te a qu e s ti on of i n terest in the con text of com p l ex sys-
tems using a particular com p l ex sys tem , t h en to step back and adopt a met h od of
s tu dy that has rel eva n ce to all com p l ex sys tem s . Re s e a rch ers intere s ted in a parti c u-
lar com p l ex sys tem are as likely to find a discussion of i n terest to them in any on e
of the ch a pters , and should not focus on the ch a pter with the particular com p l ex
s ys tem in its ti t l e .

We note that the text is interrupted by questions that are, with few exceptions,
solved in the text. They are given as questions to promote independent thought about
the study of complex systems. Some of them develop further the analysis of a system
through analytic work or through simulations. Others are designed for conceptual de-
velopment. With few exceptions they should be considered integral to the text, and
even if they are not solved by the reader, the solutions should be read.

Question 0.3.1 Consider a few complex systems. Make a list of their el-
ements, interactions between these elements, the mechanism by which

the system is formed and the activities in which the system is engaged.

Solution 0.3.1 The following table indicates properties of the systems that
we will be discussing most intensively in this text. ❚
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Table 0.3.1: Complex Systems and Some Attributes
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System Element Interaction Formation Activity

Proteins Amino Acids Bonds Protein folding Enzymatic 
activity

Nervous system Neurons Synapses Learning Behavior
Neural networks Thought

Physiology Cells Chemical Developmental Movement
messengers biology Physiological
Physical support functions

Life Organisms Reproduction Evolution Survival
Competition Reproduction
Predation Consumption
Communication Excretion

Human Human Beings Communication Social evolution Same as Life?
economies Technology Confrontation Exploration?
and societies Cooperation

Methods

When we think about methodology, we must keep purpose in mind.Our purpose in
studying complex systems is to extract general principles.General principles can take
many forms. Most principles are articulated as relationships between properties—
when a system has the property x, then it has the property y. When possible, relation-
ships should be quantitative and expressed as equations. In order to explore such re-
lationships, we must construct and study mathematical models. Asking why the
property x is related to the property y requires an understanding of alternatives. What
else is possible? As a bonus, when we are able to generate systems with various prop-
erties, we may also be able to use them for practical applications.

All approaches that are used for the study of simple systems can be applied to the
study of complex systems. However, it is important to recognize features of conven-
tional approaches that may hamper progress in the study of complex systems. Both
experimental and theoretical methods have been developed to overcome these diffi-
culties. In this text we introduce and use methods of analysis and simulation that are
particularly suited to the study of complex systems. These methods avoid standard
simplifying assumptions, but use other simplifications that are better suited to our
objectives. We discuss some of these in the following paragraphs.

• Don’t take it apart. Since interactions between parts of a complex system are es-
sential to understanding its behavior, looking at parts by themselves is not suffi-
cient. It is necessary to look at parts in the context of the whole. Similarly, a com-
plex system interacts with its environment, and this environmental influence is

0.4
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important in describing the behavior of the system. Experimental tools have been
developed for studying systems in situ or in vivo—in context. Theoretical analytic
methods such as the mean field approach enable parts of a system to be studied
in context. Computer simulations that treat a system in its entirety also avoid
such problems.

• Don’t assume smoo t h n e s s . Mu ch of the qu a n ti t a tive stu dy of simple sys tems make s
use of d i f feren tial equ a ti on s . Di f feren tial equ a ti on s ,l i ke the wave equ a ti on ,a s su m e
that a sys tem is essen ti a lly uniform and that local details don’t matter for the be-
h avi or of a sys tem on larger scales. These assu m pti ons are not gen era lly valid for
com p l ex sys tem s .Al tern a te static models su ch as fract a l s , and dynamical models in-
cluding itera tive maps and cellular automata may be used inste ad .

• Don’t assume that only a few parameters are important. The behavior of complex
systems depends on many independent pieces of information. Developing an un-
derstanding of them requires us to build mental models. However, we can only
have “in mind” 7±2 independent things at once. Analytic approaches, such as
scaling and renormalization,have been developed to identify the few relevant pa-
rameters when this is possible. Information-based approaches consider the col-
lection of all parameters as the object of study. Computer simulations keep track
of many parameters and may be used in the study of dynamical processes.

There are also tools needed for communication of the results of studies.
Conventional manuscripts and oral presentations are now being augmented by video
and interactive media. Such novel approaches can increase the effectiveness of com-
munication,particularly of the results of computer simulations. However, we should
avoid the “cute picture” syndrome, where pictures are presented without accompany-
ing discussion or analysis.

In this text, we introduce and use a variety of analytic and computer simulation
methods to address the questions listed in the previous section. As mentioned in the
preface, there are two general methods for studying complex systems. In the first, a
specific system is selected and each of the parts as well as their interactions are iden-
tified and described. Subsequently, the objective is to show how the behavior of the
whole emerges from them. The second approach considers a class of systems (ensem-
ble), where the essential characteristics of the class are described,and statistical analy-
sis is used to obtain properties and behaviors of the systems. In this text we focus on
the latter approach.

Concepts: Emergence and Complexity

The objectives of the field of complex systems are built on fundamental concepts—
emergence, complexity—about which there are common misconceptions that are ad-
dressed in this section and throughout the book.Once understood,these concepts re-
veal the context in which universal properties of complex systems arise and specific
universal phenomena, such as the evolution of biological systems, can be better
understood.

0.5
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A complex system is a system formed out of many components whose behavior
is emergent,that is,the behavior of the system cannot be simply inferred from the be-
havior of its components. The amount of information necessary to describe the be-
havior of such a system is a measure of its complexity. In the following sections we
discuss these concepts in greater detail.

0.5.1 Emergence
It is impossible to understand complex systems without recognizing that simple atoms
must somehow, in large numbers, give rise to complex collective behaviors. How and
when this occurs is the simplest and yet the most profound problem that the study of
complex systems faces. The problem can be approached first by developing an un-
derstanding of the term “emergence.” For many, the concept of emergent behavior
means that the behavior is not captured by the behavior of the parts. This is a serious
misunderstanding. It arises because the collective behavior is not readily understood
from the behavior of the parts. The collective behavior is, however, contained in the
behavior of the parts if they are studied in the context in which they are found. To ex-
plain this,we discuss examples of emergent properties that illustrate the difference be-
tween local emergence—where collective behavior appears in a small part of the sys-
tem—and global emergence—where collective behavior pertains to the system as a
whole. It is the latter which is particularly relevant to the study of complex systems.

We can speak abo ut em er gen ce wh en we con s i der a co ll ecti on of el em ents and the
properties of the co ll ective beh avi or of these el em en t s . In conven ti onal phys i c s , t h e
main arena for the stu dy of su ch properties is therm odynamics and stati s tical me-
ch a n i c s . The easiest therm odynamic sys tem to think abo ut is a gas of p a rti cl e s . Two
em er gent properties of a gas are its pre s su re and tem pera tu re . The re a s on they are
em er gent is that they do not natu ra lly arise out of the de s c ri pti on of an indivi dual par-
ti cl e . We gen era lly de s c ri be a parti cle by spec i f ying its po s i ti on and vel oc i ty. Pre s su re
and tem pera tu re become rel evant on ly wh en we have many parti cles toget h er. Wh i l e
these are em er gent properti e s , the way they are em er gent is very limited . We call them
l ocal em er gent properti e s . The pre s su re and tem pera tu re is a local property of the ga s .
We can take a very small sample of the gas aw ay from the rest and sti ll define and mea-
su re the (same) pre s su re and tem pera tu re . Su ch properti e s ,c a ll ed inten s ive in phys i c s ,
a re local em er gent properti e s . Ot h er examples from physics of l oc a lly em er gent be-
h avi or are co ll ective modes of exc i t a ti on su ch as sound wave s , or light prop a ga ti on in
a med iu m . Phase tra n s i ti ons (e.g. , solid to liquid) also repre s ent a co ll ective dy n a m i c s
that is vi s i ble on a mac ro s copic scale, but can be seen in a micro s copic sample as well .

Another example of a local emergent property is the formation of water from
atoms of hydrogen and oxygen. The properties of water are not apparent in the prop-
erties of gasses of oxygen or hydrogen. Neither does an isolated water molecule reveal
most properties of water. However, a microscopic amount of water is sufficient.

In the stu dy of com p l ex sys tems we are parti c u l a rly intere s ted in gl obal em er gen t
properti e s . Su ch properties depend on the en ti re sys tem . The mathem a tical tre a tm en t
of gl obal em er gent properties requ i res some ef fort . This is one re a s on that em er gen ce
is not well apprec i a ted or unders tood . We wi ll discuss gl obal em er gen ce by su m m a ri z-
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ing the re sults of a classic mathem a tical tre a tm en t , and then discuss it in a more gen-
eral manner that can be re ad i ly apprec i a ted and is useful for sem i qu a n ti t a tive analys e s .

The classic analysis of global emergent behavior is that of an associative memory
in a simple model of neural networks known as the Hopfield or attractor network.
The analogy to a neural network is useful in order to be concrete and relate this model
to known concepts. However, this is more generally a model of any system formed
from simple elements whose states are correlated. Without such correlations, emer-
gent behavior is impossible. Yet if all elements are correlated in a simple way, then lo-
cal emergent behavior is the outcome. Thus a model must be sufficiently rich in or-
der to capture the phenomenon of global emergent behavior. One of the important
qualities of the attractor network is that it displays global emergence in a particularly
elegant manner. The following few paragraphs summarize the operation of the at-
tractor network as an associative memory.

The Hopfield network has simple binary elements that are either ON or OFF. The
binary elements are an abstraction of the firing or quiescent state of neurons. The el-
ements interact with each other to create correlations in the firing patterns. The in-
teractions represent the role of synapses in a neural network. The network can work
as a memory. Given a set o f preselected patterns, it is possible to set the interactions
so that these patterns are self-consistent states of the network—the network is stable
when it is in these firing patterns. Even if we change some of the neurons, the origi-
nal pattern will be recovered. This is an associative memory.

Assume for the moment that the pattern of firing represents a sentence, such as
“To be or not to be,that is the question.”We can recover the complete sentence by pre-
senting only part of it to the network “To be or not to be, that” might be enough. We
could use any part to retrieve the whole,such as,“to be,that is the question.” This kind
of memory is to be contrasted with a computer memory, which works by assigning an
address to each storage location. To access the information stored in a par ticular lo-
cation we need to know the address. In the neural network memory, we specify part
of what is located there, rather than the analogous address: Hamlet, by William
Shakespeare, act 3, scene 1, line 64.

More central to our discussion,however, is that in a computer memory a partic-
ular bit of information is stored in a particular switch. By contrast,the network does
not have its memory in a neuron. Instead the memory is in the synapses. In the model,
there are synapses between each neuron and every other neuron. If we remove a small
part of the network and look at its properties,then the number of synapses that a neu-
ron is left with in this small part is only a small fraction of the number of synapses it
started with. If there are more than a few patterns stored, then when we cut out the
small part of the network it loses the ability to remember any of the patterns, even the
part which would be represented by the neurons contained in this part.

This kind of behavior characterizes emergent properties. We see that emergent
properties cannot be studied by physically taking a system apart and looking at the
parts (reductionism). They can,however, be studied by looking at each of the parts in
the context of the system as a whole. This is the nature of emergence and an indica-
tion of how it can be studied and understood.
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The above discussion reflects the analysis of a relatively simple mathematical
model of emergent behavior. We can,however, provide a more qualitative discussion
that serves as a guide for thinking about diverse complex systems. This discussion fo-
cuses on the properties of a system when part of it is removed. Our discussion of lo-
cal emergent properties suggested that taking a small part out of a large system would
cause little change in the properties of the small part, or the properties of the large
part.On the other hand, when a system has a global emergent property, the behavior
of the small part is different in isolation than when it is part of the larger system.

If we think about the system as a whole, rather than the small part of the system,
we can identify the system that has a global emergent property as being formed out of
interdependent parts. The term “interdependent” is used here instead of the terms
“interconnected” or “interwoven” used in the dictionary definition of “complex”
quoted in Section 0.1, because neither of the latter terms pertain directly to the influ-
ence one part has on another, which is essential to the properties of a dynamic system.
“Interdependent” is also distinct from “interacting,” because even strong interactions
do not necessarily imply interdependence of behavior. This is clear from the macro-
scopic properties of simple solids.

Thus, we can characterize complex systems through the effect of removal of part
of the system. There are two natural possibilities. The first is that properties of the part
are affected, but the rest is not affected. The second is that properties of the rest are af-
fected by the removal of a part. It is the latter that is most appealing as a model of a
truly complex system. Such a system has a collective behavior that is dependent on the
behavior of all of its parts. This concept becomes more precise when we connect it to
a quantitative measure of complexity.

0.5.2 Complexity
The second concept that is central to complex systems is a quantitative measure of
how complex a system is. Loosely speaking, the complexity of a system is the
amount of information needed in order to describe it. The complexity depends on
the level of detail required in the description. A more formal definition can be un-
derstood in a simple way. If we have a system that could have many possible states,
but we would like to specify which state it is actually in, then the number of binary
digits (bits) we need to specify this particular state is related to the number of states
that are possible. If we call the number of states Ω then the number of bits of infor-
mation needed is

I log2(Ω) (0.5.1)

To understand this we must realize that to specify which state the system is in, we must
enumerate the states. Representing each state uniquely requires as many numbers as
there are states. Thus the number of states of the representation must be the same as
the number of states of the system. For a string of N bits there are 2N possible states
and thus we must have

Ω 2N (0.5.2)
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which implies that N is the same as I above. Even if we use a descriptive English text
instead of numbers,there must be the same number of possible descriptions as there
are states, and the information content must be the same. When the number of pos-
sible valid English sentences is properly accounted for, it turns out that the best est i-
mate of the amount of information in English is about 1 bit per character. This means
that the information content of this sentence is about 120 bits, and that of this book
is about 3 106 bits.

For a microstate of a physical system, where we specify the positions and mo-
menta of each of the particles, this can be recognized as proportional to the entropy
of the system, which is defined as

S k ln(Ω) k ln(2)I (0.5.3)

wh ere k 1.38 1 0 2 3 Jo u l e / ̊  Kelvin is the Boltzmann constant wh i ch is rel evant to
our conven ti onal ch oi ce of u n i t s . Using measu red en tropies we find that en tropies of
order 10 bits per atom are typ i c a l . The re a s on k is so small is that the qu a n ti ties of m a t ter
we typ i c a lly con s i der are in units of Avoga n d ro’s nu m ber (moles) and the nu m ber of
bits per mole is 6.02 1 02 3 times as large . Thu s , the inform a ti on in a piece of m a ter-
ial is of order 1024 bi t s .

There is one point about Eq.(0.5.3) that may require some clarification. The po-
sitions and momenta of particles are real numbers whose specification might require
infinitely many bits. Why isn’t the information necessary to specify the microstate of
a system infinite? The answer to this question comes from quantum physics, which is
responsible for giving a unique value to the entropy and thus the information needed
to specify a state of the system. It does this in two ways. First, it tells us that micro-
scopic states are indistinguishable unless they differ by a discrete amount in position
and momentum—a quantum difference given by Planck’s constant h. Second, it in-
dicates that particles like nuclei or atoms in their ground state are uniquely specified
by this state,and are indistinguishable from each other. There is no additional infor-
mation necessary to specify their internal structure. Under standard conditions, es-
sentially all nuclei are in their lowest energy state.

The rel a ti onship of en tropy and inform a ti on is not acc i den t a l , of co u rs e , but it is the
s o u rce of mu ch con f u s i on . The con f u s i on arises because the en tropy of a physical sys-
tem is largest wh en it is in equ i l i briu m . This su ggests that the most com p l ex sys tem is a
s ys tem in equ i l i briu m . This is co u n ter to our usual understanding of com p l ex sys tem s .
Equ i l i brium sys tems have no spatial stru ctu re and do not ch a n ge over ti m e . Com p l ex
s ys tems have su b s t a n tial internal stru ctu re and this stru ctu re ch a n ges over ti m e .

The problem is that we have used the definition of the information necessary to
specify the microscopic state (microstate) of the system rather than the macroscopic
state (macrostate) of the system. We need to consider the information necessary to
describe the macrostate of the system in order to define what we mean by complex-
ity. One of the important points to realize is that in order for the macrostate of the
system to require a lot of information to describe it,there must be correlations in the
microstate of the system. It is only when many microscopic atoms move in a coher-
ent fashion that we can see this motion on a macroscopic scale. However, if many
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microscopic atoms move together, the system must be far from equilibrium and the
microscopic information (entropy) must be lower than that of an equilibrium system.

It is helpful, even essential, to define a complexity profile which is a function of
the scale of observation. To obtain the complexity profile, we observe the system at a
particular length (or time) scale,ignoring all finer-scale details. Then we consider how
much information is necessary to describe the observations on this scale. This solves
the problem of distinguishing between a microscopic and a macroscopic description.
Moreover, for different choices of scale, it explicitly captures the dependence of the
complexity on the level of detail that is required in the description.

The complexity profile must be a monotonically falling function of the scale.This
is because the information needed to describe a system on a larger scale must be a sub-
set of the information needed to describe the system on a smaller scale—any finer-
scale description contains the coarser-scale description. The complexity profile char-
acterizes the properties of a complex system. If we wish to point to a particular
number for the complexity of a system,it is natural to consider the complexity as the
value of the complexity profile at a scale that is slightly smaller than the size of the sys-
tem itself. The behavior at this scale includes the movement of the system through
space, and dynamical changes of the system that are essentially the size of the system
as a whole. The Earth orbiting the sun is a useful example.

We can make a direct connection between this definition of complexity and the
discussion of the formation of a complex system out of parts. The complexity of the
parts of the system are described by the complexity profile of the system evaluated on
the scale of the parts.When the behavior of the system depends on the behavior of the
parts, the complexity of the whole must involve a description of the parts, thus it is
large. The smaller the parts that must be described to describe the behavior of the
whole, the larger the complexity of the entire system.

For the Instructor

This text is designed for use in an introductory graduate-level course, to present var-
ious concepts and methodologies of the study of complex systems and to begin to de-
velop a common language for researchers in this new field. It has been used for a one-
semester course, but the amount of material is large, and it is better to spread the
material over two semesters.A two-semester course also provides more opportunities
for including various other approaches to the study of complex systems, which are as
valuable as the ones that are covered here and may be more familiar to the instructor.

Consistent with the objective and purpose of the field,students attending such a
course tend to have a wide variety of backgrounds and interests. While this is a posi-
tive development, it causes difficulties for the syllabus and framework of the course.

One approach to a course syllabus is to include the introductory material given
in Chapter 1 as an integral part of the course. It is better to interleave the later chap-
ters with the relevant materials from Chapter 1.Such a course might proceed:1.1–1.6;
2; 3; 4; 1.7; 5; 6; 7; 1.8–1.10; 8; 9. Including the materials of Chapter 1 allows the dis-

0.6
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cussion of important mathematical methods,and addresses the diverse backgrounds
of the students. Even if the introductory chapter is covered quickly (e.g., in a one-
semester course),this establishes a common base of knowledge for the remainder of
the course. If a high-speed approach is taken,it must be emphasized to the students
that this material serves only to expose them to concepts that they are unfamiliar with,
and to review concepts for those with prior knowledge of the topics covered.
Unfortunately, many students are not willing to sit through such an extensive (and in-
tense) introduction.

A second approach begins from Chapter 2 and introduces the material from
Chapter 1 only as needed. The chapters that are the most technically difficult,and rely
the most on Chapter 1,are Chapters 4 and 5. Thus, for a one-semester course,the sub-
ject of protein folding (Chapters 4 and 5) could be skipped. Then much of the intro-
ductory material can be omitted, with the exception of a discussion of the last part of
Section 1.3,and some introduction to the subject of entropy and information either
through thermodynamics (Section 1.3) or information theory (Section 1.8), prefer-
ably both. Then Chapters 2 and 3 can be covered first, followed by Chapters 6–9, with
selected material introduced from Chapter 1 as is appropriate for the background of
the students.

There are two additional recommendations.First,it is better to run this course as
a project-based course rather than using graded homework. The varied backgrounds
of students make it difficult to select and fairly grade the problems. Projects for indi-
viduals or small groups of students can be tailored to their knowledge and interests.
There are many new areas of inquiry, so that projects may approach research-level
contributions and be exciting for the students. Unfortunately, this means that stu-
dents may not devote sufficient effort to the study of course material,and rely largely
upon exposure in lectures. There is no optimal solution to this problem. Second,if it
is possible,a seminar series with lecturers who work in the field should be an integral
part of the course. This provides additional exposure to the varied approaches to the
study of complex systems that it is not possible for a single lecturer or text to provide.

Fo r  t he  i n s t r u c t o r 15
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1

Introduction and Preliminaries

Conceptual Outline

A deceptively simple model of the dynamics of a system is a deterministic
iterative map applied to a single real variable. We characterize the dynamics by look-
ing at its limiting behavior and the approach to this limiting behavior. Fixed points that
attract or repel the dynamics, and cycles, are conventional limiting behaviors of a
simple dynamic system. However, changing a parameter in a quadratic iterative map
causes it to undergo a sequence of cycle doublings (bifurcations) until it reaches a
regime of chaotic behavior which cannot be characterized in this way. This deter-
ministic chaos reveals the potential importance of the influence of fine-scale details
on large-scale behavior in the dynamics of systems. 

A system that is subject to complex (external) influences has a dynamics
that may be modeled statistically. The statistical treatment simplifies the complex un-
predictable stochastic dynamics of a single system, to the simple predictable dy-
namics of an ensemble of systems subject to all possible influences. A random walk
on a line is the prototype stochastic process. Over time, the random influence causes
the ensemble of walkers to spread in space and form a Gaussian distribution. When
there is a bias in the random walk, the walkers have a constant velocity superim-
posed on the spreading of the distribution.

While the microscopic dynamics of physical systems is rapid and complex,
the macroscopic behavior of many materials is simple, even static. Before we can un-
derstand how complex systems have complex behaviors, we must understand why
materials can be simple. The origin of simplicity is an averaging over the fast micro-
scopic dynamics on the time scale of macroscopic observations (the ergodic theorem)
and an averaging over microscopic spatial variations. The averaging can be performed
theoretically using an ensemble representation of the physical system that assumes
all microscopic states are realized. Using this as an assumption, a statistical treatment
of microscopic states describes the macroscopic equilibrium behavior of systems. The
final part of Section 1.3 introduces concepts that play a central role in the rest of the
book. It discusses the differences between equilibrium and complex systems.
Equilibrium systems are divisible and satisfy the ergodic theorem. Complex systems

❚ 1 . 3 ❚

❚ 1 . 2 ❚

❚ 1 . 1 ❚
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are composed out of interdependent parts and violate the ergodic theorem. They have
many degrees of freedom whose time dependence is very slow on a microscopic scale.

To understand the separation of time scales between fast and slow de-
grees of freedom, a two-well system is a useful model. The description of a particle
traveling in two wells can be simplified to the dynamics of a two-state (binary vari-
able) system. The fast dynamics of the motion within a well is averaged by assuming
that the system visits all states, represented as an ensemble. After taking the aver-
age, the dynamics of hopping between the wells is represented explicitly by the dy-
namics of a binary variable. The hopping rate depends exponentially on the ratio of
the energy barrier and the temperature. When the temperature is low enough, the
hopping is frozen. Even though the two wells are not in equilibrium with each other,
equilibrium continues to hold within a well. The cooling of a two-state system serves
as a simple model of a glass transition, where many microscopic degrees of freedom
become frozen at the glass transition temperature.

Cellular automata are a general approach to modeling the dynamics of
spatially distributed systems. Expanding the notion of an iterative map of a single vari-
able, the variables that are updated are distributed on a lattice in space. The influ-
ence between variables is assumed to rely upon local interactions, and is homoge-
neous. Space and time are both discretized, and the variables are often simplified to
include only a few possible states at each site. Various cellular automata can be de-
signed to model key properties of physical and biological systems.

The equilibrium state of spatially distributed systems can be modeled by
fields that are treated using statistical ensembles. The simplest is the Ising model, which
captures the simple cooperative behavior found in magnets and many other systems.
Cooperative behavior is a mechanism by which microscopic fast degrees of freedom
can become slow collective degrees of freedom that violate the ergodic theorem and
are visible macroscopically. Macroscopic phase transitions are the dynamics of the
cooperative degrees of freedom. Cooperative behavior of many interacting elements
is an important aspect of the behavior of complex systems. This should be contrasted
to the two-state model (Section 1.4), where the slow dynamics occurs microscopically. 

Computer simulations of models such as molecular dynamics or cellular
automata provide important tools for the study of complex systems. Monte Carlo sim-
ulations enable the study of ensemble averages without necessarily describing the
dynamics of a system. However, they can also be used to study random-walk dy-
namics. Minimization methods that use iterative progress to find a local minimum are
often an important aspect of computer simulations. Simulated annealing is a method
that can help find low energy states on complex energy surfaces.

We have treated systems using models without acknowledging explicitly
that our objective is to describe them. All our efforts are designed to map a system
onto a description of the system. For complex systems the description must be quite
long, and the study of descriptions becomes essential. With this recognition, we turn

❚ 1 . 8 ❚
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❚ 1 . 4 ❚
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to information theory. The information contained in a communication, typically a
string of characters, may be defined quantitatively as the logarithm of the number of
possible messages. When different messages have distinct probabilities P in an en-
semble, then the information can be identified as ln(P ) and the average information
is defined accordingly. Long messages can be modeled using the same concepts as
a random walk, and we can use such models to estimate the information contained
in human languages such as English.

In order to understand the relationship of information to systems, we must
also understand what we can infer from information that is provided. The theory of logic
is concerned with inference. It is directly linked to computation theory, which is con-
cerned with the possible (deterministic) operations that can be performed on a string
of characters. All operations on character strings can be constructed out of elemen-
tary logical (Boolean) operations on binary variables. Using Tu r i n g ’s model of compu-
tation, it is further shown that all computations can be performed by a universal Tu r i n g
machine, as long as its input character string is suitably constructed. Computation the-
ory is also related to our concern with the dynamics of physical systems because it ex-
plores the set of possible outcomes of discrete deterministic dynamic systems.

We return to issues of structure on microscopic and macroscopic scales
by studying fractals that are self-similar geometric objects that embody the concept
of progressively increasing structure on finer and finer length scales. A general ap-
proach to the scale dependence of system properties is described by scaling theory.
The renormalization group methodology enables the study of scaling properties by
relating a model of a system on one scale with a model of the system on another
scale. Its use is illustrated by application to the Ising model (Section 1.6), and to the
bifurcation route to chaos (Section 1.1). Renormalization helps us understand the ba-
sic concept of modeling systems, and formalizes the distinction between relevant
and irrelevant microscopic parameters. Relevant parameters are the microscopic
parameters that can affect the macroscopic behavior. The concept of universality is
the notion that a whole class of microscopic models will give rise to the same macro-
scopic behavior, because many parameters are irrelevant. A conceptually related
computational technique, the multigrid method, is based upon representing a prob-
lem on multiple scales.

The study of complex systems begins from a set of models that capture aspects of the
dynamics of simple or complex systems. These models should be sufficiently general
to encompass a wide range of possibilities but have sufficient structure to capture in-
teresting features. An exciting bonus is that even the apparently simple mo dels dis-
cussed in this chapter introduce features that are not typically treated in the conven-
tional science of simple systems, but are appropriate introductions to the dynamics of
complex systems.Our treatment of dynamics will often consider discrete rather than
continuous time. Analytic treatments are often convenient to formulate in continu-

❚ 1 . 1 0 ❚
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ous variables and differential equations;however, computer simulations are often best
formulated in discrete space-time variables with well-defined intervals. Moreover, the
assumption of a smooth continuum at small scales is not usually a convenient start-
ing point for the study of complex systems. We are also generally interested not only
in one example of a system but rather in a class of systems that differ from each other
but share a characteristic structure. The elements of such a class of systems are col-
lectively known as an ensemble.As we introduce and study mathematical models, we
should recognize that our primary objective is to represent properties of real systems.
We must therefore develop an understanding of the nature of models and modeling,
and how they can pertain to either simple or complex systems.

Iterative Maps (and Chaos)

An iterative map f is a function that evolves the state of a system s in discrete time

s(t) = f(s(t − t)) (1.1.1)

where s(t) describes the state of the system at time t. For convenience we will gener-
ally measure time in units of t which then has the value 1,and time takes integral val-
ues starting from the initial condition at t = 0.

Ma ny of the com p l ex sys tems we wi ll con s i der in this text are of the form of
Eq .( 1 . 1 . 1 ) ,i f we all ow s to be a gen eral va ri a ble of a rbi tra ry dimen s i on . The gen era l i ty
of i tera tive maps is discussed at the end of this secti on . We start by con s i dering severa l
examples of i tera tive maps wh ere s is a single va ri a bl e . We discuss bri ef ly the bi n a ry
va ri a ble case, s = ±1 . Th en we discuss in gre a ter detail two types of maps with s a re a l
va ri a bl e , s ∈ ℜ, linear maps and qu ad ra tic maps. The qu ad ra tic itera tive map is a sim-
ple model that can display com p l ex dy n a m i c s . We assume that an itera tive map may be
s t a rted at any initial con d i ti on all owed by a spec i f i ed domain of its sys tem va ri a bl e .

1.1.1 Binary iterative maps
There are only a few binary iterative maps.Question 1.1.1 is a complete enumeration
of them.*

Question 1.1.1 Enumerate all possible iterative maps where the system
is described by a single binary variable, s = ±1.

Solution 1.1.1 There are only four possibilities:

s(t) = 1

s(t) = −1

s(t) = s(t − 1)
(1.1.2)

s(t) = −s(t − 1)

1.1
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It is instructive to consider these possibilities in some detail. The main rea-
son there are so few possibilities is that the form of the iterative map we are
using depends,at most, on the value of the system in the previous time. The
first two examples are constants and don’t even depend on the value of the
system at the previous time. The third map can only be distinguished from
the first two by observation of its behavior when presented with two differ-
ent initial conditions.

The last of the four maps is the only map that has any sustained dy-
namics. It cycles between two values in perpetuity. We can think about this
as representing an oscillator. ❚

Question 1.1.2

a. In what way can the map s(t) = −s(t − 1) represent a physical oscillator? 

b. How can we think of the static map, s(t) = s(t − 1), as an oscillator? 

c. Can we do the same for the constant maps s(t) = 1 and s(t) = −1?

Solution 1.1.2 (a) By looking at the oscillator displacement with a strobe
at half-cycle intervals,our measured values can be represented by this map.
(b) By looking at an oscillator with a strobe at cycle intervals. (c) You might
think we could, by picking a definite starting phase of the strobe with respect
to the oscillator. However, the constant map ignores the first value, the os-
cillator does not. ❚

1.1.2 Linear iterative maps: free motion, oscillation, decay
and growth

The simplest example of an iterative map with s real, s ∈ℜ, is a constant map:

s(t) = s0 (1.1.3)

No matter what the initial value,this system always takes the particular value s0. The
constant map may seem trivial,however it will be useful to compare the constant map
with the next class of maps.

A linear iterative map with unit coefficient is a model of free motion or propa-
gation in space:

s(t) = s(t − 1) + v (1.1.4)

at su cce s s ive times the va lues of s a re sep a ra ted by v, wh i ch plays the role of the vel oc i ty.

Question 1.1.3 Consider the case of zero velocity

s(t) = s(t − 1) (1.1.5)

How is this different from the constant map?

Solution 1.1.3 The two maps differ in their depen den ce on the initial va lu e . ❚
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Runaway growth or decay is a multiplicative iterative map:

s(t) = gs(t − 1) (1.1.6)

We can generate the values of this iterative map at all times by using the equivalent
expression

(1.1.7)

which is exponential growth or decay. The iterative map can be thought of as a se-
quence of snapshots of Eq.(1.1.7) at integral time. g = 1 reduces this map to the pre-
vious case.

Question 1.1.4 We have seen the case of free motion, and now jumped
to the case of growth. What happened to accelerated motion? Usually we

would consider accelerated motion as the next step after motion with a con-
stant velocity. How can we write accelerated motion as an iterative map?

Solution 1.1.4 The description of accelerated motion requires two vari-
ables: position and velocity. The iterative map would look like:

x(t) = x(t − 1) + v(t − 1)
(1.1.8)

v(t) = v(t − 1) + a

This is a two-variable iterative map. To write this in the notation of Eq.(1.1.1)
we would define s as a vector s(t) = (x(t), v(t)). ❚

Question 1.1.5 What happens in the rightmost exponential expression
in Eq. (1.1.7) when g is negative?

Solution 1.1.5 The logarithm of a negative number results in a phase i .
The term i t in the exponent alternates sign every time step as one would
expect from Eq. (1.1.6). ❚

At this point,it is convenient to introduce two graphical methods for describing
an iterative map. The first is the usual way of plotting the value of s as a function of
time. This is shown in the left panels of Fig. 1.1.1. The second type of plot,shown in
the right panels, has a different purpose. This is a plot of the iterative relation s(t) as
a function of s(t − 1). On the same axis we also draw the line for the identity map
s(t) = s(t − 1). These two plots enable us to graphically obtain the successive values of
s as follows. Pick a starting value of s, which we can call s(0). Mark this value on the
abscissa. Mark the point on the graph of s(t) that corresponds to the point whose ab-
scissa is s(0),i.e.,the point (s(0), s(1)).Draw a horizontal line to intersect the identity
map. The intersection point is (s(1), s(1)). Draw a vertical line back to the iterative
map. This is the point (s(1), s(2)). Successive values of s(t) are obtained by iterating
this graphical procedure. A few examples are plotted in the right panels of Fig. 1.1.1.

In order to discuss the iterative maps it is helpful to recognize several features of
these maps.First,intersection points of the identity map and the iterative map are the
fixed points of the iterative map:

(1.1.9)    s0 = f (s0)

    s(t) = g t s0 = e ln(g )t s0

I t e ra t i v e  map s  ( a nd  cha o s ) 21
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Fixed points,not surprisingly, play an important role in iterative maps. They help us
describe the state and behavior of the system after many iterations. There are two
kinds of fixed points—stable and unstable. Stable fixed points are characterized by
“attracting” the result of iteration of points that are nearby. More precisely, there exists
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Figure 1.1.1 T he left panels show the time - de p e nde nt value of the system variable s(t) re-
s u l t i ng from iterative ma p s. The first panel (a) shows the result of itera t i ng the cons t a nt ma p ;
(b) shows the result of add i ng v to the pre v ious value du r i ng each time interval; (c)–(f) sho w
t he result of mu l t i p l y i ng by a cons t a nt g, whe re each fig u re shows the behavior for a differe nt
ra nge of g values: (c) g > 1, (d) 0 < g < 1, (e) 1 < g < 0, and (f) g < 1. The rig ht panels are
a differe nt way of sho w i ng gra p h ically the results of itera t io ns and are cons t r ucted as fo l l o w s.
First plot the func t ion f(s) (solid line), whe re s(t) f(s(t 1)). This can be tho u g ht of as plot-
t i ng s(t) vs. s(t 1). Second, plot the ide ntity map s(t) s(t 1) (da s hed line). Mark the ini-
t ial value s(0) on the ho r i z o ntal axis, and the point on the graph of s(t) that corre s p o nds to
t he point whose abscissa is s(0), i.e. the point (s(0), s(1)). These are shown as squa re s. Fro m
t he point (s(0), s(1)) draw a ho r i z o ntal line to intersect the ide ntity map. The int e r s e c t io n
p o i nt is (s(1), s(1)). Draw a vertical line back to the iterative map. This is the point (s( 1 ) ,
s(2)). Successive values of s(t) are obtained by itera t i ng this gra p h ical pro c e du re. ❚
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a neighborhood of points of s0 such that for any s in this neighborhood the sequence
of points

(1.1.10)

converges to s0. We are using the notation f 2(s) = f(f (s)) for the second iteration,and
similar notation for higher iterations. This sequence is just the time series of the iter-
ative map for the initial condition s. Unstable fixed points have the opposite behavior,
in that iteration causes the system to leave the neighborhood of s0. The two types of
fixed points are also called attracting and repelling fixed points.

The family of multiplicative iterative maps in Eq.(1.1.6) all have a fixed point at
s0 = 0. Graphically from the figures, or analytically from Eq. (1.1.7), we see that the
fixed point is stable for |g| < 1 and is unstable for |g| > 1. There is also distinct behav-
ior of the system depending on whether g is positive or negative. For g < 0 the itera-
tions alternate from one side to the other of the fixed point, whether it is attracted to
or repelled from the fixed point. Specifically, if s < s0 then f(s) > s0 and vice versa, or
sign(s − s0) = −sign(f (s) − s0). For g > 0 the iteration does not alternate.

Question 1.1.6 Consider the iterative map.

s(t) = gs(t − 1) + v (1.1.11)

convince yourself that v does not affect the nature of the fixed point, only
shifts its position.

Question 1.1.7 Con s i der an arbi tra ry itera tive map of the form Eq .( 1 . 1 . 1 ) ,
with a fixed point s0 ( Eq .( 1 . 1 . 9 ) ) . If the itera tive map can be ex p a n ded in

a Tayl or series around s0 s h ow that the first deriva tive

(1.1.12)

characterizes the fixed point as follows:

For |g | < 1, s0 is an attracting fixed point.

For |g | > 1, s0 is a repelling fixed point.

For g < 0, iterations alternate sides in a sufficiently small neighborhood of s0.

For g > 0 ,i tera ti ons remain on one side in a su f f i c i en t ly small nei gh borh ood of s0.

Extra credit: Prove the same theorem for a differentiable function (no Taylor
expansion needed) using the mean value theorem.

Solution 1.1.7 If the iterative map can be expanded in a Taylor series we
write that

(1.1.13)
    f (s) = f (s0) + g (s − s0)+ h (s − s0)2 +…

    

g =
df (s)

ds
s 0

    {s, f (s), f 2(s), f 3(s),…}
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where g is the first derivative at s0, and h is one-half of the second derivative
at s0. Since s0 is a fixed point f(s0) = s0 we can rewrite this as:

(1.1.14)

If we did not have any higher-order terms beyond g, then by inspection each
of the four conditions that we have to prove would follow from this expres-
sion without restrictions on s. For example, if |g | > 1, then taking the mag-
nitude of both sides shows that f(s) − s0 is larger than s − s0 and the iterations
take the point s away from s0. If g > 0,then this expression says that f(s) stays
on the same side of s0. The other conditions follow similarly.

To generalize this argument to include the higher-order terms of the ex-
pansion, we must guarantee that whichever domain g is in (g > 1, 0 < g < 1,
−1 < g < 0, or g < −1), the same is also true of the whole right side. For a
Taylor expansion, by choosing a small enough neighborhood |s − s0| < , we
can guarantee the higher-order terms are less than any number we choose.
We choose to be half of the minimum of |g − 1|, |g − 0| and |g + 1|. Then
g + is in the same domain as g. This provides the desired guarantee and the
proof is complete.

We have proven that in the vicinity of a fixed point the iterative map
may be completely characterized by its first-order expansion (with the ex-
ception of the special points g = ±1,0). ❚

Thus far we have not considered the special cases g =±1,0. The special cases g = 0
and g = 1 have already been treated as simpler iterative maps. When g = 0, the fixed
point at s = 0 is so attractive that it is the result of any iteration. When g = 1 all points
are fixed points.

The new special case g = −1 has a different significance. In this case all points al-
ternate between positive and negative values, repeating every other iteration. Such
repetition is a generalization of the fixed point. Whereas in the fixed-point case we re-
peat every iteration, here we repeat after every two iterations. This is called a 2-cycle,
and we can immediately consider the more general case of an n-cycle. In this termi-
nology a fixed point is a 1-cycle.One way to describe an n-cycle is to say that iterating
n times gives back the same result, or equivalently, that a new iterative map which is
the nth fold composition of the original map h = f n has a fixed point. This descrip-
tion would include also fixed points of f and all points that are m-cycles, where m is a
divisor of n. These are excluded from the definition of the n-cycles. While we have in-
troduced cycles using a map where all points are 2-cycles,more general iterative maps
have specific sets of points that are n-cycles. The set of points of an n-cycle is called
an orbit. There are a variety of properties of fixed points and cycles that can be proven
for an arbitrary map. One of these is discussed in Question 1.1.8.

    

f (s) −s0

s − s0

= g +h (s − s0) +…
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Question 1.1.8 Prove that there is a fixed point between any two points
of a 2-cycle if the iterating function f is continuous.

Solution 1.1.8 Let the 2-cycle be written as

(1.1.15)

Consider the function h(s) = f(s) − s, h(s1) and h(s2) have opposite signs and
therefore there must be an s0 between s1 and s2 such that h(s0) = 0—the fixed
point. ❚

We can also generalize the definition of attracting and repelling fixed points to
consider attracting and repelling n-cycles. Attraction and repulsion for the cycle is
equivalent to the attraction and repulsion of the fixed point of f n.

1.1.3 Quadratic iterative maps: cycles and chaos
The next itera tive map we wi ll con s i der de s c ri bes the ef fect of n on l i n e a ri ty (sel f - acti on ) :

s(t) = as(t − 1)(1 − s(t − 1)) (1.1.16)

or equivalently

f (s) = as(1 − s) (1.1.17)

This map has played a significant role in development of the theory of dynamical sys-
tems because even though it looks quite innocent,it has a dynamical behavior that is
not described in the conventional science of simple systems. Instead, Eq. (1.1.16) is
the basis of significant work on chaotic behavior, and the transition of behavior from
simple to chaotic. We have chosen this form of quadratic map because it simplifies
somewhat the discussion. Question 1.1.11 describes the relationship between this
family of quadratic maps,parameterized by a, and what might otherwise appear to be
a different family of quadratic maps.

We will focus on a values in the range 4 > a > 0. For this range, any value of s in
the interval s ∈[0,1] stays within this interval. The minimum value f(s) = 0 occurs for
s = 0,1 and the maximal value occurs for s = 1/2. For all values of a there is a fixed point
at s = 0 and there can be at most two fixed points, since a quadratic can only intersect
a line (Eq. (1.1.9)) in two points.

Taking the first derivative of the iterative map gives

(1.1.18)

At s = 0 the derivative is a which, by Question 1.1.7,shows that s = 0 is a stable fixed
point for a < 1 and an unstable fixed point for a > 1. The switching of the stability of
the fixed point at s = 0 coincides with the introduction of a second fixed point in the
interval [0,1] (when the slope at s = 0 is greater than one, f (s) > s for small s, and since

    

df

ds
= a(1− 2s)

    s1 = f (s2)

    s2 = f (s1)
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f (1) = 0, we have that f(s1) = s1 for some s1 in [0,1] by the same construction as in
Question 1.1.8). We find s1 by solving the equation

(1.1.19)

(1.1.20)

Substituting this into Eq. (1.1.18) gives

(1.1.21)

This shows that for 1 < a < 3,the new fixed point is stable by Question 1.1.7. Moreover,
the derivative is positive for 1 < a < 2,so s1 is stable and convergence is from one side.
The derivative is negative for 2 < a < 3, so s1 is stable and alternating.

Fig. 1.1.2(a)–(c) shows the three cases: a = 0.5, a = 1.5 and a = 2.8. For a = 0.5,
starting from anywhere within [0,1] leads to convergence to s = 0. When s(0) > 0.5 the
first iteration takes the system to s(1) < 0.5. The closer we start to s(0) = 1 the closer
to s = 0 we get in the first jump. At s(0) = 1 the convergence to 0 occurs in the first
jump. A similar behavior would be found for any value of 0 < a < 1. For a = 1.5 the be-
havior is more complicated. Except for the points s = 0,1,the convergence is always to
the fixed point s1 = (a − 1)/a between 0 and 1. For a = 2.8 the iterations converge to
the same point;however, the convergence is alternating. Because there can be at most
two fixed points for the quadratic map, one might think that this behavior would be
all that would happen for 1 < a < 4.One would be wrong. The first indication that this
is not the case is the instability of the fixed point at s1 starting from a = 3.

What happens for a > 3? Both of the fixed points that we have found,and the only
ones that can exist for the quadratic map, are now unstable. We know that the itera-
tion of the map has to go somewhere, and only within [0,1]. The only possibility,
within our experience, is that there is an attracting n-cycle to which the fixed points
are unstable. Let us then consider the map f 2(s) whose fixed points are 2-cycles of the
original map. f 2(s) is shown in the right panels of Fig. 1.1.2 for increasing values of a.
The fixed points of f (s) are also fixed points of f 2(s). However, we see that two addi-
tional fixed points exist for a > 3. We can also show analytically that two fixed points
are introduced at exactly a = 3:

(1.1.22)

To find the fixed point we solve:

(1.1.23)

We already know two solutions of this quartic equation—the fixed points of the map
f . One of these at s = 0 is obvious. Dividing by s we have a cubic equation:

(1.1.24)    a
3s3 − 2a 3s2 + a2 (1+ a)s + (1 −a 2 ) = 0

    s = a 2s(1− s)(1 −as(1−s))

    f
2(s) = a 2s(1−s)(1− as(1− s))

    

df

ds s1

= 2− a

    s1 = (a −1)/a

    s1 = as1(1− s1)
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We can reduce the equation to a quadratic by dividing by (s − s1) as follows (we sim-
plify the algebra by dividing by a(s − s1) = (as − (a − 1))):

(1.1.25)

Now we can obtain the roots to the quadratic:

(1.1.26)

(1.1.27)

This has two solutions (as it must for a 2-cycle) for a <−1 or for a > 3. The former case
is not of interest to us since we have assumed 0 < a < 4. The latter case is the two roots
that are promised. Notice that for exactly a = 3 the two roots that are the new 2-cycle
are the same as the fixed point we have already found s1. The 2-cycle splits off from
the fixed point at a = 3 when the fixed point becomes unstable. The two attracting
points continue to separate as a increases. For a > 3 we expect that the result of itera-
tion eventually settles down to the 2-cycle. The system state alternates between the
two roots Eq. (1.1.27). This is shown in Fig. 1.1.2(d).

As we continue to increase a beyond 3, the 2-cycle will itself become unstable at
a point that can be calculated by setting

(1.1.28)

    

df 2

ds
s
2

= −1

    
s2 =

(a +1) ± (a +1)(a− 3)

2a

    a
2s2 − a(a + 1)s +(a +1) = 0

    

(as −(a −1)) a3s3 −2a3s 2 +a 2(1+ a)s +(1−a 2)

a3s3 −(a −1)a2s2

−(a + 1)a 2s2 + a 2(1+ a)s +(1−a 2)

−(a +1)a 2s2 + a(1+ a)(a − 1)s

+ a(1+ a)s +(1−a 2)

a2s2 −a(a + 1)s +(a +1)

)
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Figure 1.1.2 (pp. 28-30) Plots of the result of iterating the quadratic map f(s) = as(1 − s)
for different values of a. The left and center panels are similar to the left and right panels of
Fig. 1.1.1. The left panels plot s(t). The center panels describe the iteration of the map f (s)
on axes corresponding to s(t) and s(t − 1). The right panels are similar to the center panels
but are for the function f2(s). The different values of a are indicated on the panels and show
the changes from (a) convergence to s = 0 for a = 0.5, (b) convergence to s = (a − 1)/ a for
a = 1.5, (c) alternating convergence to s = (a − 1)/ a for a = 2.8, (d) bifurcation — conver-
gence to a 2-cycle for a = 3.2, (e) second bifurcation — convergence to a 4-cycle for a = 3.5,
(f) chaotic behavior for a = 3.8. ❚
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to be a = 1 + √6 = 3.44949. At this value of a the 2-cycle splits into a 4-cycle
(Fig. 1.1.2(e)).Each of the fixed points of f 2(s) simultaneously split into 2-cycles that
together form a 4-cycle for the original map.

Question 1.1.9 Show that when f has a 2-cycle, both of the fixed points
of f 2 must split simultaneously.

Solution 1.1.9 The split occurs when the fixed points become unstable—
the derivative of f 2 equals –1. We can show that the derivative is equal at the
two fixed points of Eq. (1.1.27), which we call s 2

±:

(1.1.29)

where we have made use of the chain rule.Since f (s2
+) = s2

− and vice versa, we
have shown this expression is the same whether s2 = s2

+ or s2 = s2
−.

Note: This can be generalized to show that the derivative of f k is the
same at all of its k fixed points corresponding to a k-cycle of f. ❚

The process of taking an n-cycle into a 2n-cycle is called bifurcation.Bifurcation con-
tinues to replace the limiting behavior of the iterative map with progressively longer
cycles of length 2k. The bifurcations can be simulated. They occur at smaller and
smaller intervals and there is a limit point to the bifurcations at ac = 3.56994567.
Fig. 1.1.3 shows the values that are reached by the iterative map at long times—the
stable cycles—as a function of a < ac . We will discuss an algebraic treatment of the bi-
furcation regime in Section 1.10.

Beyond the bifurcation regime a > ac (Fig. 1.1.2(f)) the behavior of the iterative
map can no longer be described using simple cycles that attract the iterations. The be-
havior in this regime has been identified with chaos. Chaos has been characterized in
many ways, but one property is quite generally agreed upon—the inherent la ck of
predictability of the system dynamics. This is often expressed more precisely by de-
scribing the sensitivity of the system’s fate to the initial conditions.A possible defini-
tion is: There exists a distance d such that for any neighborhood V of any point s it is
possible to find a point s′ within the neighborhood and a number of iterations k so
that f k(s′) is further than d away from f k(s). This means that arbitrarily close to any
point is a point that will be displaced a significant distance away by iteration.
Qualitatively, there are two missing aspects of this definition,first that the points that
move far away must not be too unlikely (otherwise the system is essentially pre-
dictable) and second that d is not too small (in which case the divergence of the dy-
namics may not be significant).

If we look at the definition of chaotic behavior, we see that the concept of scale
plays an important role.A small distance between s and s′ turns into a large distance
between f k(s) and f k(s′). Thus a fine-scale difference eventually becomes a large-scale
difference. This is the essence of chaos as a model of complex system behavior. To un-
derstand it more fully, we can think about the state variable s not as one real variable,

    

df 2

ds
s
2

=
df (f (s))

ds s
2

=
df (s)

ds f (s
2
)

df (s)

ds s
2
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but as an infinite sequence of binary variables that form its binary representation s =
0.r1r2r3r4 ... Each of these binary variables represents the state of the system—the value
of some quantity we can measure about the system—on a particular length scale.The
higher order bits represent the larger scales and the lower order ones represent the
finer scales. Chaotic behavior implies that the state of the first few binary variables,
r1r2, at a particular time are determined by the value of fine scale variables at an ear-
lier time. The farther back in time we look, the finer scale variables we have to con-
sider in order to know the present values of r1r2. Because many different variables are
relevant to the behavior of the system, we say that the system has a complex behavior.
We will return to these issues in Chapter 8.

The influence of fine length scales on coarse ones makes iterative maps difficult
to simulate by computer. Computer representations of real numbers always have fi-
nite precision. This must be taken into account if simulations of iterative maps or
chaotic complex systems are performed.
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Figure 1.1.3 A plot of values of s visited by the quadratic map f(s) = as(1 − s) after many
iterations as a function of a, including stable points, cycles and chaotic behavior. The differ-
ent regimes are readily apparent. For a < 1 the stable point is s = 0. For 1 < a < 3 the stable
point is at s0 = (a − 1)/a. For 3 < a < ac with ac = 3.56994567, there is a bifurcation cascade
with 2-cycles then 4-cycles, etc. 2k-cycles for all values of k appear in progressively narrower
regions of a. Beyond 4-cycles they cannot be seen in this plot. For a > ac there is chaotic be-
havior. There are regions of s values that are not visited and regions that are visited in the
long time behavior of the quadratic map in the chaotic regime which this figure does not fully
illustrate. ❚
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Another significant point about the iterative map as a model of a complex system
is that there is nothing outside of the system that is influencing it.All of the informa-
tion we need to describe the behavior is contained in the precise value of s. The com-
plex behavior arises from the way the different parts of the system—the fine and
course scales—affect each other.

Question 1.1.10: Why isn’t the iterative map in the chaotic regime
equivalent to picking a number at random?

Solution 1.1.10: We can still predict the behavior of the iterative map over
a few iterations. It is only when we iterate long enough that the map becomes
unpredictable. More specifically, the continuity of the function f (s) guaran-
tees that for s and s′ close together f (s) and f (s′) will also be close together.
Specifically, given an it is possible to find a such that for |s − s′| < , | f (s)−
f (s′)| < . For the family of functions we have been considering, we only need
to set < /a , since then we have:

(1.1.30)

Thus if we fix the number of cycles to be k, we can always find two points
close enough so that | f k(s′)−f k(s)|< by setting | s − s′|< /ak. ❚

The tuning of the parameter a leading from simple convergent behavior through
cycle bifurcation to chaos has been identified as a universal description of the ap-
pearance of chaotic behavior from simple behavior of many systems. How do we take
a complicated real system and map it onto a discrete time iterative map? We must de-
fine a system variable and then take snapshots of it at fixed intervals (or at least well-
defined intervals). The snapshots correspond to an iterative map. Often there is a nat-
ural choice for the interval that simplifies the iterative behavior. We can then check to
see if there is bifurcation and chaos in the real system when parameters that control
the system behavior are varied.

One of the earliest examples of the application of iterative maps is to the study
of heart attacks. Heart attacks occur in many different ways. One kind of heart at-
tack is known as fibrillation. Fibrillation is characterized by chaotic and ineffective
heart muscle contractions. It has been suggested that bifurcation may be observed in
heartbeats as a period doubling (two heartbeats that are inequivalent). If correct,
this may serve as a warning that the heart structure, due to various changes in heart
tissue parameters, may be approaching fibrillation. Another system where more de-
tailed studies have suggested that bifurcation occurs as a route to chaotic behavior is
that of turbulent flows in hydrodynamic systems.A subtlety in the application of the
ideas of bifurcation and chaos to physical systems is that physical systems are better
modeled as having an increasing number of degrees of freedom at finer scales. This
is to be contrasted with a system modeled by a single real number, which has the
same number of degrees of freedom (represented by the binary variables above) at
each length scale.

    | f (s) − f ( ′ s )| = a | s(1− s)− ′ s (1− ′ s )| = a | s − ′ s ||1 −(s + ′ s )| < a |s − ′ s | <
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1.1.4 Are all dynamical systems iterative maps?
How general is the iterative map as a tool for describing the dynamics of systems?
There are three apparent limitations of iterative maps that we will consider modify-
ing later, Eq. (1.1.1):

a. describes the homogeneous evolution of a system since f itself does not depend
on time,

b. describes a system where the state of the system at time t depends only on the
state of the system at time t – t, and

c. describes a deterministic evolution of a system.

We can,however, bypass these limitations and keep the same form of the iterative map
if we are willing to let s describe not just the present state of the system but also

a. the state of the sys tem and all other factors that might affect its evo luti on in ti m e ,

b. the state of the system at the present time and sufficiently many previous times,
and

c. the probability that the system is in a particular state.

Taking these caveats together, all of the systems we will consider are iterative maps,
which therefore appear to be quite general.Generality, however, can be quite useless,
since we want to discard as much information as possible when describing a system.

Another way to argue the generality of the iterative map is through the laws of
classical or quantum dynamics.If we consider s to be a variable that describes the po-
sitions and velocities of all particles in a system, all closed systems described by clas-
sical mechanics can be described as deterministic iterative maps.Quantum evolution
of a closed system may also be described by an iterative map if s describes the wave
function of the system. However, our intent is not necessarily to describe microscopic
dynamics, but rather the dynamics of variables that we consider to be relevant in de-
scribing a system. In this case we are not always guaranteed that a deterministic iter-
ative map is sufficient. We will discuss relevant generalizations, first to stochastic
maps, in Section 1.2.

Extra Credit Question 1.1.11 Show that the system of quadratic iterative
maps

(1.1.31)

is essentially equivalent in its dynamical properties to the iterative maps we
have considered in Eq. (1.1.16).

Solution 1.1.11 Two iterative maps are equivalent in their properties if we
can perform a time-independent one-to-one map of the time-dependent
system states from one case to the other. We will attempt to transform the
family of quadratic maps given in this problem to the one of Eq.(1.1.16) us-
ing a linear map valid at all times

(1.1.32)    s(t) = m ′ s (t) +b

    s(t) = s(t −1)2 + k
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By direct substitution this leads to:

(1.1.33)

We must now choose the values of m and b so as to obtain the form of
Eq. (1.1.16).

(1.1.34)

For a correct placement of minus signs in the parenthesis we need:

(1.1.35)

or

(1.1.36)

(1.1.37)

giving

(1.1.38)

(1.1.39)

We see that for k < 1/4 we have two solutions. These solutions give all possi-
ble (positive and negative) values of a.

What about k > 1/4? It turns out that this case is not very interesting
compared to the rich behavior for k < 1/4, since there are no finite fixed
points,and therefore by Question 1.1.8 no 2-cycles (it is not hard to gener-
alize this to n-cycles). To confirm this, verify that iterations diverge to +∞
from any initial condition.

Note: The system of equations of this question are the ones extensively
analyzed by Devaney in his excellent textbook A First Course in Chaotic
Dynamical Systems. ❚

Extra Credit Question 1.1.12 You are given a problem to solve which
when reduced to mathematical form looks like

(1.1.40)

where f is a complicated function that depends on a parameter c. You know
that there is a solution of this equation in the vicinity of s0. To solve this equa-
tion you try to iterate it (Newton’s method) and it works,since you find that
f k(s0) converges nicely to a solution. Now, however, you realize that you need
to solve this problem for a slightly different value of the parameter c, and
when you try to iterate the equation you can’t get the value of s to converge.
Instead the values start to oscillate and then behave in a completely erratic

    s = fc (s)

    a = −m = 2b = (1 ± 1− 4k )

    b = (1± 1− 4k )/2

    

2b

m
= −1

    b
2 −b +k = 0

    

′ s (t) = (−m) ′ s (t −1)( −
2b

m

 

 
 

 

 
 − ′ s (t − 1)) +

1

m
(b2 +k − b)

    
′ s (t) = m ′ s (t −1)( ′ s (t −1)+

2b

m
) +

1

m
(b2 +k − b)

    m ′ s (t)+ b = (m ′ s (t − 1)+ b)2 +k
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way. Suggest a solution for this problem and see if it works for the function
fc (s) = cs(1 − s), c = 3.8, s0 = 0.5. A solution is given in stages (a) - (c) below.

Solution 1.1.12(a) A common resolution of this problem is to consider it-
erating the function:

(1.1.41)

where we can adjust to obtain rapid convergence. Note that solutions of

(1.1.42)

are the same as solutions of the original problem.

Question 1.1.12(b) Explain why this could work.

Solution 1.1.12(b) The derivative of this function at a fixed point can be
controlled by the value of . It is a linear interpolation between the fixed
point derivative of fc and 1. If the fixed point is unstable and oscillating, the
derivative of fc must be less than −1 and the interpolation should help.

We can also explain this result without appealing to our work on itera-
tive maps by noting that if the iteration is causing us to overshoot the mark,
it makes sense to mix the value s we start from with the value we get from
fc(s) to get a better estimate.

Question 1.1.12(c) Explain how to pick .

Solution 1.1.12(c) If the solution is oscillating, then it makes sense to as-
sume that the fixed point is in between successive values and the distance is
revealed by how much further it gets each time;i.e., we assume that the iter-
ation is essentially a linear map near the fixed point and we adjust so that
we compensate exactly for the overshoot of fc .

Using two trial iterations, a linear approximation to fc at s0 looks like:

(1.1.43)

Adopting the linear approximation as a definition of g we have:

(1.1.44)

Set up so that the first iteration of the modified system will take you
to the desired answer:

(1.1.45)

or

(1.1.46)

(1.1.47)    (1 − ) =(s0 − s1)/(s2 −s1)

    s0 −s1 =(1− )(f c(s1) − s1) = (1− )(s2 − s1)

    s0 = s1 + (1− )fc (s1)

    g ≡ (s3 − s2 )/(s2 − s1)

    

s2 = f c(s1) ≈ g(s1 − s0)+ s0

s3 = fc (s2) ≈ g(s2 −s0) +s0

    s = hc(s)

    hc(s) = s +(1− )f c(s)
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To eliminate the unknown s0 we use Eq. (1.1.43) to obtain:

(1.1.48)

(1.1.49)

or

(1.1.50)

(1.1.51)

It is easy to check, using the formula in terms of g, that the modified itera-
tion has a zero derivative at s0 when we use the approximate linear forms for
fc . This means we have the best convergence possible using the information
from two iterations of fc . We then use the value of to iterate to convergence.
Try it! ❚

Stochastic Iterative Maps

Many of the systems we would like to consider are described by system variables
whose value at the next time step we cannot predict with complete certainty. The un-
certainty may arise from many sources,including the existence of interactions and pa-
rameters that are too complicated or not very relevant to our problem. We are then
faced with describing a system in which the outcome of an iteration is probabilistic
and not deterministic. Such systems are called stochastic systems. There are several
ways to describe such systems mathematically. One of them is to consider the out-
come of a particular update to be selected from a set of possible values. The proba-
bility of each of the possible values must be specified. This description is not really a
model of a single system, because each realization of the system will do something dif-
ferent. Instead,this is a model of a collection of systems—an ensemble.Our task is to
study the properties of this ensemble.

A stochastic system is generally described by the time evolution of random vari-
ables. We begin the discussion by defining a random variable.A random variable s is
defined by its probability distribution Ps(s′), which describes the likelihood that s has
the value s′. If s is a continuous variable,then Ps (s′)ds′ is the probability that s resides
between s′ and s′ + ds′. Note that the subscript is the variable name rather than an in-
dex. For example, s might be a binary variable that can have the value +1 or −1. Ps (1)
is the probability that s = 1 and Ps (−1) is the probability that s = −1. If s is the outcome
of an unbiased coin toss, with heads called 1 and tails called −1, both of these values
are 1/2.When no confusion can arise,the notation Ps (s′) is abbreviated to P(s), where
s may be either the variable or the value. The sum over all possible values of the prob-
ability must be 1.

(1.2.1)
    

Ps( ′ s ) =1
′ s 

∑

1.2

    = −g /(1− g ) = (s2 − s3)/(2s2 − s1 −s3)
    1− = 1/(1− g)

    (s0 − s1) = (s2 −s1)/(1− g )
    (s2 − s1) = g(s1 − s0)+ (s0 − s1)
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In the discussion of a system described by random variables, we often would like
to know the average value of some quantity Q(s) that depends in a definite way on the
value of the stochastic variable s. This average is given by:

(1.2.2)

Note that the average is a linear operation.
We now consider the case of a time-dependent random variable. Rather than de-

scribing the time dependence of the variable s(t), we describe the time dependence of
the probability distribution Ps (s′;t). Similar to the iterative map, we can consider the
case where the outcome only depends on the value of the system variable at a previ-
ous time,and the transition probabilities do not depend explicitly on time. Such sys-
tems are called Markov chains. The transition probabilities from a state at a particu-
lar time to the next discrete time are written:

(1.2.3)

Ps is used as the notation for the transition probability, since it is also the probability
distribution of s at time t, given a particular value s ′(t − 1) at the previous time. The
use of a time index for the arguments illustrates the use of the transition probability.
Ps (1|1) is the probability that when s = 1 at time t − 1 then s = 1 at time t. Ps (−1|1) is
the probability that when s = 1 at time t − 1 then s =−1 at time t. The transition prob-
abilities,along with the initial probability distribution of the system Ps (s′; t = 0), de-
termine the time-dependent ensemble that we are interested in. Assuming that we
don’t lose systems on the way, the transition probabilities of Eq. (1.2.3) must satisfy:

(1.2.4)

This states that no matter what the value of the system variable is at a particular time,
it must reach some value at the next time.

The stochastic system described by transition probabilities can be written as an
iterative map on the probability distribution P(s)

(1.2.5)

It may be more intuitive to write this using the notation

(1.2.6)

in which case it may be sufficient, though hazardous, to write the abbreviated form

(1.2.7)
    

P(s(t)) = P(s(t)|s(t −1))P(s(t −1))
s(t −1)

∑

    

Ps( ′ s (t);t) = Ps( ′ s (t)| ′ s (t − 1))Ps ( ′ s (t −1);t −1)
′ s (t −1)

∑

    

Ps( ′ s ;t) = Ps( ′ s | ′ ′ s )Ps( ′ ′ s ;t −1)
′ ′ s 

∑

    

Ps( ′ ′ s | ′ s )
′ ′ s 

∑ = 1

    Ps( ′ s (t)| ′ s (t −1))

    

< Q(s) >= Ps( ′ s )Q( ′ s )
′ s 

∑
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It is important to recognize that the time evolution equation for the probability
is linear. The linear evolution of this system (Eq. (1.2.5)) guarantees that superposi-
tion applies. If we start with an initial distribution at
time t = 0, then we could find the result at time t by separately looking at the evolu-
tion of each of the probabilities P 1(s ;0) and P 2(s ;0). Explicitly we can write
P(s ;t) = P1(s ;t) + P 2(s ;t). The meaning of this equation should be well noted. The
right side of the equation is the sum of the evolved probabilities P 1(s ;t) and P 2(s ;t).
This linearity is a direct consequence of the independence of different members of the
ensemble and says nothing about the complexity of the dynamics.

We note that ultimately we are interested in the behavior of a particular system
s(t) that only has one value of s at every time t. The ensemble describes how many such
systems will behave. Analytically it is easier to describe the ensemble as a whole,how-
ever, simulations may also be used to observe the behavior of a single system.

1.2.1 Random walk
Stochastic systems with only one binary variable might seem to be trivial, but we will
devote quite a bit of attention to this problem. We begin by considering the simplest
possible binary stochastic system. This is the system which corresponds to a coin toss.
Ideally, for each toss there is equal probability of heads (s = +1) or tails (s = −1), and
there is no memory from one toss to the next. The ensemble at each time is indepen-
dent of time and has an equal probability of ±1:

(1.2.8)

where the discrete delta function is defined by

(1.2.9)

Since Eq. (1.2.8) is independent of what happens at all previous times, the evolution
of the state variable is given by the same expression

(1.2.10)

We can illustrate the evaluation of the average of a function of s at time t :

(1.2.11)

For example, if we just take Q(s) to be s itself we have the average of the system
variable:

(1.2.12)
    

< s >t = 1
2

′ s 
s '=±1

∑ = 0

    

< Q(s) >t = Q( ′ s )Ps ( ′ s ;t)
′ s = ±1
∑ = Q( ′ s ) 1

2 ′ s ,1 + 1
2 ′ s ,−1( )

′ s =±1

∑ = 1
2

Q( ′ s )
′ s = ±1
∑

    
P( ′ s |s) = 1

2 ′ s ,1 + 1
2 ′ s ,−1

    
i ,j =

1 i = j

0 i ≠ j

 
 
 

 
 

    
P(s ;t) = 1

2 s,1 + 1
2 s ,−1
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Question 1.2.1 Will you win more fair coin tosses if (a) you pick heads
every time,or if (b) you alternate heads and tails, or if (c) you pick heads

or tails at random or if (d) you pick heads and tails by some other system?
Explain why.

Solution 1.2.1 In general, we cannot predict the number of coin tosses that
will be won, we can only estimate it based on the chance of winning.
Assuming a fair coin means that this is the best that can be done. Any of the
possibilities (a)–(c) give the same chance of winning. In none of these ways
of gambling does the choice you make correlate with the result of the coin
toss. The only system (d) that can help is if you have some information about
what the result of the toss will be,like betting on the known result after the
coin is tossed.A way to write this formally is to write the probability distri-
bution of the choice that you are making. This choice is also a stochastic
process. Calling the choice c(t), the four possibilities mentioned are:

(a) (1.2.13)

(b) (1.2.14)

(c) (1.2.15)

(d) (1.2.16)

It is sufficient to show that the average probability of winning is the
same in each of (a)–(c) and is just 1/2. We follow through the manipulations
in order to illustrate some concepts in the treatment of more than one sto-
chastic variable. We have to sum over the probabilities of each of the possi-
ble values of the coin toss and each of the values of the choices, adding up
the probability that they coincide at a particular time t:

(1.2.17)

This expression assumes that the values of the coin toss and the value of
the choice are independent,so that the joint probability of having a particu-
lar value of s and a particular value of c is the product of the probabilities of
each of the variables independently:

(1.2.18)

—the probabilities-of-independent-variables factor. This is valid in cases
(a)–(c) and not in case (d), where the probability of c occurring is explicitly
a function of the value of s.

We eva lu a te the prob a bi l i ty of winning in each case (a) thro u gh (c) using

    Ps ,c ( ′ s , ′ c ;t) = Ps( ′ s ;t)Pc ( ′ c ;t)

    

< c,s >= ′ c , ′ s Ps ( ′ s ;t)Pc( ′ c ,t)
′ c 

∑
′ s 

∑

    P(c;t) = c,s(t )

    
P(c;t) = 1

2 c ,1 + 1
2 c ,−1

    
P(c;t) = 1+(−1)

t

2 c ,1 + 1−(−1)
t

2 c ,−1 = mod2(t) c,1 + mod2(t +1) c ,−1

    P(c;t) = c,1
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(1.2.19)

where the last equality follows from the normalization of the probability (the
sum over all possibilities must be 1, Eq. (1.2.1)) and does not depend at all
on the distribution. This shows that the independence of the variables guar-
antees that the probability of a win is just 1/2.

For the last case (d) the trivial answer, that a win is guaranteed by this
method of gambling, can be arrived at formally by evaluating

(1.2.20)

The value of s at time t is independent of the value of c, but the value of c de-
pends on the value of s. The joint probability Ps,c(s′,c′;t) may be written as the
product of the probability of a particular value of s = s′ times the conditional
probability Pc(c′|s′;t) of a particular value of c = c′ given the assumed value
of s:

(1.2.21) ❚

The next step in our analysis of the binary stochastic system is to consider the be-
havior of the sum of s(t) over a particular number of time steps. This sum is the dif-
ference between the total number of heads and the total number of tails. It is equiva-
lent to asking how much you will win or lose if you gamble an equal amount of money
on each coin toss after a certain number of bets. This problem is known as a random
walk, and we will define it as a consideration of the state variable

(1.2.22)

The way to write the evolution of the state variable is:

(1.2.23)

Thus a ra n dom walk con s i ders a state va ri a ble d that can take integer va lues d ∈ { . . . ,
− 1 , 0 , 1 , . . . } . At every time step, d(t) can on ly move to a va lue one high er or one lower
than wh ere it is. We assume that the prob a bi l i ty of a step to the ri ght (high er) is equ a l
to that of a step to the left (lower ) . For conven i en ce , we assume (with no loss of gen er-

    
P( ′ d |d) = 1

2 ′ d ,d+1 + 1
2 ′ d ,d −1

    

d(t) = s( ′ t )
′ t =1

t

∑

    

< c,s > = ′ c , ′ s Ps ( ′ s ;t)Pc( ′ c | ′ s ;t)
′ c 

∑
′ s 

∑
= ′ c , ′ s Ps( ′ s ;t) ′ c , ′ s 

′ c 
∑

′ s 
∑ = Ps( ′ s ;t)

′ s 
∑ = 1

    
< c,s > = ′ c , ′ s Ps ,c( ′ s , ′ c ;t)

′ c 
∑

′ s 
∑

    

< c,s > = ′ c , ′ s (1
2 ′ s ,1 + 1

2 ′ s ,−1)Pc ( ′ c ;t)
′ c 

∑
′ s 

∑
= (1

2 ′ c ,1 + 1
2 ′ c ,−1)Pc( ′ c ;t)

′ c 
∑

= (1
2

Pc (1;t) + 1
2

Pc(−1;t))
′ c 

∑ = 1
2
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a l i ty) that the sys tem starts at po s i ti on d(0) = 0 . This is built into Eq .( 1 . 2 . 2 2 ) . Bec a u s e
of the sym m etry of the sys tem under a shift of the ori gi n , this is equ iva l ent to con s i d-
ering any other starting poi n t . O n ce we solve for the prob a bi l i ty distri buti on of d a t
time t, because of su perpo s i ti on we can also find the re sult of evo lving any initial prob-
a bi l i ty distri buti on P(d;t = 0 ) .

We can pictu re the ra n dom walk as that of a drunk who has difficulty con s i s-
ten t ly moving forw a rd . Our model of this walk assumes that the drunk is equ a lly
l i kely to take a step forw a rd or back w a rd . S t a rting at po s i ti on 0, he moves to ei t h er
+1 or −1 . Let’s say it was +1 . Next he moves to +2 or back to 0. Let’s say it was 0. Nex t
to +1 or −1 . Let’s say it was +1 . Next to +2 or 0. Let’s say +2 . Next to +3 or +1 . Let’s
s ay +1 . And so on .

What is the value of system variable d(t) at time t? This is equivalent to asking
how far has the walk progressed after t steps.Of course there is no way to know how
far a particular system goes without watching it. The average distance over the en-
semble of systems is the average over all possible values of s(t). This average is given
by applying Eq. (1.2.2) or Eq. (1.2.11) to all of the variables s(t):

(1.2.24)

The average is written out explicitly on the first line using Eq.(1.2.11). The second line
expression can be arrived at either directly or from the linearity of the average. The fi-
nal answer is clear, since it is equally likely for the walker to move to the right as to the
left.

We can also ask what is a typical distance traveled by a particular walker. By typ-
ical distance we mean how far from the starting point. This can either be defined by
the average absolute value of the distance, or as is more commonly accepted,the root
mean square (RMS) distance:

(1.2.25)

(1.2.26)

To evaluate the average of the product of the two steps, we treat differently the case in
which they are the same step and when they are different steps. When the two steps
are the same one we use s(t) = ±1 to obtain:

(1.2.27)

Which follows from the normalization of the probability (or is obvious). To evaluate
the average of the product of two steps at different times we need the joint probabil-
ity of s(t ) and s(t ′). This is the probability that each of them will take a particular

    < s(t)2 > = <1> =1

    

< d(t)2 > =< s( ′ t )
′ t =1

t

∑
 

 
  

 

 
  

2

> =< s( ′ t )s( ′ ′ t )
′ t , ′ ′ t =1

t

∑ > = < s( ′ t )s( ′ ′ t )
′ t , ′ ′ t =1

t

∑ >

    (t) = < d(t)2 >

      

< d(t) > = 1
2

s(t )=±1
∑ K1

2
s (3)=±1
∑ 1

2
s (2)=±1
∑ 1

2
d(t)

s(1)=±1
∑

= < s( ′ t ) >
′ t =1

t

∑ = 0
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value. Because we have assumed that the steps are independent, the joint probability is
the product of the probabilities for each one separately:

t ≠ t ′ (1.2.28)

so that for example there is 1/4 chance that s(t) = +1 and s(t) = −1. The independence
of the two steps leads the average of the product of the two steps to factor:

t ≠ t ′ (1.2.29)

This is zero, since either of the averages are zero. We have the combined result:

(1.2.30)

and finally:

(1.2.31)

This gives the classic and important re sult that a ra n dom walk travels a typical distance
that grows as the squ a re root of the nu m ber of s teps taken : .

We can now consider more completely the probability distribution of the posi-
tion of the walker at time t. The probability distribution at t = 0 may be written:

(1.2.32)

After the first time step the probability distribution changes to

(1.2.33)

this results from the definition d(1) = s (1). After the second step d(2) = s(1) + s(2) it
is:

(1.2.34)

More generally it is not difficult to see that the probabilities are given by normalized
binomial coefficients,since the number of ones chosen out of t steps is equivalent to
the number of powers of x in (1 + x)t. To reach a position d after t steps we must take
(t + d)/2 steps to the right and (t − d)/2 steps to the left. The sum of these is the num-
ber of steps t and their difference is d. Since each choice has 1/2 probability we have:

    
P(d ;2) = 1

4 d ,2 + 1
2 d ,0 + 1

4 d ,−2

    
P(d ;1) = 1

2 d ,1 + 1
2 d ,−1

    P(d ;0) = d,0

    

< d(t)2 > = < s( ′ t )s( ′ ′ t ) >
′ t , ′ ′ t =1

t

∑ = ′ t , ′ ′ t 
′ t , ′ ′ t =1

t

∑ = 1
′ t =1

t

∑ = t

    < s(t)s( ′ t ) > = t , ′ t 

    

< s(t)s( ′ t ) > = P(s(t),s( ′ t ))s(t)s( ′ t )
s (t ), s( ′ t )
∑

= P(s(t))P(s( ′ t ))s(t)s( ′ t )
s (t ),s( ′ t )

∑
= < s(t) > < s( ′ t ) > =0

    P(s(t),s( ′ t )) = P(s(t))P(s( ′ t ))
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(1.2.35)

where the unusual delta function imposes the condition that d takes only odd or only
even values depending on whether t is odd or even.

Let us now consider what happens after a long time.The probability distribution
spreads out,and a single step is a small distance compared to the typical distance trav-
eled. We can consider s and t to be continuous variables where both conditions
d,t >> 1 are satisfied. Moreover, we can also consider d<< t, because the chance that
all steps will be taken in one direction becomes very small. This enables us to use
Sterling’s approximation to the factorial

(1.2.36)

For large t it also makes sense not to restrict d to be either odd or even. In order to al-
low both, we,in effect, interpolate and then take only half of the probability we have
in Eq. (1.2.35). This leads to the expression:

(1.2.37)

where we have defined x = d / t. To approximate this expression it is easier to consider
it in logarithmic form:

or exponentiating:

(1.2.39)

    

P(d ,t) =
1

2 t
e −d

2
/ 2t =

1

2
e −d

2
/ 2

2

      

ln(P(d,t))= −(t /2)[(1+ x)ln(1 + x) +(1− x)ln(1 − x)]−(1/2)ln(2 t(1− x2))

≈ −(t /2)[(1 + x)(x − x 2 /2+K) +(1− x)(−x − x 2 /2+K)]− (1/2)ln(2 t + K)

= −tx 2 /2− ln( 2 t )

    

P(d ,t) = t

2 (t −d)(t +d)2t

t te −t

[(d + t)/2][(d+t )/2][(t − d)/2][(t −d)/ 2]e −(d+t )/2−(t −d)/2

= (2 t(1− x2))−1/ 2

(1+ x)[(1+x )t / 2](1− x)[(1−x )t / 2]

    

x!~ 2 x e −xx x

ln(x!)~ x(lnx −1) + ln( 2 x )

    

P(d ,t) = 1

2t

t

(d + t)/2

 
 
  

 
 t ,d

oddeven = 1

2t

t !

[(d + t )/2]![(t − d)/2]!
t ,d
oddeven

t ,d
oddeven =

(1+(−1)t +d )

2
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The prefactor of the exponential, 1/√2 , originates from the factor √2 x in
Eq. (1.2.36). It is independent of d and takes care of the normalization of the proba-
bility. The result is a Gaussian distribution. Questions 1.2.2–1.2.5 investigate higher-
order corrections to the Gaussian distribution.

Question 1.2.2 In order to obtain a correction to the Gaussian distribu-
tion we must add a correction term to Sterling’s approximation:

(1.2.40)

Using this expression, find the first correction term to Eq. (1.2.37).

Solution 1.2.2 The correction term in Sterling’s approximation contributes
a factor to Eq. (1.2.37) which is (for convenience we write here c = 1/12):

(1.2.41)

where we have only kept the largest correction term,neglecting d compared
to t. Note that the correction term vanishes as t becomes large. ❚

Question 1.2.3 Keeping additional terms of the expansion in Eq.(1.2.38),
and the result of Question 1.2.2,find the first order correction terms to

the Gaussian distribution.

Solution 1.2.3 Correction terms in Eq. (1.2.38) arise from several places.
We want to keep all terms that are of order 1/t. To do this we must keep in
mind that a typical distance traveled is d ∼ √t, so that . The next
terms are obtained from:

This gives us a distribution:
      

ln(P(d,t))= −(t /2)[(1+ x)ln(1 + x) +(1− x)ln(1 − x)]

− (1/2)ln(2 t(1− x2 ))+ ln(1− 1/4t)

≈ −(t /2)[(1+ x)(x − 1
2

x 2 + 1
3

x3 − 1
4

x4 K)

+ (1− x)(−x − 1
2

x2 − 1
3

x 3 − 1
4

x 4 K)]

− ln( 2 t ) −(1/2)ln(1− x 2) + ln(1− 1/4t)

≈ −(t /2)[(x + x 2 − 1
2

x 2 − 1
2

x 3 + 1
3

x3 + 1
3

x 4 − 1
4

x 4K)

+ (−x + x 2 − 1
2

x 2 + 1
2

x 3 − 1
3

x3 + 1
3

x 4 − 1
4

x4 K)]

− ln( 2 t ) +(x 2 /2 +…)+ (−1/4t + …)

= −tx 2 /2− ln( 2 t ) −tx 4 /12 + x 2 /2 − 1/4t

    

(1+ c /t)

(1+ 2c /(t + d))(1+ 2c /(t − d))
= (1−

3c

t
+ …) =(1−

1

4t
+…)

    

x!~ 2 x e − xx x(1+ 1

12x
+…)

ln(x!)~ x(lnx −1) + ln( 2 x ) + ln(1+ 1

12x
+…)
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(1.2.43) ❚

Question 1.2.4 What is the size of the additional factor? Estimate the
size of this term as t becomes large.

Solution 1.2.4 The typical value of the variable d is its root mean square
value = √t . At this value the additional term gives a factor

(1.2.44)

which approaches 1 as time increases. ❚

Question 1.2.5 What is the fraction error that we will make if we neglect
this term after one hundred steps? After ten thousand steps?

Solution 1.2.5 After one hundred time steps the walker has traveled a typ-
ical distance of ten steps. We generally approximate the probability of arriv-
ing at this distance using Eq.(1.2.39). The fractional error in the probability
of arriving at this distance according to Eq. (1.2.44) is 1 − e1/6t ≈ −1 / 6t =
−0.00167. So already at a distance of ten steps the error is less than 0.2%.

It is mu ch less likely for the walker to arrive at the distance 2 = 2 0 . Th e
ra tio of the prob a bi l i ty to arrive at 20 com p a red to 10 is e−2 / e−0 . 5 ∼ 0 . 2 2 . If
we want to know the error of this small er prob a bi l i ty case we would wri te
(1 − e−1 6 / 1 2t +4 / 2t−1 / 4t) = (1 − e5 / 1 2t) ≈ −0 . 0 0 4 2 , wh i ch is a larger but sti ll small
error.

After ten thousand steps the errors are smaller than the errors at one
hundred steps by a factor of one hundred. ❚

1.2.2 Generalized random walk and the central limit theorem
We can generalize the random walk by allowing a variety of steps from the current lo-
cation of the walker to sites nearby, not only to the adjacent sites and not only to in-
teger locations. If we restrict ourselves to steps that on average are balanced left and
right and are not too long ranged, we can show that all such systems have the same
behavior as the simplest random walk at long enough times (and characteristically
not even for very long times). This is the content of the central limit theorem. It says
that summing any set of independent random variables eventually leads to a Gaussian
distribution of probabilities, which is the same distribution as the one we arrived at
for the random walk.The reason that the same distribution arises is that successive it-
eration of the probability update equation, Eq.(1.2.7),smoothes out the distribution,
and the only relevant information that survives is the width of the distribution which
is given by (t). The proof given below makes use of a Fourier transform and can be
skipped by readers who are not well acquainted with transforms. In the next section
we will also include a bias in the random walk. For long times this can be described as

    e
1/ 6t

    
P(d ,t) =

1

2 t
e −d

2
/ 2te −d

4
/ 12t

3 +d
2

/ 2t
2 −1/ 4t
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an average motion superimposed on the unbiased random walk.We start with the un-
biased random walk.

Each step of the random walk is described by the state variable s(t) at time t. The
probability of a particular step size is an unspecified function that is independent of
time:

(1.2.45)

We treat the case of integer values of s. The continuum case is Question 1.2.6. The ab-
sence of bias in the random walk is described by setting the average displacement in
a single step to zero:

(1.2.46)

The statement above that each step is not too long ranged,is mathematically just that
the mean square displacement in a single step has a well-defined value (i.e., is not
infinite):

(1.2.47)

Eqs. (1.2.45)–(1.2.47) hold at all times.
We can still evaluate the average of d(t) and the RMS value of d(t) directly using

the linearity of the average:

(1.2.48)

(1.2.49)

Since s(t ′) and s(t″) are independent for t ′ ≠ t ′′, as in Eq. (1.2.29), the average
factors:

t ′ ≠ t ′′ (1.2.50)

Thus, all terms t ′ ≠ t ′′ are zero by Eq. (1.2.46). We have:

(1.2.51)

This means that the typical value of d(t) is 0√t .
To obtain the full distribution of the random walk state variable d(t) we have to

sum the stochastic variables s(t). Since d(t) = d(t − 1) + s(t) the probability of transi-
tion from d(t − 1) to d(t) is f (d(t) − d(t − 1)) or:

    
< d(t)2 > = < s( ′ t )2 >

′ t =1

t

∑ = t 0
2

    < s( ′ t )s( ′ ′ t ) > = <s( ′ t ) >< s( ′ ′ t ) > = 0

    

< d(t)2 > =< s( ′ t )
′ t =1

t

∑
 

 
  

 

 
  

2

> = < s( ′ t )s( ′ ′ t ) >
′ t , ′ ′ t =1

t

∑

    

< d(t) > = < s( ′ t )
′ t =1

t

∑ > =t < s > = 0

    
< s2 > = s2 f (s) = 0

2

s
∑

    

< s > = sf (s) = 0
s

∑

    P(s ;t) = f (s)
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(1.2.52)

We can now write the time evolution equation and iterate it t times to get P (d ;t).

(1.2.53)

This is a convolution, so the most convenient way to effect a t fold iteration is in
Fourier space. The Fourier representation of the probability and transition functions
for integral d is:

(1.2.54)

We use a Fourier series because of the restriction to integer values of d. Once we solve
the problem using the Fourier representation, the probability distribution is recov-
ered from the inverse formula:

(1.2.55)

which is proved

(1.2.56)

using the expression:

(1.2.57)

Applying Eq. (1.2.54) to Eq. (1.2.53):

(1.2.58)

    

˜ P (k;t) = e −ikd

d
∑ f (d − ′ d )P( ′ d ;t − 1)

′ d 
∑

=
′ d 

∑ e −ik(d− ′ d )e −ik ′ d f (d − ′ d )P( ′ d ;t −1)
d

∑
=

′ d 

∑ e −ik ′ ′ d e −ik ′ d f ( ′ ′ d )P( ′ d ;t −1)
′ ′ d 

∑
= e −ik ′ ′ d f ( ′ ′ d )

′ ′ d 

∑ e −ik ′ d P( ′ d ;t −1)
′ d 

∑ = ˜ f (k) ˜ P (k;t − 1)

    
d , ′ d =

1

2
dke ik(d− ′ d )

−
∫

    

1

2
dke ikd ˜ P (k;t)

−
∫ = 1

2
dke ikd e −ik ′ d P( ′ d ;t)

′ d 
∑

−
∫

=
1

2
P( ′ d ;t) dke ik(d− ′ d )

−
∫

′ d 

∑ = P( ′ d ;t) d , ′ d 

′ d 

∑ = P(d ;t)

    

P(d ;t) =
1

2
dke ikd ˜ P (k ;t)

−
∫

    

˜ P (k;t) ≡ e −ikd P(d;t)
d

∑
˜ f (k) ≡ e −iks f (s)

s
∑

    
P(d;t) = P(d | ′ d )P( ′ d ;t − 1)

d'

∑ = f (d − ′ d )P( ′ d ;t − 1)
d '

∑

    P( ′ d |d) = f ( ′ d −d)
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we can iterate the equation to obtain:

(1.2.59)

where we use the definition d(1) = s(1) that ensures that P(d ;1) = P(s;1) = f (d).
For large t the walker has traveled a large distance,so we are interested in varia-

tions of the probability P(d ;t) over large distances.Thus,in Fourier space we are con-
cerned with small values of k. To simplify Eq.(1.2.59) for large t we expand f̃(k) near
k = 0. From Eq.(1.2.54) we can directly evaluate the derivatives of f̃ (k) at k = 0 in terms
of averages:

(1.2.60)

We can use this expression to evaluate the terms of a Taylor expansion of f̃ (k):

(1.2.61)

(1.2.62)

Using the normalization of the probability (< 1 > = 1),and Eqs.(1.2.46) and (1.2.47),
gives us:

(1.2.63)

We must now rem em ber that a typical va lue of d(t) ,f rom its RMS va lu e , is 0√t . By the
properties of the Fourier transform,this implies that a typical value of k that we must
consider in Eq.(1.2.63) varies with time as 1/√t . The next term in the expansion,cu-
bic in k, would give rise to a term that is smaller by this factor, and therefore becomes
unimportant at long times. If we write k = q /√t , then it becomes clearer how to write
Eq. (1.2.63) using a limiting expression for large t :

(1.2.64)

This Gaussian, when Fourier transformed back to an expression in d, gives us a
Gaussian as follows:

(1.2.65)

    

P(d ;t) =
1

2
dke ikde −t 0

2
k

2
/ 2

−
∫ ≅

1

2
dke ikde −t 0

2
k

2
/2

−∞

∞

∫

      

˜ P (k;t) = 1− 1
2

0
2q2

t
+K

 

 
 

 

 
 

t

~e − 0
2
q

2
/2 = e −t 0

2
k

2
/ 2

      
˜ P (k;t) = 1− 1

2 0
2k 2 +K( )t

      
˜ f (k) =<1> −i < s >k −

1

2
< s2 > k 2 +K

      

˜ f (k) = ˜ f (0) +
˜ f (k)

k
k =0

k +
1

2

2 ˜ f (k)

k 2
k =0

k 2 +K

    

dn ˜ f (k)

dnk
k =0

= (−is)n f (s)
s

∑ = (−i)n < sn >

    
˜ P (k;t) = ˜ f (k) ˜ P (k ;t −1) = ˜ f (k)t
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We have extended the integral because the decaying exponential becomes narrow as t
increases. The integral is performed by completing the square in the exponent, giving:

(1.2.66)

or equivalently:

(1.2.67)

which is the same as Eq. (1.2.39).

Question 1.2.6 Prove the central limit theorem when s takes a contin-
uum of values.

Solution 1.2.6 The proof follows the same course as the integer valued
case. We must define the appropriate averages,and the transform. The aver-
age of s is still zero, and the mean square displacement is defined similarly:

(1.2.46´)

(1.2.47´)

To avoid problems of notation we substitute the variable x for the state vari-
able d:

(1.2.48´)

Skipping steps that are the same we find:

(1.2.51´)

since s(t ′) and s(t ′′) are still independent for t ′ ≠ t ′′. Eq. (1.2.53) is also es-
sentially unchanged:

(1.2.53´)

The transform and inverse transform must now be defined using

(1.2.54´)

    

˜ P (k;t) ≡ dx∫ e −ikxP(x ;t)

˜ f (k) ≡ ds∫ e −iks f (s)

    
P(x;t) = d ′ x f (x − ′ x )P( ′ x ;t −1)∫

    
< x(t)2 > = < s( ′ t )

′ t =1

t

∑ 

 
 

 

 
 

2

> = < s( ′ t )2 >
′ t =1

t

∑ = t 0
2

    

< x(t) > = < s( ′ t )
′ t =1

t

∑ > = t < s > = 0

    
< s2 > = ds∫ s2f (s) = 0

2

    
< s > = ds∫ sf (s) = 0

    

P(d ;t) =
1

2 (t)2
e −d

2
/ 2 (t )

2

    

=
1

2
dke −d

2
/ 2t 0

2

e −(t 0
2
k

2 −2ikd−d
2

/t 0
2

)/2

−∞

∞

∫ =
1

2 t 0
2

e −d
2

/ 2t 0
2
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(1.2.55´)

The latter is proved using the properties of the Dirac (continuum) delta
function:

(1.2.56´)

where the latter equation holds for an arbitrary function g(x).
The remainder of the derivation carries forward unchanged. ❚

1.2.3 Biased random walk
We now return to the simple random walk with binary steps of ±1. The model we con-
sider is a random walk that is biased in one direction.Each time a step is taken there
is a probability P+ for a step of +1, that is different from the probability P– for a step
of –1, or:

(1.2.68)

(1.2.69)

where

(1.2.70)

What is the average distance traveled in time t?

(1.2.71)

This equation justifies defining the mean velocity as

(1.2.72)

Since we already have an average displacement it doesn’t make sense to also ask
for a typical displacement,as we did with the random walk—the typical displacement
is the average one.However, we can ask about the spread of the displacements around
the average displacement

(1.2.73)

This is called the standard deviation and it reduces to the RMS distance in the unbi-
ased case. For many purposes (t) plays the same role in the biased random walk as
in the unbiased random walk. From Eq. (1.2.71) and Eq. (1.2.72) the second term is
(vt)2. The first term is:

    

(t)2 = <(d(t)− <d(t) >)2 > = <d(t)2 > −2 < d(t) >2 + <d(t) >2

= < d(t)2 > − < d(t) >2

    v = P+ − P−

    

< d(t) > = < s( ′ t ) >
′ t =1

t

∑ = (P+ − P− )
′ t =1

t

∑ = t(P+ − P− )

    P+ + P– = 1

    P( ′ d |d) = P+ ′ d ,d +1 + P− ′ d ,d−

    P(s ;t) = P+ s ,1 + P− s ,−1

    

(x − ′ x ) = 1

2
dke ik(x− ′ x )∫

d ′ x (x − ′ x )∫ g( ′ x ) = g(x)

    
P(d ;t) =

1

2
dke ikd ˜ P (k ;t)∫
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(1.2.74)

Substituting in Eq. (1.2.73):

(1.2.75)

It is interesting to consider this expression in the two limits v = 1 and v = 0. For v = 1
the walk is deterministic, P+ = 1 and P− = 0, and there is no element of chance; the
walker always walks to the right.This is equivalent to the iterative map Eq.(1.1.4).Our
result Eq.(1.2.66) is that = 0, as it must be for a deterministic system. However, for
smaller velocities,the spreading of the systems increases until at v = 0 we recover the
case of the unbiased random walk.

The complete probability distribution is given by:

(1.2.76)

For large t the distribution can be found as we did for the unbiased random walk. The
work is left to Question 1.2.7.

Question 1.2.7 Find the long time (continuum) distribution for the bi-
ased random walk.

Solution 1.2.7 We use the Sterling approx i m a ti on as before and take the log-
a rithm of the prob a bi l i ty. In ad d i ti on to the ex pre s s i on from the first line of
Eq . (1.2.38) we have an ad d i ti onal factor due to the coef f i c i ent of Eq .( 1 . 2 . 7 6 )
wh i ch appe a rs in place of the factor of 1 / 2t. We again define x = d/t, and di-
vi de by 2 to all ow both odd and even integers . We obtain the ex pre s s i on :

(1.2.77)

It makes the most sense to expand this around the mean of x, <x> = v. To
simplify the notation we can use Eq. (1.2.70) and Eq. (1.2.72) to write:

(1.2.78)

With these substitutions we have:

(1.2.79)

      

ln(P(d,t))= (t /2)[(1+ x)ln(1+ v) +(1− x)ln(1− v)]

−(t /2)[(1+ x)ln(1+ x)+ (1− x)ln(1− x)]−(1/2)ln(2 t(1− x 2))

      

P+ = (1 + v)/2

P− = (1− v)/2

    

ln(P(d,t))= (t /2)[(1+ x)ln2P+ +(1− x )ln2P− ]

−(t /2)[(1+ x)ln(1 + x)+ (1− x)ln(1 − x)]−(1/2)ln(2 t(1− x 2))

    

P(d ;t) = P+
(d +t )/ 2

P−
(d−t)/ 2 t

(d + t)/2

 

 
 

 

 
 t ,d

oddeven

      
2 = t(1 − v

2 )

      

< d(t)2 > =< s( ′ t )
′ t =1

t

∑
 

 
  

 

 
  

2

> = < s( ′ t )s( ′ ′ t ) >
′ t , ′ ′ t =1

t

∑

= ′ t , ′ ′ t +(1− ′ t , ′ ′ t )(P+
2

+ P−
2

− 2P+ P− )
 
 
 

 
 
 

′ t , ′ ′ t =1

t

∑
= t + t(t −1)v2 = t 2

v
2 +t(1− v

2)
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We expand the first two terms in a Taylor expansion around the mean of x
and expand the third term inside the logarithm. The first term of Eq.(1.2.79)
has only a constant and linear term in a Taylor expansion. These cancel the
constant and the first derivative of the Taylor expansion of the second term
of Eq. (1.2.79) at x = v. Higher derivatives arise only from the second term:

In the last line we have restored d and used Eq.(1.2.75). Keeping only the first
terms in both expansions gives us:

(1.2.81)

which is a Gaussian distribution around the mean we obtained before. This
implies that aside from the constant velocity, and a slightly modified stan-
dard deviation, the distribution remains unchanged.

The second term in both expansions in Eq.(1.2.80) become small in the
limit of large t, as long as we are not interested in the tail of the distribution.
Values of (d − vt) relevant to the main part of the distribution are given by
the standard deviation, (t). The second terms in Eq. (1.2.80) are thus re-
duced by a factor of (t) compared to the first terms in the series. Since (t)
grows as the square root of the time, they become insignificant for long
times. The convergence is slower, however, than in the unbiased random
walk (Questions 1.2.2–1.2.5). ❚

Question 1.2.8 You are a manager of a casino and are told by the owner
that you have a cash flow problem. In order to survive, you have to make

sure that nine out of ten working days you have a profit. Assume that the only
game in your casino is a roulette wheel. Bets are limited to only red or black
with a 2:1 payoff. The roulette wheel has an equal number of red numbers
and black numbers and one green number (the house always wins on green).
Assume that people make a fixed number of 106 total $1 bets on the roulette
wheel in each day.

a. What is the maximum number of red numbers on the roulette wheel
that will still allow you to achieve your objective?

b. With this number of red numbers, how much money do you make on
average in each day?

      

P(d ;t) =
1

2 (t)2
e −(d−vt)

2
2 (t )

2

        

ln(P(d,t))= −(t /2)[
1

(1− v
2)

(x −v)2 +
2

3(1− v
2)2

(x − v)3 +K]

− (1/2)ln(2 t[(1− v
2) −2v(x − v) +K])

= −[
(d − vt)2

2 (t)2
+

(d − vt)3

3 (t )4
+K]−(1/2)ln(2 ( (t)2 − 2v(d − vt) +K))
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Solution 1.2.8 The casino wins $1 for every wrong bet and loses $1 for
every right bet. The results of bets at the casino are equivalent to a random
walk with a bias given by:

(1.2.82)

(1.2.83)

where,as the manager, we consider positive the wins of the casino. The color
subscripts can be used interchangeably, since the number of red and black is
equal. The velocity of the random walk is given by:

(1.2.84)

To calculate the probability that the casino will lose on a particular day we
must sum the probability that the random walk after 106 steps will result in
a negative number. We approximate the sum by an integral over the distrib-
ution of Eq. (1.2.81). To avoid problems of notation we replace d with y:

(1.2.85)

(1.2.86)

We have written the probability of loss in a day in terms of the error func-
tion erf(x)—the integral of a Gaussian defined by

(1.2.87)

Since

(1.2.88)

we have the expression

(1.2.89)

which is also known as the complementary error function erfc(x).
    

(1 − erf(z 0)) ≡
2

dz
z 0

∞

∫ e −z
2

  erf(∞) = 1

    

erf(z 0) ≡
2

dz
0

z0

∫ e −z
2

      

z = ′ y 2 (t)

z 0 = −vt / 2 (t)2 = −vt / 2t(1− v
2)

      

Ploss = dyP(y ;t = 106)

−∞

0

∫ = 1

2 (t )2
dy

−∞

0

∫ e −(y −vt )
2

2 (t )
2

=
1

2 (t)2
d ′ y 

−∞

−vt

∫ e −( ′ y )
2

2 (t )
2

= 1
dz

−∞

z 0

∫ e −z
2

= 1

2
(1 − erf(z 0))

      v = 1/(2Nred + 1)

    P− = Nblack /(N red + Nblack +1)

    P+ = (N red +1)/(Nred + Nblack +1)
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To obtain the desired constraint on the number of red numbers, or
equivalently on the velocity, we invert Eq. (1.2.85) to find a value of v that
gives the desired Ploss = 0.1, or erf(z0) = 0.8. Looking up the error function or
using iterative guessing on an appropriate computer gives z0 = 0.9062.
Inverting Eq. (1.2.86) gives:

(1.2.90)

The approximation holds because t is large.The numerical result is v= 0.0013.
This g ives us the desired number of each color (inverting Eq. (1.2.84)) of
Nred = 371. Of course the result is a very large number and the problem of
winning nine out of ten days is a very conservative problem for a casino. Even
if we insist on winning ninety-nine out of one hundred days we would have
erf(z0) = 0.98, z0 = 1.645, v = 0.0018 and Nred = 275. The profits per day in
each case are given by vt, which is approximately $1,300 and $1,800 respec-
tively. Of course this is much less than for bets on a more realistic roulette
wheel. Eventually as we reduce the chance of the casino losing and z0 becomes
larger, we might become concerned that we are describing the properties of
the tail of the distribution when we calculate the fraction of days the casino
might lose,and Eq.(1.2.85) will not be very accurate. However, it is not dif-
ficult to see that casinos do not have cash flow problems. ❚

In order to generalize the proof of the central limit theorem to the case of a bi-
ased random walk, we can treat the continuum case most simply by considering the
system variable x̂, where (using d → x for the continuum case):

(1.2.91)

O n ly x is a stoch a s tic va ri a ble on the ri ght side , v and t a re nu m bers . Si n ce itera ti ons of
this va ri a ble would satisfy the con d i ti ons for the gen era l i zed ra n dom walk, the gen er-
a l i z a ti on of the Gaussian distri buti on to Eq .(1.2.81) is proved . The discrete case is more
difficult to prove because we cannot shift the va ri a ble d by arbi tra ry amounts and con-
ti nue to con s i der it as discrete . We can argue the discrete case to be valid on the basis
of the re sult for the con ti nuum case, but a sep a ra te proof can be con s tru cted as well .

1.2.4 Master equation approach
The Master equation is an alternative approach to stochastic systems,an alternative to
Eq. (1.2.5), that is usually applied when time is continuous. We develop it starting
from the discrete time case. We can rewrite Eq. (1.2.5) in the form of a difference
equation for a particular probability P(s). Beginning from:

(1.2.92)

    

P(s ;t) = P(s ;t −1) + P(s | ′ s )P( ′ s ;t −1)
′ s 

∑ − P(s ;t −1)
 

 
  

 

 
  

      ̂ x = x − < x > t = x −t < s > = x − vt

      

v =
1

t /2z 0 −1
≈ 2z 0 /t
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we extract the term where the system remains in the same state:

(1.2.93)

We use the normalization of probability to write it in terms of the transitions away
from this site:

(1.2.94)

Canceling the terms in the bracket that refer only to the probability P(s;t − 1) we write
this as a difference equation. On the right appear only the probabilities at different
values of the state variable (s′ ≠ s):

(1.2.95)

To write the continuum form we reintroduce the time difference between steps ∆t.

(1.2.96)

When the limit of ∆t → 0 is meaningful, it is possible to make the change to the
equation

(1.2.97)

Where the ratio P(s | s′)/∆t has been replaced by the rate of transition R(s | s′).
Eq.(1.2.97) is called the Master equation and we can consider Eq.(1.2.95) as the dis-
crete time analog.

The Master equation has a simple interpretation: The rate of change of the prob-
ability of a particular state is the total rate at which probability is being added into that
state from all other states,minus the total rate at which probability is leaving the state.
Probability is acting like a fluid that is flowing to or from a particular state and is be-
ing conserved,as it must be. Eq.(1.2.97) is very much like the continuity equation of
fluid flow, where the density of the fluid at a particular place changes according to how
much is flowing to that location or from it.We will construct and use the Master equa-
tion approach to discuss the problem of relaxation in activated processes in
Section 1.4.

    

˙ P (s ,t) = R(s | ′ s )P( ′ s ;t) − R( ′ s |s)P(s ;t)( )
′ s ≠s

∑

    

P(s ,t) − P(s ;t − ∆t)

∆t
=

P(s | ′ s )

∆t
P( ′ s ;t − ∆t) −

P( ′ s |s)

∆t
P(s ;t − ∆t)

 
 
  

 
 

′ s ≠s
∑

    

P(s ,t) − P(s ;t −1) = P(s | ′ s )P( ′ s ;t −1) − P( ′ s | s)P(s ;t −1)( )
′ s ≠s

∑

    

P(s ;t) = P(s ;t −1) + P(s | ′ s )P( ′ s ;t − 1)
′ s ≠s

∑ + 1 − P( ′ s | s)
′ s ≠s

∑
 

 
  

 

 
  P(s ;t −1) − P(s ;t −1)

 

 
  

 

 
  

    

P(s ;t) = P(s ;t −1) + P(s | ′ s )P( ′ s ;t − 1)
′ s ≠s

∑ + P(s |s)P(s;t −1) − P(s ;t −1)
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Thermodynamics and Statistical Mechanics

The field of thermodynamics is easiest to understand in the context of Newtonian
mechanics. Newtonian mechanics describes the effect of forces on objects.
Thermodynamics describes the effect of heat transfer on objects. When heat is trans-
ferred,the temperature of an object changes.Temperature and heat are also intimately
related to energy. A hot gas in a piston has a high pressure and it can do mechanical
work by applying a force to a piston. By Newtonian mechanics the work is directly re-
lated to a transfer of energy. The laws of Newtonian mechanics are simplest to de-
scribe using the abstract concept of a point object with mass but no internal struc-
ture. The analogous abstraction for thermodynamic laws are materials that are in
equilibrium and (even better) are homogeneous. It turns out that even the descrip-
tion of the equilibrium properties of materials is so rich and varied that this is still a
primary focus of active research today.

Statistical mechanics begins as an effort to explain the laws of thermodynamics
by considering the microscopic application of Newton’s laws. Microscopically, the
temperature of a gas is found to be related to the kinetic motion of the gas molecules.
Heat transfer is the transfer of Newtonian energy from one object to another. The sta-
tistical treatment of the many particles of a material, with a key set of assumptions,
reveals that thermodynamic laws are a natural consequence of many microscopic par-
ticles interacting with each other. Our studies of complex systems will lead us to dis-
cuss the properties of systems composed of many interacting parts. The concepts and
tools of statistical mechanics will play an important role in these studies, as will the
laws of thermodynamics that emerge from them. Thermodynamics also begins to
teach us how to think about systems interacting with each other.

1.3.1 Thermodynamics
Thermodynamics describes macroscopic pieces of material in equilibrium in terms of
macroscopic parameters. Thermodynamics was developed as a result of experi-
ence/experiment and,like Newton’s laws,is to be understood as a set of self-consistent
definitions and equations. As with Newtonian mechanics, where in its simplest form
objects are point particles and friction is ignored,the discussion assumes an idealiza-
tion that is directly experienced only in special circumstances. However, the funda-
mental laws, once understood,can be widely applied. The central quantities that are
to be defined and related are the energy U, temperature T, entropy S, pressure P, the
mass (which we write as the number of particles) N, and volume V. For magnets,the
quantities should include the magnetization M, and the magnetic field H. Other
macroscopic quantities that are relevant may be added as necessary within the frame-
work developed by thermodynamics.Like Newtonian mechanics,a key aspect of ther-
modynamics is to understand how systems can be acted upon or can act upon each
other. In addition to the quantities that describe the state of a system, there are two
quantities that describe actions that may be made on a system to change its state: work
and heat transfer.

1.3

58 I n t r o duc t i on  a nd  P r e l i m i n a r i e s

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 58
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:16 AM  Page 58



The equations that relate the macroscopic quantities are known as the zeroth,
first and second laws of thermodynamics. Much of the difficulty in understanding
thermodynamics arises from the way the entropy appears as an essential but counter-
intuitive quantity. It is more easily understood in the context of a statistical treatment
included below. A second source of difficulty is that even a seemingly simple material
system, such as a piece of metal in a room, is actually quite complicated thermody-
namically. Under usual circumstances the metal is not in equilibrium but is emitting
a vapor of its own atoms.A thermodynamic treatment of the metal requires consid-
eration not only of the metal but also the vapor and even the air that applies a pres-
sure upon the metal. It is therefore generally simplest to consider the thermodynam-
ics of a gas confined in a closed (and inert) chamb er as a model thermodynamic
system. We will discuss this example in detail in Question 1.3.1. The translational mo-
tion of the whole system, treated by Newtonian mechanics, is ignored.

We begin by defining the concept of equilibrium.A system left in isolation for a
long enough time achieves a macroscopic state that does not vary in time.The system
in an unchanging state is said to be in equilibrium. Thermodynamics also relies upon
a particular type of equilibrium known as thermal equilibrium. Two systems can be
brought together in such a way that they interact only by transferring heat from one
to the other. The systems are said to be in thermal contact. An example would be two
gases separated by a fixed but thermally conducting wall.After a long enough time the
system composed of the combination of the two original systems will be in equilib-
rium. We say that the two systems are in thermal equilibrium with each other. We can
generalize the definition of thermal equilibrium to include systems that are not in
contact. We say that any two systems are in thermal equilibrium with each other if
they do not change their (macroscopic) state when they are brought into thermal con-
tact. Thermal equilibrium does not imply that the system is homogeneous, for exam-
ple, the two gases may be at different pressures.

The zeroth law of thermodynamics states that if two systems are in thermal equi-
librium with a third they are in thermal equilibrium with each other. This is not ob-
vious without experience with macroscopic objects. The zeroth law implies that the
interaction that occurs during thermal contact is not specific to the materials,it is in
some sense weak,and it matters not how many or how big are the systems that are in
contact. It enables us to define the temperature T as a quantity which is the same for
all systems in thermal equilibrium. A more specific definition of the temperature
must wait till the second law of thermodynamics. We also define the concept of a ther-
mal reservoir as a very large system such that any system that we are interested in,
when brought into contact with the thermal reservoir, will change its state by trans-
ferring heat to or from the reservoir until it is in equilibrium with the reservoir, but
the transfer of heat will not affect the temperature of the reservoir.

Quite basic to the formulation and assumptions of thermodynamics is that the
macroscopic state of an isolated system in equilibrium is completely defined by a
specification of three parameters: energy, mass and volume (U,N,V). For magnets we
must add the magnetization M; we will leave this case for later. The confinement of
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the system to a volume V is understood to result from some form of containment.
The state of a system can be characterized by the force per unit area—the pressure
P—exerted by the system on the container or by the container on the system, which
are the same. Since in equilibrium a system is uniquely described by the three quan-
tities (U,N,V), these determine all the other quantities, such as the pressure P and
temperature T. Strictly speaking, temperature and pressure are only defined for a sys-
tem in equilibrium, while the quantities (U,N,V) have meaning both in and out of
equilibrium.

It is assumed that for a homogeneous material, changing the size of the system by
adding more material in equilibrium at the same pressure and temperature changes
the mass,number of particles N, volume V and energy U, in direct proportion to each
other. Equivalently, it is assumed that cutting the system into smaller parts results in
each subpart retaining the same properties in proportion to each other (see Figs.1.3.1
and 1.3.2). This means that these quantities are additive for different parts of a system
whether isolated or in thermal contact or full equilibrium:

(1.3.1)

where indexes the parts of the system. This would not be true if the parts of the sys-
tem were strongly interacting in such a way that the energy depended on the relative
location of the parts. Properties such as (U,N,V) that are proportional to the size of
the system are called extensive quantities. Intensive quantities are properties that do
not change with the size of the system at a given pressure and temperature. The ratio
of two extensive quantities is an intensive quantity. Examples are the particle density
N/V and the energy density U/V. The assumption of the existence of extensive and in-
tensive quantities is also far from trivial, and corresponds to the intuition that for a
macroscopic object,the local properties of the system do not depend on the size of the
system. Thus a material may be cut into two parts, or a small part may be separated
from a large part, without affecting its local properties.

The simplest thermodynamic systems are homogeneous ones,like a gas in an in-
ert container. However we can also use Eq.(1.3.1) for an inhomogeneous system. For
example,a sealed container with water inside will reach a state where both water and
vapor are in equilibrium with each other. The use of intensive quantities and the pro-
portionality of extensive quantities to each other applies only within a single phase—
a single homogeneous part of the system, either water or vapor. However, the addi-
tivity of extensive quantities in Eq. (1.3.1) still applies to the whole system. A
homogeneous as well as a heterogeneous system may contain different chemical
species. In this case the quantity N is replaced by the number of each chemical species
Ni and the first line of Eq.(1.3.1) may be replaced by a similar equation for each species.

  

U = U∑
  

V = V∑
  

N = N∑
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Figure 1.3.1 Thermody-
namics considers macro-
scopic materials. A basic
assumption is that cut-
ting a system into two
parts will not affect the
local properties of the
material and that the en-
ergy U, mass (or number
of particles) N and the
volume V will be divided
in the same proportion.
The process of separation
is assumed to leave the
materials under the same
conditions of pressure
and temperature. ❚

Figure 1.3.2 The assumption that the local properties of a system are unaffected by subdi-
vision applies also to the case where a small part of a much larger system is removed. The lo-
cal properties, both of the small system and of the large system are assumed to remain un-
changed. Even though the small system is much smaller than the original system, the small
system is understood to be a macroscopic piece of material. Thus it retains the same local
properties it had as part of the larger system. ❚

The first law of thermodynamics describes how the energy of a system may
change. The energy of an isolated system is conserved. There are two macroscopic
processes that can change the energy of a system when the number of particles is fixed.
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The first is work,in the sense of applying a force over a distance, such as driving a pis-
ton that compresses a gas. The second is heat transfer. This may be written as:

dU = q + w (1.3.2)

where q is the heat transfer into the system, w is the work done on the system and U
is the internal energy of the system. The differential d signifies the incremental change
in the quantity U as a result of the incremental process of heat transfer and work. The
work performed on a gas (or other system) is the force times the distance applied Fdx,
where we write F as the magnitude of the force and dx as an incremental distance.
Since the force is the pressure times the area F = PA, the work is equal to the pressure
times the volume change or:

w = −PAdx = −PdV (1.3.3)

The negative sign arises because positive work on the system,increasing the system’s
energy, occurs when the volume change is negative. Pressure is defined to be positive.

If two systems act upon each other, then the energy transferred consists of both
the work and heat t ransfer. Each of these are separately equal in magnitude and op-
posite in sign:

dU1 = q21 + w21

dU2 = q12 + w12
(1.3.4)

q12 = −q21

w12 = −w21

where q21 is the heat transfer from system 2 to system 1,and w21 is the work performed
by system 2 on system 1. q12 and w12 are similarly defined. The last line of Eq.(1.3.4)
follows from Newton’s third law. The other equations follow from setting dU = 0 (Eq.
(1.3.2)) for the total system, composed of both of the systems acting upon each other.

The second law of thermodynamics g iven in the following few paragraphs de-
scribes a few key aspects of the relationship of the equilibrium state with nonequilib-
rium states.The statement of the second law is essentially a definition and description
of properties of the entropy. Entropy enables us to describe the process of approach
to equilibrium. In the natural course of events,any system in isolation will change its
state toward equilibrium. A system which is not in equilibrium must therefore un-
dergo an irreversible process leading to equilibrium. The process is irreversible be-
cause the reverse process would take us away from equilibrium, which is impossible
for a macroscopic system. Reversible change can occur if the state of a system in equi-
librium is changed by transfer of heat or by work in such a way (slowly) that it always
remains in equilibrium.

For every macroscopic state of a system (not necessarily in equilibrium) there ex-
ists a quantity S called the entropy of the system. The change in S is positive for any
natural process (change toward equilibrium) of an isolated system

(1.3.5)    dS ≥ 0
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For an isolated system, equality holds only in equilibrium when no change occurs.
The converse is also true—any possible change that increases S is a natural process.
Therefore, for an isolated system S achieves its maximum value for the equilibrium
state.

The second property of the entropy describes how it is affected by the processes
of work and heat transfer during reversible processes. The entropy is affected only by
heat transfer and not by work. If we only perform work and do not transfer heat the
entropy is constant. Such processes where q = 0 are called adiabatic processes. For adi-
abatic processes dS = 0.

The third property of the entropy is that it is extensive:

(1.3.6)

Since in equilibrium the state of the system is defined by the macroscopic quan-
tities (U,N,V), S is a function of them—S = S(U,N,V)—in equilibrium. The fourth
property of the entropy is that if we keep the size of the system constant by fixing both
the number of particles N and the volume V, then the change in entropy S with in-
creasing energy U is always positive:

(1.3.7)

where the subscripts denote the (values of the) constant quantities.Because of this we
can also invert the function S = S(U,N,V) to obtain the energy U in terms of S, N and
V: U = U(S,N,V).

Finally, we mention that the zero of the entropy is arbitrary in classical treat-
ments. The zero of entropy does attain significance in statistical treatments that in-
clude quantum effects.

Having described the properties of the entropy for a single system, we can now
reconsider the problem of two interacting systems. Since the entropy describes the
process of equilibration, we consider the process by which two systems equilibrate
thermally. According to the zeroth law, when the two systems are in equilibrium they
are at the same temperature. The two systems are assumed to be isolated from any
other influence,so that together they form an isolated system with energy Ut and en-
tropy St . Each of the subsystems is itself in equilibrium, but they are at different tem-
peratures initially, and therefore heat is t ransferred to achieve equilibrium. The heat
transfer is assumed to be performed in a reversible fashion—slowly. The two subsys-
tems are also assumed to have a fixed number of particles N1,N2 and volume V1,V2.
No work is done, only heat is transferred. The energies of the two systems U1 and U2

and entropies S1 and S2 are not fixed.
The transfer of heat results in a transfer of energy between the two systems ac-

cording to Eq. (1.3.4), since the total energy

Ut = U1 + U2 (1.3.8)

    

S

U

 

 
 

 

 
 

N ,V

> 0

  

S = S∑
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is conserved, we have

dUt = dU1 + dU2 = 0 (1.3.9)

We will consider the processes of equilibration twice. The first time we will iden-
tify the equilibrium condition and the second time we will describe the equilibration.
At equilibrium the entropy of the whole system is maximized. Variation of the en-
tropy with respect to any internal parameter will give zero at equilibrium. We can con-
sider the change in the entropy of the system as a function of how much of the energy
is allocated to the first system:

(1.3.10)

in equilibrium. Since the total energy is fixed, using Eq. (1.3.9) we have:

(1.3.11)

or

(1.3.12)

in equilibrium. By the definition of the temperature,any function of the derivative of
the entropy with respect to energy could be used as the temperature. It is conventional
to define the temperature T using:

(1.3.13)

This definition corresponds to the Kelvin temperature scale.The units of temperature
also define the units of the entropy. This definition has the advantage that heat always
flows from the system at higher temperature to the system at lower temperature.

To prove this last statement, consider a natural small transfer of heat from one
system to the other. The transfer must result in the two systems raising their collective
entropy:

dSt = dS1 + dS2 ≥ 0 (1.3.14)

We rewrite the change in entropy of each system in terms of the change in energy. We
recall that N and V are fixed for each of the two systems and the entropy is a function
only of the three macroscopic parameters (U,N,V). The change in S for each system
may be written as:

(1.3.15)

    

dS1 = S

U
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to arrive at:

(1.3.16)

or using Eq. (1.3.9) and the definition of the temperature (Eq. (1.3.13)) we have:

(1.3.17)

or:

(T2 −T1) dU1 ≥ 0 (1.3.18)

This implies that a natural process of heat transfer results in the energy of the first sys-
tem increasing (dU1 > 0) if the temperature of the second system is greater than the
first ((T2 − T1) > 0), or conversely, ifthe temperature of the second system is less than
the temperature of the first.

Using the definition of temperature, we can also rewrite the expression for the
change in the energy of a system due to heat transfer or work, Eq.(1.3.2). The new ex-
pression is restricted to reversible processes. As in Eq. (1.3.2), N is still fixed.
Considering only reversible processes means we consider only equilibrium states of
the system, so we can write the energy as a function of the entropy U = U(S,N,V).
Since a reversible process changes the entropy and volume while keeping this function
valid, we can write the change in energy for a reversible process as

(1.3.19)

The first term reflects the effect of a change in entropy and the second reflects the
change in volume. The change in entropy is related to heat transfer but not to work.
If work is done and no heat is transferred,then the first term is zero. Comparing the
second term to Eq. (1.3.2) we find

(1.3.20)

and the incremental change in energy for a reversible process can be written:

dU = TdS − PdV (1.3.21)

This relationship enables us to make direct experimental measurements of entropy
changes. The work done on a system, in a reversible or irreversible process, changes
the energy of the system by a known amount. This energy can then be extracted in a
reversible process in the form of heat. When the system returns to its original state,we

    

P = −
U

V

 

 
 

 

 
 

N ,S

    

dU = U

S

 

 
 

 

 
 

N ,V

dS + U

V

 

 
 

 

 
 

N ,S

dV

= TdS + U

V

 

 
 

 

 
 

N ,S

dV

    

1

T1

 

 
 

 

 
 −

1

T2

 

 
 

 

 
 

 

 
 
 

 

 
 
 
dU1 ≥ 0

    

S

U

 

 
 

 

 
 

N 1,V1

dU1 +
S

U

 

 
 

 

 
 

N 2 ,V2

dU2 ≥ 0

T he rmod yn a mi c s  a nd  s t a t is t i c a l  m ec han i cs 65

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 65
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:16 AM  Page 65



can quantify the amount of heat transferred as a form of energy. Measured heat trans-
fer can then be related to entropy changes using q = TdS.

Our treatment of the fundamentals of thermodynamics was brief and does not
contain the many applications necessary for a detailed understanding. The properties
of S that we have described are sufficient to provide a systematic treatment of the ther-
modynamics of macroscopic bodies. However, the entropy is more understandable
from a microscopic (statistical) description of matter. In the next section we intro-
duce the statistical treatment that enables contact between a microscopic picture and
the macroscopic thermodynamic treatment of matter. We will use it to give micro-
scopic meaning to the entropy and temperature.Once we have developed the micro-
scopic picture we will discuss two applications. The first application, the ideal gas, is
discussed in Section 1.3.3. The discussion of the second application,the Ising model
of magnetic systems, is postponed to Section 1.6.

1.3.2 The macroscopic state from microscopic statistics
In order to develop a microscopic understanding of the macroscopic properties of
matter we must begin by restating the nature of the systems that thermodynamics de-
scribes. Even when developing a microscopic picture, the thermodynamic assump-
tions are relied upon as guides. Macroscopic systems are assumed to have an extremely
large number N of individual particles (e.g.,at a scale of 1023) in a volume V. Because
the size of these systems is so large,they are typically investigated by considering the
limit of N →∞ and V → ∞, while the density n = N /V remains constant. This is called
the thermodynamic limit. Various properties of the system are separated into exten-
sive and intensive quantities. Extensive quantities are proportional to the size of the
system. Intensive quantities are independent of the size of the system. This reflects the
intuition that local properties of a macroscopic object do not depend on the size of
the system. As in Figs.1.3.1 and 1.3.2, the system may be cut into two parts, or a small
part may be separated from a large part without affecting its local properties.

The total energy U of an isolated system in equilibrium, along with the number
of particles N and volume V, defines the macroscopic state (macrostate) of an isolated
system in equilibrium. Microscopically, the energy of the system E is given in classical
mechanics in terms of the complete specification of the individual particle positions,
momenta and interaction potentials. Together these define the microscopic state (mi-
crostate) of the system. The microstate is defined differently in quantum mechanics
but similar considerations apply. When we describe the system microscopically we use
the notation E rather than U to describe the energy. The reason for this difference is
that macroscopically the energy U has some degree of fuzziness in its definition,
though the degree of fuzziness will not enter into our considerations. Moreover, U
may also be used to describe the energy of a system that is in thermal equilibrium with
another system. However, thinking microscopically, the energy of such a system is not
well defined,since thermal contact allows the exchange of energy between the two sys-
tems. We should also distinguish between the microscopic and macroscopic concepts
of the number of particles and the volume,but since we will not make use of this dis-
tinction, we will not do so.
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There are many possible microstates that correspond to a particular macrostate
of the system specified only by U,N,V. We now make a key assumption of statistical
mechanics—that all of the possible microstates of the system occur with equal prob-
ability. The number of these microstates (U,N,V), which by definition depends on
the macroscopic parameters, turns out to be central to statistical mechanics and is di-
rectly related to the entropy. Thus it determines many of the thermodynamic proper-
ties of the system, and can be discussed even though we are not always able to obtain
it explicitly.

We consider again the problem of interacting systems. As before, we consider two
systems (Fig. 1.3.3) that are in equilibrium separately, with state variables (U1,N1,V1)
and (U2,N2,V2). The systems have a number of microstates 1(U1,N1,V1) and

2(U2,N2,V2) respectively. It is not necessary that the two systems be formed of the
same material or have the same functional form of (U,N,V), so the function is
also labeled by the system index. The two systems interact in a limited way, so that they
can exchange only energy. The number of particles and volume of each system re-
mains fixed. Conservation of energy requires that the total energy Ut = U1 + U2 re-
mains fixed, but energy may be transferred from one system to the other. As before,
our objective is to identify when energy transfer stops and equilibrium is reached.

Consider the number of microstates of the whole system t . This number is a
function not only of the total energy of the system but also of how the energy is allo-
cated between the systems. So, we write t(U1,U2), and we assume that at any time
the energy of each of the two systems is well defined. Moreover, the interaction be-
tween the two systems is sufficiently weak so that the number of states of each system
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S2(U2,N2,V2)

U t ,Nt ,Vt

t (U t ,Nt ,Vt )

S t (U t ,Nt ,Vt )

F i g u re 1.3.3 I l l u s t ration
of a system formed out
of two parts. The text
discusses this system
when energy is trans-
ferred from one part to
the other. The transfer of
energy on a microscopic
scale is equivalent to
the transfer of heat on a
macroscopic scale, since
the two systems are not
allowed to change their
number of particles or
their volume. ❚
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may be counted independently. Then the total number of microstates is the product
of the number of microstates of each of the two systems separately.

t(U1,U2) = 1(U1) 2(U2) (1.3.22)

where we have dropped the arguments N and V, since they are fixed throughout this
discussion. When energy is transferred,the number of microstates of each of the two
systems is changed. When will the transfer of energy stop? Left on its own,the system
will evolve until it reaches the most probable separation of energy. Since any particu-
lar state is equally likely, the most probable separation of energy is the separation that
gives rise to the greatest possible number of states. When the number of particles is
large,the greatest number of states corresponding to a particular energy separation is
much larger than the number of states corresponding to any other possible separa-
tion. Thus any other possibility is completely negligible. No matter when we look at
the system, it will be in a state with the most likely separation of the energy. For a
macroscopic system,it is impossible for a spontaneous transfer of energy to occur that
moves the system away from equilibrium.

The last paragraph implies that the transfer of energy from one system to the
other stops when t reaches its maximum value. Since Ut = U1 + U2 we can find the
maximum value of the number of microstates using:

(1.3.23)

or

(1.3.24)

The equivalence of these quantities is analogous to the equivalence of the tempera-
ture of the two systems in equilibrium. Since the derivatives in the last equation are
performed at constant N and V, it appears, by analogy to Eq. (1.3.12), that we can
identify the entropy as:

S = k ln( (E,N,V)). (1.3.25)

The constant k, known as the Boltzmann constant, is needed to ensure correspon-
dence of the microscopic counting of states with the macroscopic units of the entropy,
as defined by the relationship of Eq. (1.3.13), once the units of temperature and en-
ergy are defined.

The entropy as defined by Eq.(1.3.25) can be shown to satisfy all of the proper-
ties of the thermodynamic entropy in the last section. We have argued that an isolated

    

1

1(U1)
1(U1)

U1

= 1

2(U2)
2(U2)

U 2

ln 1(U1)

U1

= ln 2(U2)

U 2

    

t (U1 ,Ut −U1)

U1

= 0 = 1(U1)

U1
2(U t −U1) + 1(U1) 2(U t −U1)

U1

0 = 1(U1)

U1
2(U 2)− 1(U1) 2(U2)

U 2
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system evolves its macrostate in such a way that it maximizes the number of microstates
that correspond to the macrostate. By Eq. (1.3.25), this is the same as the first prop-
erty of the entropy in Eq. (1.3.5), the maximization of the entropy in equilibrium.

Interestingly, demonstrating the second property of the entropy, that it does not
change during an adiabatic process, requires further formal developments relating
entropy to information that will be discussed in Sections 1.7 and 1.8.We will connect
the two discussions and thus be able to demonstrate the second property of the entropy
in Chapter 8 (Section 8.3.2).

The extensive property of the entropy follows from Eq.(1.3.22). This also means
that the number of states at a particular energy grows exponentially with the size of
the system. More properly, we can say that experimental observation that the entropy
is extensive suggests that the interaction between macroscopic materials, or parts of a
single macroscopic material, is such that the microstates of each part of the system
may be enumerated independently.

The number of microstates can be shown by simple examples to increase with the
energy of the system. This corresponds to Eq.(1.3.7). There are also examples where
this can be violated, though this will not enter into our discussions.

We consider next a second example of interacting systems that enables us to eval-
uate the meaning of a system in equilibrium with a reservoir at a temperature T. We
consider a small part of a much larger system (Fig. 1.3.4). No assumption is necessary
regarding the size of the small system; it may be either microscopic or macroscopic.
Because of the contact of the small system with the large system, its energy is not
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Ut,Nt,Vt,T

E({x ,p}),N ,V

U ,N ,V

Figure 1.3.4 In order to understand temperature we consider a closed system composed of
a large and small system, or equivalently a small system which is part of a much larger sys-
tem. The larger system serves as a thermal reservoir transferring energy to and from the small
system without affecting its own temperature. A microscopic description of this process in
terms of a single microscopic state of the small system leads to the Boltzmann probability.
An analysis in terms of the macroscopic state of the small system leads to the principle of
minimization of the free energy to obtain the equilibrium state of a system at a fixed tem-
perature. This principle replaces the principle of maximization of the entropy, which only ap-
plies for a closed system. ❚
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always the same.Energy will be transferred back and forth between the small and large
systems. The essential assumption is that the contact between the large and small sys-
tem does not affect any other aspect of the description of the small system. This means
that the small system is in some sense independent of the large system, despite the en-
ergy transfer. This is true if the small system is itself macroscopic, but it may also be
valid for certain microscopic systems. We also assume that the small system and the
large system have fixed numbers of particles and volumes.

Our obj ective is to con s i der the prob a bi l i ty that a particular micro s t a te of t h e
s m a ll sys tem wi ll be re a l i zed . A micro s t a te is iden ti f i ed by all of the micro s copic para-
m eters nece s s a ry to com p l etely define this state . We use the notati on {x , p} to den o te
these coord i n a te s . The prob a bi l i ty that this particular state wi ll be re a l i zed is given by
the fracti on of s t a tes of the whole sys tem for wh i ch the small sys tem attains this state .
Because there is on ly one su ch state for the small sys tem , the prob a bi l i ty that this state
wi ll be re a l i zed is given by (proporti onal to) a count of the nu m ber of s t a tes of the re s t
of the sys tem . Si n ce the large sys tem is mac ro s cop i c , we can count this nu m ber by us-
ing the mac ro s copic ex pre s s i on for the nu m ber of s t a tes of the large sys tem :

P({x, p}) ∝ R(Ut − E({x, p}),Nt − N,Vt − V) (1.3.26)

where E({x,p}),N,V are the energy, number of particles and volume of the micro-
scopic system respectively. E({x,p})is a function of the microscopic parameters {x,p}.
Ut ,Nt ,Vt are the energy, number of particles and volume of the whole system,includ-
ing both the small and large systems. R is the entropy of the large subsystem (reser-
voir). Since the number of states generally grows faster than linearly as a function of
the energy, we use a Taylor expansion of its logarithm (or equivalently a Taylor ex-
pansion of the entropy) to find

where we have not expanded in the number of particles and the volume because they
are unchanging. We take only the first term in the expansion, because the size of the
small system is assumed to be much smaller than the size of the whole system.
Exponentiating gives the relative probability of this particular microscopic state.

R(Ut − E({x,p}),Nt − N,Vt − V) = R(Ut ,Nt − N,Vt − V)e−E({x,p})/kT (1.3.28)

The probability of this particular state must be normalized so that the sum over all
states is one.Since we are normalizing the probability anyway, the constant coefficient
does not affect the result. This gives us the Boltzmann probability distribution:

    

ln R(U t − E({x, p}),N t − N ,Vt −V )

= ln R(U t ,Nt − N,Vt −V ) +
ln R(Ut ,N t − N ,Vt −V )

Et

 
 
  

 
 

N t ,Vt

(−E({x ,p}))

= ln R(Ut ,N t − N ,Vt −V ) + 1

kT
(−E({x ,p}))
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(1.3.29)

Eq. (1.3.29) is independent of the states of the large system and depends only on the
microscopic description of the states of the small system. It is this expression which
generally provides the most convenient starting point for a connection between the
microscopic description of a system and macroscopic thermodynamics. It identifies
the probability that a particular microscopic state will be realized when the system has
a well-defined temperature T. In this way it also provides a microscopic meaning to
the macroscopic temperature T. It is emphasized that Eq.(1.3.29) describes both mi-
croscopic and macroscopic systems in equilibrium at a temperature T.

The probability of occurrence of a particular state should be related to the de-
scription of a system in terms of an ensemble. We have found by Eq. (1.3.29) that a
system in thermal equilibrium at a temperature T is represented by an ensemble that
is formed by taking each of the states in proportion to its Boltzmann probability. This
ensemble is known as the canonical ensemble. The canonical ensemble should be
contrasted with the assumption that each state has equal probability for isolated sys-
tems at a particular energy. The ensemble of fixed energy and equal a priori proba-
bility is known as the microcanonical ensemble. The canonical ensemble is both eas-
ier to discuss analytically and easier to connect with the physical world. It will be
generally assumed in what follows.

We can use the Boltzmann probability and the definition of the canonical en-
semble to obtain all of the thermodynamic quantities. The macroscopic energy is
given by the average over the microscopic energy using:

(1.3.30)

For a macroscopic system,the average value of the energy will always be observed in
any specific measurement, despite the Boltzmann probability that allows all energies.
This is because the number of states of the system rises rapidly with the energy. This
rapid growth and the exponential decrease of the probability with the energy results
in a sharp peak in the probability distribution as a function of energy. The sharp peak
in the probability distribution means that the probability of any other energy is neg-
ligible. This is discussed below in Question 1.3.1.

For an isolated macroscopic system, we were able to identify the equilibrium state
from among other states of the system using the principle of the maximization of the
entropy. There is a similar procedure for a macroscopic system in contact with a ther-
mal reservoir at a fixed temperature T. The important point to recognize is that when
we had a closed system,the energy was fixed. Now, however, the objective becomes to
identify the energy at equilibrium. Of course, the energy is given by the average in

    

U =
1

Z
E({x , p})e −E({x ,p})/ kT

{x ,p}

∑

    

P({x, p}) =
1

Z
e −E({x ,p})/ kT

Z = e −E({ x,p}) /kT

{x ,p}
∑
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Eq.(1.3.30). However, to generalize the concept of maximizing the entropy, it is sim-
plest to reconsider the problem of the system in contact with the reservoir when the
small system is also macroscopic.

Instead of considering the probability of a particular microstate of well-defined
energy E, we consider the probability of a macroscopic state of the system with an en-
ergy U. In this case, we find the equilibrium state of the system by maximizing the
number of states of the whole system, or alternatively of the entropy:

(1.3.31)

To find the equilibrium state,we must maximize this expression for the entropy of the
whole system. We can again ignore the constant second term. This leaves us with
quantities that are only characterizing the small system we are interested in, and the
temperature of the reservoir. Thus we can find the equilibrium state by maximizing
the quantity

S − U/T (1.3.32)

It is conventional to rewrite this and, rather than maximizing the function in Eq.
(1.3.32), to minimize the function known as the free energy:

F = U − TS (1.3.33)

This suggests a simple physical significance of the process of change toward equilib-
rium. At a fixed temperature, the system seeks to minimize its energy and maximize
its entropy at the same time. The relative importance of the entropy compared to the
energy is set by the temperature. For high temperature, the entropy becomes more
dominant, and the energy rises in order to increase the entropy. At low temperature,
the energy becomes more dominant, and the energy is lowered at the expense of the
entropy. This is the precise statement of the observation that “everything flows down-
hill.” The energy entropy competition is a balance that is rightly considered as one of
the most basic of physical phenomena.

We can obtain a microscopic expression for the free energy by an exercise that be-
gins from a microscopic expression for the entropy:

(1.3.34)

The su m m a ti on is over all micro s copic state s . The delta functi on is 1 on ly wh en 
E({x, p}) = U. Thus the sum counts all of the micro s copic states with en er gy U. S tri ct ly
s pe a k i n g, the f u n cti on is assu m ed to be sligh t ly “f u z z y,” so that it gives 1 wh en 
E({x,p}) differs from U by a small amount on a mac ro s copic scale, but by a large amount
in terms of the differen ces bet ween en er gies of m i c ro s t a te s . We can then wri te

    

S = k ln( ) = k ln E x,p{ }( ),U
{x ,p}

∑
 

 
  

 

 
  

    

ln (U, N ,V ) + ln R(Ut −U ,Nt − N ,Vt −V)

= S(U ,N ,V )/k + SR(U t −U ,N t − N ,Vt −V )/k

= S(U,N ,V )/k + SR(U t ,N t − N,Vt −V )/k + 1

kT
(−U)
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(1.3.35)

Let us compare the sum in the logarithm with the expression for Z in Eq.(1.3.29). We
will argue that they are the same. This discussion hinges on the rapid increase in the
number of states as the energy increases. Because of this rapid growth,the value of Z
in Eq.(1.3.29) actually comes from only a narrow region of energy. We know from the
expression for the energy average, Eq.(1.3.30),that this narrow region of energy must
be at the energy U. This implies that for all intents and purposes the quantity in the
brackets of Eq. (1.3.35) is equivalent to Z. This argument leads to the expression:

(1.3.36)

Comparing with Eq. (1.3.33) we have

F = −kTlnZ (1.3.37)

Since the Boltzmann probability is a convenient starting point,this expression for the
free energy is often simpler to evaluate than the expression for the entropy, Eq.
(1.3.34).A calculation of the free energy using Eq.(1.3.37) provides contact between
microscopic models and the macroscopic behavior of thermodynamic systems. The
Boltzmann normalization Z, which is directly related to the free energy is also known
as the partition function. We can obtain other thermodynamic quantities directly
from the free energy. For example, we rewrite the expression for the energy Eq.
(1.3.30) as:

(1.3.38)

where we use the notation = 1/ kT. The entropy can be obtained using this expres-
sion for the energy and Eq. (1.3.33) or (1.3.36).

Question 1.3.1 Consider the possibility that the macroscopic energy of
a system in contact with a thermal reservoir will deviate from its typical

value U. To do this expand the probability distribution of macroscopic en-
ergies of a system in contact with a reservoir around this value. How large
are the deviations that occur?

Solution 1.3.1 We considered Eq.(1.3.31) in order to optimize the entropy
and find the typical value of the energy U. We now consider it again to find
the distribution of probabilities of values of the energy around the value U
similar to the way we discussed the distribution of microscopic states {x, p}
in Eq.(1.3.27). To do this we distinguish between the observed value of the

    

U =
1

Z
E({x , p})e − E({x,p})

{x ,p}

∑ = −
ln(Z)

=
F

    
S =

U

T
+ k lnZ

    

S = k ln( ) = k ln E x,p{ }( ),Ue −E x ,p{ }( ) / kTeU /kT
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∑
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energy U ′ and U. Note that we consider U ′ to be a macroscopic energy,
though the same derivation could be used to obtain the distribution of mi-
croscopic energies. The probability of U ′ is given by:

(1.3.39)

In the latter form we ignore the fixed arguments N and V. We expand the log-
arithm of this expression around the expected value of energy U:

(1.3.40)

where we have kept terms to second order. The first-order terms, which are
of the form (1/kT)(U ′ − U), have opposite signs and therefore cancel. This
implies that the probability is a maximum at the expected energy U. The sec-
ond derivative of the entropy can be evaluated using:

(1.3.41)

where CV is known as the specific heat at constant volume.For our purposes,
its only relevant property is that it is an extensive quantity. We can obtain a
similar expression for the reservoir and define the reservoir specific heat CVR.
Thus the probability is:

(1.3.42)

where we have left out the (constant) terms that do not depend on U ′.
Because CV and CVR are extensive quantities and the reservoir is much big-
ger than the small system, we can neglect 1/CVR compared to 1/CV. The re-
sult is a Gaussian distribution (Eq. (1.2.39)) with a standard deviation

= T√kCV (1.3.43)

This describes the characteristic deviation of the energy U ′ from the average
or typical energy U. However, since CV is extensive, the square root means
that the deviation is proportional to √N. Note that the result is consistent
with a random walk of N steps. So for a large system of N ∼ 1023 particles,the
possible deviation in the energy is smaller than the energy by a factor of (we
are neglecting everything but the N dependence) 1012—i.e., it is unde-
tectable. Thus the energy of a thermodynamic system is very well defined. ❚

1.3.3 Kinetic theory of gases and pressure
In the previous section, we described the microscopic analog of temperature and en-
tropy. We assumed that the microscopic analog of energy was understood,and we de-

    P( ′ U ) ∝e −(1/ 2kT
2

)(1/CV +1/ CVR )(U − ′ U )
2

≈ e −(1/ 2kT
2
)(1/CV )(U − ′ U )

2

    

d 2S(U)

dU 2
=

d

dU

1

T
= −

1

T2

1

dU /dT
= −

1

T 2CV

    

S( ′ U ) +SR(U t − ′ U )

= S(U )/k + SR(Ut −U)/k + 1

2k

d 2S(U)

dU 2
(U − ′ U )2 + 1

2k

d 2S(U t −U)
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2

(U − ′ U )2

    P( ′ U ) ∝ ( ′ U , N ,V ) R(U t − ′ U ,N t − N ,Vt −V ) = e S( ′ U )/k +S R (U t − ′ U )/ k
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veloped the concept of free energy and its microscopic analog. One quantity that we
have not discussed microscopically is the pressure. Pressure is a Newtonian concept—
the force per unit area. For various reasons,it is helpful for us to consider the micro-
scopic origin of pressure for the example of a simplified model of a gas called an ideal
gas. In Question 1.3.2 we use the ideal gas as an example of the thermodynamic and
statistical analysis of materials.

An ideal gas is composed of indistinguishable point particles with a mass m but
with no internal structure or size. The interaction between the particles is neglected,
so that the energy is just their kinetic energy. The particles do interact with the walls
of the container in which the gas is confined. This interaction is simply that of reflec-
tion—when the particle is incident on a wall, the component of its velocity perpen-
dicular to the wall is reversed.Energy is conserved. This is in accordance with the ex-
pectation from Newton’s laws for the collision of a small mass with a much larger
mass object.

To obtain an expression for the pressure, we must suffer with some notational
hazards,as the pressure P, probability of a particular velocity P(v) and momentum of
a particular particle pi are all designated by the letter P but with different case, argu-
ments or subscripts.A bold letter F is used briefly for the force,and otherwise F is used
for the free energy. We rely largely upon context to distinguish them. Since the objec-
tive of using an established notation is to make contact with known concepts,this sit-
uation is sometimes preferable to introducing a new notation.

Because of the absence of collisions between different particles of the gas, there
is no communication between them, and each of the particles bounces around the
container on its own course. The pressure on the container walls is given by the force
per unit area exerted on the walls,as illustrated in Fig. 1.3.5. The force is given by the
action of the wall on the gas that is needed to reverse the momenta of the incident par-
ticles between t and t + ∆t :

(1.3.44)

where |F | is the magnitude of the force on the wall. The latter expression relates the
pressure to the change in the momenta of incident particles per unit area of the wall.
A is a small but still macroscopic area,so that this part of the wall is flat. Microscopic
roughness of the surface is neglected. The change in velocity ∆vi of the particles dur-
ing the time ∆t is zero for particles that are not incident on the wall. Particles that hit
the wall between t and t + ∆t are moving in the direction of the wall at time t and are
near enough to the wall to reach it during ∆t. Faster particles can reach the wall from
farther away, but only the velocity perpendicular to the wall matters. Denoting this ve-
locity component as v⊥, the maximum distance is v⊥∆t (see Fig. 1.3.5).

If the particles have velocity only perpendicular to the wall and no velocity par-
allel to the wall,then we could count the incident particles as those in a volume Av⊥∆t.
We can use the same expression even when particles have a velocity parallel to the sur-
face, because the parallel velocity takes particles out of and into this volume equally.

      
P =

F

A
=

1

A∆t
m∆v i

i
∑
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Another way to say this is that for a particular parallel velocity we count the particles
in a sheared box with the same height and base and therefore the same volume. The
total number of particles in the volume,(N / V)Av⊥∆t, is the volume times the density
(N /V).

Within the volume Av⊥∆t, the number of particles that have the velocity v⊥ is
given by the number of particles in this volume times the probability P(v⊥) that a par-
ticle has its perpendicular velocity component equal to v⊥. Thus the number of par-
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Figure 1.3.5 Illustration of a gas of ideal particles in a container near one of the walls.
Particles incident on the wall are reflected, reversing their velocity perpendicular to the wall,
and not affecting the other components of their velocity. The wall experiences a pressure due
to the collisions and applies the same pressure to the gas. To calculate the pressure we must
count the number of particles in a unit of time ∆t with a particular perpendicular velocity v⊥
that hit an area A. This is equivalent to counting the number of particles with the velocity
v⊥ in the box shown with one of its sides of length ∆tv⊥. Particles with velocity v⊥ will hit
the wall if and only if they are in the box. The same volume of particles applies if the parti-
cles also have a velocity parallel to the surface, since this just skews the box, as shown, leav-
ing its height and base area the same. ❚
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ticles incident on the wall with a particular velocity perpendicular to the wall v⊥ is
given by

(1.3.45)

The total change in momentum is found by multiplying this by the change in mo-
mentum of a single particle reflected by the collision, 2mv⊥, and integrating over all
velocities.

(1.3.46)

Divide this by A∆t to obtain the change in momentum per unit time per unit area,
which is the pressure (Eq. (1.3.44)),

(1.3.47)

We rewrite this in terms of the average squared velocity perpendicular to the surface

(1.3.48)

where the equal probability of having positive and negative velocities enables us to ex-
tend the integral to −∞ while eliminating the factor of two. We can rewrite Eq.(1.3.48)
in terms of the average square magnitude of the total velocity. There are three com-
ponents of the velocity (two parallel to the surface). The squares of the velocity com-
ponents add to give the total velocity squared and the averages are equal:

< v2 > = < v⊥
2 + v2

2 + v3
2 > = 3 < v⊥

2 > (1.3.49)

where v is the magnitude of the particle velocity. The pressure is:

(1.3.50)

Note that the wall does not influence the probability of having a particular velocity
nearby. Eq. (1.3.50) is a microscopic expression for the pressure, which we can cal-
culate using the Boltzmann probability from Eq. (1.3.29). We do this as part of
Question 1.3.2.

Question 1.3.2 Develop the statistical description of the ideal gas by ob-
taining expressions for the thermodynamic quantities Z, F, U, S and P,

in terms of N, V, and T. For hints read the first three paragraphs of the
solution.

Solution 1.3.2 The primary task of statistics is counting. To treat the ideal
gas we must count the number of microscopic states to obtain the entropy,
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or sum over the Boltzmann probability to obtain Z and the free energy. The
ideal gas presents us with two difficulties.The first is that each particle has a
continuum of possible locations. The second is that we must treat the parti-
cles as microscopically indistinguishable. To solve the first problem, we have
to set some interval of position at which we will call a particle here different
from a particle there. Moreover, since a particle at any location may have
many different velocities, we must also choose a difference of velocities that
will be considered as distinct.We define the interval of position to be ∆x and
the interval of momentum to be ∆p. In each spatial dimension,the positions
between x and x +∆x correspond to a single state,and the momenta between
p and p + ∆p correspond to a single state. Thus we consider as one state of
the system a particle which has position and momenta in a six-dimensional
box of a size ∆x3∆p3. The size of this box enters only as a constant in classi-
cal statistical mechanics, and we will not be concerned with its value.
Quantum mechanics identifies it with ∆x3∆p3 = h3, where h is Planck’s con-
stant, and for convenience we adopt this notation for the unit volume for
counting.

There is a subtle but important choice that we have made. We have cho-
sen to make the counting intervals have a fixed width ∆p in the momentum.
From classical mechanics,it is not entirely clear that we should make the in-
tervals of fixed width in the momentum or, for example,make them fixed in
the energy ∆E. In the latter case we would count a single state between E and
E +∆E. Since the energy is proportional to the square of the momentum,this
would give a different counting. Quantum mechanics provides an unam-
biguous answer that the momentum intervals are fixed.

To solve the problem of the indistinguishability of the particles, we must
remember every time we count the number of states of the system to divide
by the number of possible ways there are to interchange the particles, which
is N !.

The energy of the ideal gas is given by the kinetic energy of all of the
particles:

(1.3.51)

where the velocity and momentum of a particle are three-dimensional vec-
tors with magnitude vi and pi respectively. We start by calculating the parti-
tion function (Boltzmann normalization) Z from Eq. (1.3.29)

(1.3.52)

where the integral is to be evaluated over all possible locations of each of the
N particles of the system. We have also included the correction to over-
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counting, N !. Since the particles do not see each other, the energy is a sum
over each particle energy. The integrals separate and we have:

(1.3.53)

The position integral gives the volume V, immediately giving the depen-
dence of Z on this macroscopic quantity. The integral over momentum can
be evaluated giving:

and we have that

(1.3.55)

We could have simplified the integration by recognizing that each compo-
nent of the momentum px,py and pz can be integrated separately, giving 3N
independent one-dimensional integrals and leading more succinctly to the
result. The result can also be written in terms of a natural length (T) that
depends on temperature (and mass):

(T) = (h2 / 2 mkT )1/2 (1.3.56)

(1.3.57)

From the partition function we obtain the free energy, making use of
Sterling’s approximation (Eq. (1.2.36)):

F = kTN(lnN − 1) − kTN ln(V / (T )3) (1.3.58)

where we have neglected terms that grow less than linearly with N. Terms
that vary as ln(N) vanish on a macroscopic scale. In this form it might ap-
pear that we have a problem,since the N ln(N) term from Sterling’s approx-
imation to the factorial does not scale proportional to the size of the system,
and F is an extensive quantity. However, we must also note the N ln(V) term,
which we can combine with the N ln(N) term so that the extensive nature is
apparent:

F = kTN[lnN (T)3/V) − 1] (1.3.59)
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It is interesting that the factor of N!,and thus the indistinguishability of par-
ticles,is necessary for the free energy to be extensive. If the particles were dis-
tinguishable,then cutting the system in two would result in a different count-
ing, since we would lose the states corresponding to particles switching from
one part to the other. If we combined the two systems back together, there
would be an effect due to the mixing of the distinguishable particles
(Question 1.3.3).

The energy may be obtained from Eq. (1.3.38) (any of the forms) as:

(1.3.60)

which provides an example of the equipartition the orem, which says that
each degree of freedom (position-momentum pair) of the system carries
kT / 2 of energy in equilibrium.Each of the three spatial coordinates of each
particle is one degree of freedom.

The expression for the entropy (S = (U − F)/T)

S = kN[ln(V/N (T)3) + 5/2] (1.3.61)

shows that the entropy per particle S/N grows logarithmically with the vol-
ume per particleV /N. Using the expression for U, it may be written in a form
S(U,N,V).

Finally, the pressure may be obtained from Eq.(1.3.20), but we must be
careful to keep N and S constant rather than T. We have

(1.3.62)

Taking the same derivative of the entropy Eq. (1.3.61) gives us (the deriva-
tive of S with S fixed is zero):

(1.3.63)

Substituting, we obtain the ideal gas equation of state:

PV = NkT (1.3.64)

which we can also obtain from the microscopic expression for the pressure—
Eq.(1.3.50). We describe two ways to do this.One way to obtain the pressure
from the microscopic expression is to evaluate first the average of the energy

(1.3.65)

This may be substituted in to Eq. (1.3.60) to obtain
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(1.3.66)

which may be substituted directly in to Eq. (1.3.50). Another way is to ob-
tain the average squared velocity directly. In averaging the velocity, it doesn’t
matter which particle we choose. We choose the first particle:

(1.3.67)

where we have further chosen to average over only one of the components of
the velocity of this particle and multiply by three. The denominator is the
normalization constant Z. Note that the factor 1/N !, due to the indistin-
guishability of particles, appears in the numerator in any ensemble average
as well as in the denominator, and cancels. It does not affect the Boltzmann
probability when issues of distinguishability are not involved.

There are 6N integrals in the numerator and in the denominator of Eq.
(1.3.67). All integrals factor into one-dimensional integrals.Each integral in
the numerator is the same as the corresponding one in the denominator, ex-
cept for the one that involves the particular component of the velocity we are
interested in. We cancel all other integrals and obtain:

(1.3.68)

The integral is performed by the same technique as used in Eq.(1.3.54). The
result is the same as by the other methods. ❚

Question 1.3.3 An insulated box is divided into two compartments by a
partition. The two compartments contain two different ideal gases at the

same pressure P and temperature T. The first gas has N1 particles and the sec-
ond has N2 particles. The partition is punctured. Calculate the resulting
change in thermodynamic parameters (N, V, U, P, S, T, F). What changes in
the analysis if the two gases are the same, i.e., if they are composed of the
same type of molecules?

Solution 1.3.3 By additivity the extrinsic properties of the whole system
before the puncture are (Eq. (1.3.59)–Eq. (1.3.61)):
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(1.3.69)

The pressure is intrinsic, so before the puncture it is (Eq. (1.3.64)):

P0 = N1kT /V1 = N2kT /V2 (1.3.70)

After the puncture, the total energy remains the same, because the
whole system is isolated. Because the two gases do not interact with each
other even when they are mixed, their properties continue to add after the
puncture. However, each gas now occupies the whole volume, V1 + V2. The
expression for the energy as a function of temperature remains the same,so
the temperature is also unchanged. The pressure in the container is now ad-
ditive: it is the sum of the pressure of each of the gases:

P = N1kT /(V1 + V2) + N2kT /(V1 + V2) = P0 (1.3.71)

i.e., the pressure is unchanged as well.
The only changes are in the entropy and the free energy. Because the two

gases do not interact with each other, as with other quantities, we can write
the total entropy as a sum over the entropy of each gas separately:

S = kN1[ln((V1 + V2)/N1 (T)3) + 5/2]

+ kN2[ln((V1 + V2)/N2 (T)3) + 5/2] (1.3.72)

= S0 + (N1 + N2)k ln(V1 + V2) − N1k ln(V1) − N2k ln(V2)

If we simplify to the case V1 = V2, we have S = S0 + (N1 + N2)k ln(2). Since
the energy is unchanged, by the relationship of free energy and entropy
(Eq. (1.3.33)) we have:

F = F0 − T(S − S0) (1.3.73)

If the two gases are composed of the same molecule,there is no change
in thermodynamic parameters as a result of a puncture. Mathematically, the
difference is that we replace Eq. (1.3.72) with:

S = k(N1 + N2)[ln((V1 + V2)/(N1 + N2) (T)3) + 5/2] = S0 (1.3.74)

where this is equal to the original entropy because of the relationship
N1/V1 = N2 / V2 from Eq. (1.3.70). This example illustrates the effect of in-
distinguishability. The entropy increases after the puncture when the gases
are different, but not when they are the same. ❚

Question 1.3.4 An ideal gas is in one compartment of a two-compartment
sealed and thermally insulated box. The compartment it is in has a vol-

ume V1. It has an energy U0 and a number of particles N0. The second com-

    

U 0 =U1 +U2 =
3

2
(N1 + N2)kT

V0 = V1 +V2

S0 = kN1[ln(V1 /N1 (T)3) + 5/2] +kN 2[ln(V2 / N2 (T)3) + 5/2]

F0 = kTN1[ln(N1 (T)3 /V1)− 1]+kTN 2[ln(N2 (T)3 /V2) −1]
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partment has volume V2 and is empty. Write expressions for the changes in
all thermodynamic parameters (N, V, U, P, S, T, F) if

a. the barrier between the two compartments is punctured and the gas ex-
pands to fill the box.

b. the barri er is moved slowly, l i ke a piston , expanding the gas to fill the box .

Solution 1.3.4 Recognizing what is conserved simplifies the solution of
this type of problem.

a. The energy U and the number of particles N are conserved. Since
the volume change is given to us explicitly, the expressions for T
(Eq. (1.3.60)), F (Eq. (1.3.59)), S (Eq. (1.3.61)), and P (Eq. (1.3.64)) in
terms of these quantities can be used.

N = N0

U = U0

V = V1 + V2 (1.3.75)

T = T0

F = kTN[ln(N (T)3 /(V1 + V2)) − 1] = F0 + kTN ln(V1 + V2))

S = kN[ln((V1 + V2) /N T)3) + 5/2] = S0 + kN ln((V1 + V2)/V1) 

P = NkT / V = NkT/(V1 + V2) = P0V1 /(V1 + V2)

b. The process is reversible and no heat is transferred,thus it is adiabatic—
the entropy is conserved. The number of particles is also conserved:

N = N0

S = S0

(1.3.76)

Our main task is to calculate the effect of the work done by the gas pres-
sure on the piston. This causes the energy of the gas to decrease,and the
temperature decreases as well. One way to find the change in tempera-
ture is to use the conservation of entropy, and Eq. (1.3.61), to obtain
that V / (T)3 is a constant and therefore:

T ∝ V-2/3 (1.3.77)

Thus the temperature is given by:

(1.3.78)

Since the temperature and energy are proportional to each other
(Eq. (1.3.60)), similarly:

(1.3.79)
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The free-energy expression in Eq. (1.3.59) changes only through the
temperature prefactor:

(1.3.80)

Finally, the pressure (Eq. (1.6.64)):

(1.3.81) ❚

The ideal gas illustrates the significance of the Boltzmann distribution. Consider
a single particle. We can treat it either as part of the large system or as a subsystem in
its own right. In the ideal gas, without any interactions, its energy would not change.
Thus the particle would not be described by the Boltzmann probability in Eq.
(1.3.29). However, we can allow the ideal gas model to include a weak or infrequent
interaction (collision) between particles which changes the particle’s energy. Over a
long time compared to the time between collisions, the particle will explore all possi-
ble positions in space and all possible momenta. The probability of its being at a par-
ticular position and momentum (in a region d3xd3p) is given by the Boltzmann dis-
tribution:

(1.3.82)

Instead of considering the trajectory of this particular particle and the effects of
the (unspecified) collisions, we can think of an ensemble that represents this particu-
lar particle in contact with a thermal reservoir. The ensemble would be composed of
many different particles in different boxes. There is no need to have more than one
particle in the system. We do need to have some mechanism for energy to be trans-
ferred to and from the particle instead of collisions with other particles. This could
happen as a result of the collisions with the walls of the box if the vibrations of the
walls give energy to the particle or absorb energy from the particle. If the wall is at the
temperature T, this would also give rise to the same Boltzmann distribution for the
particle. The probability of a particular particle in a particular box being in a partic-
ular location with a particular momentum would be given by the same Boltzmann
probability.

Using the Boltzmann probability distribution for the velocity, we could calculate
the average velocity of the particle as:
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(1.3.83)

which is the same result as we obtained for the ideal gas in the last part of
Question 1.3.2. We could even consider one coordinate of one particle as a separate
system and arrive at the same conclusion.Our description of systems is actually a de-
scription of coordinates.

There are differences when we consider the particle to be a member of an en-
semble and as one par ticle of a gas. In the ensemble, we do not need to consider the
distinguishability of particles. This does not affect any of the properties of a single
particle.

This discussion shows that the ideal gas model may be viewed as quite close to
the basic concept of an ensemble.Generalize the physical particle in three dimensions
to a point with coordinates that describe a complete system. These coordinates change
in time as the system evolves according to the rules of its dynamics.The ensemble rep-
resents this system in the same way as the ideal gas is the ensemble of the particle. The
lack of interaction between the different members of the ensemble,and the existence
of a transfer of energy to and from each of the systems to generate the Boltzmann
probability, is the same in each of the cases. This analogy is helpful when thinking
about the nature of the ensemble.

1.3.4 Phase transitions—first and second order
In the previous section we constructed some of the underpinnings of thermody-
namics and their connection with microscopic descriptions of materials using statis-
tical mechanics. One of the central conclusions was that by minimizing the free en-
ergy we can find the equilibrium state of a material that has a fixed number of
particles, volume and temperature. Once the free energy is minimized to obtain the
equilibrium state of the material, the energy, entropy and pressure are uniquely de-
termined. The free energy is also a function of the temperature, the volume and the
number of particles.

One of the important properties of materials is that they can change their prop-
erties suddenly when the temperature is changed by a small amount. Examples of this
are the transition of a solid to a liquid, or a liquid to a gas. Such a change is known as
a phase transition. Each well-defined state of the material is considered a particular
phase. Let us consider the process of minimizing the free energy as we vary the tem-
perature. Each of the properties of the material will, in general, change smoothly as
the temperature is varied. However, special circumstances might occur when the
minimization of the free energy at one temperature results in a very different set of
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properties of the material from this minimization at a slightly different temperature.
This is illustrated in a series of frames in Fig. 1.3.6, where a schematic of the free en-
ergy as a function of some macroscopic parameter is illustrated.

The temperature at which the jump in properties of the material occurs is called
the critical or transition temperature,Tc . In general,all of the properties of the mate-
rial except for the free energy jump discontinuously at Tc . This kind of phase transi-
tion is known as a first-order phase transition. Some of the properties of a first-order
phase transition are that the two phases can coexist at the transition temperature so
that part of the material is in one phase and part in the other. An example is ice float-
ing in water. If we start from a temperature below the transition temperature—with
ice—and add heat to the system gradually, the temperature will rise until we reach the
transition temperature. Then the temperature will stay fixed as the material converts
from one phase to the other—from ice to water. Once the whole system is converted
to the higher temperature phase, the temperature will start to increase again.
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F i g u re 1.3.6 Each of the
curves represents the
variation of the free en-
ergy of a system as a
function of macroscopic
parameters. The differ-
ent curves are for dif-
ferent temperatures. As
the temperature is var-
ied the minimum of the
free energy all of a sud-
den switches from one
set of macroscopic para-
meters to another. This
is a first-order phase
transition like the melt-
ing of ice to form water,
or the boiling of water
to form steam. Below
the ice-to-water phase
transition the macro-
scopic parameters that
describe ice are the min-
imum of the free energy,
while above the phase
transition the macro-
scopic parameters that
describe water are the
minimum of the free
energy. ❚
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The temperature Tc at which a transition occurs depends on the number of par-
ticles and the volume of the system. Alternatively, it may be considered a function of
the pressure. We can draw a phase-transition diagram (Fig. 1.3.7) that shows the tran-
sition temperature as a function of pressure. Each region of such a diagram corre-
sponds to a particular phase.

There is another kind of phase transition, known as a second-order phase tran-
sition, where the energy and the pressure do not change discontinuously at the phase-
transition point. Instead, they change continuously, but they are nonanalytic at the
transition temperature.A common way that this can occur is illustrated in Fig. 1.3.8.
In this case the single minimum of the free energy breaks into two minima as a func-
tion of temperature. The temperature at which the two minima appear is the transi-
tion temperature. Such a second-order transition is often coupled to the existence of
first-order transitions. Below the second-order transition temperature, when the two
minima exist, the variation of the pressure can change the relative energy of the two
minima and cause a first-order transition to occur. The first-order transition occurs
at a particular pressure Pc(T) for each temperature below the second-order transition
temperature. This gives rise to a line of first-order phase transitions. Above the
second-order transition temperature, there is only one minimum, so that there are
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Figure 1.3.7 Schematic phase diagram of H2O showing three phases — ice, water and steam.
Each of the regions shows the domain of pressures and temperatures at which a pure phase
is in equilibrium. The lines show phase transition temperatures, Tc(P), or phase transition
pressures, Pc(T). The different ways of crossing lines have different names. Ice to water: melt-
ing; ice to steam: sublimation; water to steam: boiling; water to ice: freezing; steam to wa-
ter: condensation; steam to ice: condensation to frost. The transition line from water to steam
ends at a point of high pressure and temperature where the two become indistinguishable. At
this high pressure steam is compressed till it has a density approaching that of water, and at
this high temperature water molecules are energetic like a vapor. This special point is a
second-order phase transition point (see Fig. 1.3.8). ❚
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Figure 1.3.8 Similar to
Fig. 1.3.6, each of the
curves represents the
variation of the free en-
ergy of a system as a
function of macroscopic
parameters. In this case,
however, the phase tran-
sition occurs when two
minima emerge from
one. This is a second-or-
der phase transition.
Below the temperature
at which the second-or-
der phase transition oc-
curs, varying the pres-
sure can give rise to a
first-order phase transi-
tion by changing the rel-
ative energies of the two
minima (see Figs. 1.3.6
and 1.3.7). ❚

also no first-order transitions. Thus, the second-order transition point occurs as the
end of a line of first-order transitions.A second-order transition is found at the end
of the liquid-to-vapor phase line of water in Fig. 1.3.7.
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The properties of second-order phase transitions have been extensively studied
because of interesting phenomena that are associated with them. Unlike a first-order
phase t ransition, there is no coexistence of two phases at the phase transition, be-
cause there is only one phase at that point. Instead, there exist large fluctuations in
the local properties of the material at the phase transition. A suggestion of why this
occurs can be seen from Fig. 1.3.8, where the free energy is seen to be very flat at the
phase transition. This results in large excursions (fluctuations) of all the properties
of the system except the free energy. These excursions, however, are not coherent
over the whole material. Instead, they occur at every length scale from the micro-
scopic on up. The closer a material is to the phase transition, the longer are the
length scales that are affected. As the temperature is varied so that the system moves
away from the transition temperature,the fluctuations disappear, first on the longest
length scales and then on shorter and shorter length scales. Because at the phase
transition itself even the macroscopic length scales are affected,thermodynamics it-
self had to be carefully rethought in the vicinity of second-order phase transitions.
The methodology that has been developed, the renormalization group, is an impor-
tant tool in the investigation of phase transitions. We will discuss it in Section 1.10.
We note that, to be consistent with Question 1.3.1, the specific heat CV must diverge
at a second-order phase transition, where energy fluctuations can be large.

1.3.5 Use of thermodynamics and statistical mechanics in
describing the real world

How do we generalize the notions of thermodynamics that we have just described to
apply to more realistic situations? The assumptions of thermodynamics—that sys-
tems are in equilibrium and that dividing them into parts leads to unchanged local
properties—do not generally apply. The breakdown of the assumptions of thermo-
dynamics occurs for even simple materials, but are more radically violated when we
consider biological organisms like trees or people. We still are able to measure their
temperature. How do we extend thermodynamics to apply to these systems?

We can start by considering a system quite close to the thermodynamic ideal—a
pure piece of material that is not in equilibrium. For example, a glass of water in a
room. We generally have no trouble placing a thermometer in the glass and measur-
ing the temperature of the water. We know it is not in equilibrium, because if we wait
it will evaporate to become a vapor spread out throughout the room (even if we sim-
plify by considering the room closed). Moreover, if we wait longer (a few hundred
years to a few tens of thousands of years),the glass itself will flow and cover the table
or flow down to the floor, and at least part of it will also sublime to a vapor. The table
will undergo its own processes of deterioration. These effects will occur even in an
idealized closed room without considerations of various external influences or traffic
through the room. There is one essential concept that allows us to continue to apply
thermodynamic principles to these materials,and measure the temperature of the wa-
ter, glass or table, and generally to discover that they are at the same (or close to the
same) temperature. The concept is the separation of time scales.This concept is as ba-
sic as the other principles of thermodynamics. It plays an essential role in discussions
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of the dynamics of physical systems and in particular of the dynamics of complex sys-
tems. The separation of time scales assumes that our observations of systems have a
limited time resolution and are performed over a limited time. The processes that oc-
cur in a material are then separated into fast processes that are much faster than the
time resolution of our observation, slow processes that occur on longer time scales
than the duration of observation,and dynamic processes that occur on the time scale
of our observation. Macroscopic averages are assumed to be averages over the fast
processes. Thermodynamics allows us to deal with the slow and the fast processes but
only in very limited ways with the dynamic processes. The dynamic processes are dealt
with separately by Newtonian mechanics.

Slow processes establish the framework in which thermodynamics can be ap-
plied. In formal terms,the ensemble that we use in thermodynamics assumes that all
the parameters of the system described by slow processes are fixed. To describe a sys-
tem using statistical mechanics, we consider all of the slowly varying parameters of
the system to be fixed and assume that equilibrium applies to all of the fast processes.
Specifically, we assume that all possible arrangements of the fast coordinates exist in
the ensemble with a probability given by the Boltzmann probability. Generally,
though not always, it is the microscopic processes that are fast. To justify this we can
consider that an atom in a solid vibrates at a rate of 1010–1012 times per second,a gas
molecule at room temperature travels five hundred meters per second. These are,
however, only a couple of select examples.

Sometimes we may still choose to perform our analysis by averaging over many
possible values of the slow coordinates. When we do this we have two kinds of en-
sembles—the ensemble of the fast coordinates and the ensemble of the different val-
ues of the slow coordinates. These ensembles are called the annealed and quenched
ensembles. For example, say we have a glass of water in which there is an ice cube.
There are fast processes that correspond to the motion of the water molecules and the
vibrations of the ice molecules,and there are also slow processes corresponding to the
movement of the ice in the water. Let’s say we want to determine the average amount
of ice. If we perform several measurements that determine the coordinates and size of
the ice, we may want to average the size we find over all the measurements even
though they are measurements corresponding to different locations of the ice. In con-
trast, if we wanted to measure the motion of the ice, averaging the measurements of
location would be absurd.

Closely related to the discussion of fast coordinates is the ergodic theorem. The
ergodic theorem states that a measurement performed on a system by averaging a
property over a long time is the same as taking the average over the ensemble of the
fast coordinates. This theorem is used to relate experimental measurements that are
assumed to occur over long times to theoretically obtained averages over ensembles.
The ergodic theorem is not a theorem in the sense that it has been proven in general,
but rather a statement of a property that applies to some macroscopic systems and is
known not to apply to others. The objective is to identify when it applies.When it does
not apply, the solution is to identify which quantities may be averaged and which may
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not, often by separating fast and slow coordinates or equivalently by identifying quan-
tities conserved by the fast dynamics of the system.

Experimental measurements also generally average properties over large regions
of space compared to microscopic lengths. It is this spatial averaging rather than time
averaging that often enables the ensemble average to stand for experimental mea-
surements when the microscopic processes are not fast compared to the measurement
time. For example, materials are often formed of microscopic grains and have many
dislocations. The grain boundaries and dislocations do move, but they often change
very slowly over time. When experiments are sensitive to their properties, they often
average over the effects of many grains and dislocations because they do not have suf-
ficient resolution to see a single grain boundary or dislocation.

In order to determine what is the relevant ensemble for a particular experiment,
both the effect of time and space averaging must be considered. Technically, this re-
quires an understanding of the correlation in space and time of the properties of an
individual system. More conceptually, measurements that are made for particular
quantities are in effect made over many independent systems both in space and in
time, and therefore correspond to an ensemble average. The existence of correlation
is the opposite of independence. The key question (like in the case of the ideal gas) be-
comes what is the interval of space and time that corresponds to an independent sys-
tem. These quantities are known as the correlation length and the correlation time. If
we are able to describe theoretically the ensemble over a correlation length and cor-
relation time, then by appropriate averaging we can describe the measurement.

In summary, the program of use of thermodynamics in the real world is to use
the separation of the different time scales to apply equilibrium concepts to the fast de-
grees of freedom and discuss their influence on the dynamic degrees of freedom while
keeping fixed the slow degrees of freedom. The use of ensembles simplifies consider-
ation of these systems by systematizing the use of equilibrium concepts to the fast de-
grees of freedom.

1.3.6 From thermodynamics to complex systems
Our objective in this book is to consider the dynamics of complex systems. While,as
discussed in the previous section, we will use the principles of thermodynamics to
help us in this analysis,another important reason to review thermodynamics is to rec-
ognize what complex systems are not. Thermodynamics describes macroscopic sys-
tems without structure or dynamics.The task of thermodynamics is to relate the very
few macroscopic parameters to each other. It suggests that these are the only relevant
parameters in the description of these systems. Materials and complex systems are
both formed out of many interacting parts. The ideal gas example described a mate-
rial where the interaction between the particles was weak.However, thermodynamics
also describes solids, where the interaction is strong. Having decided that complex
systems are not described fully by thermodynamics, we must ask, Where do the as-
sumptions of thermodynamics break down? There are several ways the assumptions
may break down, and each one is significant and plays a role in our investigation of
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complex systems. Since we have not yet examined particular examples of complex sys-
tems, this discussion must be quite abstract. However, it will be useful as we study
complex systems to refer back to this discussion. The abstract statements will have
concrete realizations when we construct models of complex systems.

The assumptions of thermodynamics separate into space-related and time-
related assumptions. The first we discuss is the divisibility of a macroscopic material.
Fig. 1.3.2 (page 61) illustrates the property of divisibility. In this process,a small part
of a system is separated from a large part of the system without affecting the local
properties of the material. This is inherent in the use of extensive and intensive quan-
tities. Such divisibility is not true of systems typically considered to be complex sys-
tems. Consider, for example, a person as a complex system that cannot be separated
and continue to have the same properties. In words, we would say that complex sys-
tems are formed out of not only interacting, but also interdependent parts. Since both
thermodynamic and complex systems are formed out of interacting parts, it is the
concept of interdependency that must distinguish them. We will dedicate a few para-
graphs to defining a sense in which “interdependent” can have a more precise
meaning.

We must first address a simple way in which a system may have a nonextensive
energy and still not be a complex system. If we look closely at the properties of a ma-
terial, say a piece of metal or a cup of water, we discover that its surface is different
from the bulk. By separating the material into pieces, the surface area of the material
is changed. For macroscopic materials,this generally does not affect the bulk proper-
ties of the material.A characteristic way to identify surface properties, such as the sur-
face energy, is through their dependence on particle number. The surface energy
scales as N 2/3, in contrast to the extensive bulk energy that is linear in N. This kind of
correction can be incorporated directly in a slightly more detailed treatment of ther-
modynamics, where every macroscopic parameter has a surface term. The presence of
such surface terms is not sufficient to identify a material as a complex system. For this
reason, we are careful to identify complex systems by requiring that the scenario of
Fig. 1.3.2 is violated by changes in the local (i.e., everywhere including the bulk) prop-
erties of the system, rather than just the surface.

It may be asked whether the notion of “local properties” is sufficiently well de-
fined as we are using it. In principle,it is not. For now, we adopt this notion from ther-
modynamics. When only a few properties, like the energy and entropy, are relevant,
“affect locally”is a precise concept.Later we would like to replace the use of local ther-
modynamic properties with a more general concept—the behavior of the system.

How is the scenario of Fig. 1.3.2 violated for a complex system? We can find that
the local properties of the small part are affected without affecting the local proper-
ties of the large part.Or we can find that the local properties of the large part are af-
fected as well. The distinction between these two ways of affecting the system is im-
portant, because it can enable us to distinguish between different kinds of complex
systems. It will be helpful to name them for later reference. We call the first category
of systems complex materials, the second category we call complex organisms.
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Why don’t we also include the possibility that the large part is affected but not the
small part? At this point it makes sense to consider generic subdivision rather than
special subdivision. By generic subdivision, we mean the ensemble of possible subdi-
visions rather than a particular one.Once we are considering complex systems,the ef-
fect of removal of part of a system may depend on which part is removed. However,
when we are trying to understand whether or not we have a complex system, we can
limit ourselves to considering the generic effects of removing a part of the system. For
this reason we do not consider the possibility that subdivision affects the large system
and not the small. This might be possible for the removal of a particular small part,
but it would be surprising to discover a system where this is generically true.

Two examples may help to illu s tra te the different classes of com p l ex sys tem s . At
least su perf i c i a lly, plants are com p l ex materi a l s , while animals are com p l ex or ga n i s m s .
The re a s on that plants are com p l ex materials is that the cut ting of p a rts of a plant, su ch
as leave s , a bra n ch , or a roo t , typ i c a lly does not affect the local properties of the rest of
the plant, but does affect the exc i s ed part . For animals this is not gen eri c a lly the case.
However, it would be bet ter to argue that plants are in an interm ed i a te category, wh ere
s ome divi s i on s , su ch as cut ting out a lateral secti on of a tree tru n k , a f fect both small
and large part s , while others affect on ly the small er part . For animals, e s s en ti a lly all di-
vi s i ons affect both small and large part s .We bel i eve that com p l ex or ganisms play a spe-
cial role in the stu dy of com p l ex sys tem beh avi or. The essen tial qu a l i ty of a com p l ex
or ganism is that its properties are ti ed to the ex i s ten ce of a ll of its part s .

How large is the small part we are talking about? Loss of a few cells from the skin
of an animal will not generally affect it. As the size of the removed portion is de-
creased,it may be expected that the influence on the local properties of the larger sys-
tem will be reduced. This leads to the concept of a robust complex system.
Qualitatively, the larger the part that can be removed from a complex system without
affecting its local properties,the more robust the system is. We see that a complex ma-
terial is the limiting case of a highly robust complex system.

The flip side of subdivision of a system is aggregation. For thermodynamic sys-
tems, subdivision and aggregation are the same, but for complex systems they are
quite different. One of the questions that will concern us is what happens when we
place a few or many complex systems together. Generally we expect that the individ-
ual complex systems will interact with each other. However, one of the points we can
make at this time is that just placing together many complex systems, trees or people,
does not make a larger complex system by the criteria of subdivision. Thus, a collec-
tion of complex systems may result in a system that behaves as a thermodynamic sys-
tem under subdivision—separating it into parts does not affect the behavior of the
parts.

The topic of bri n ging toget h er many pieces or su b d ividing into many parts is also
qu i te disti n ct from the topic of su b d ivi s i on by rem oval of a single part . This bri n gs us
to a second assu m pti on we wi ll discuss.Th erm odynamic sys tems are assu m ed to be com-
po s ed of a very large nu m ber of p a rti cl e s . What abo ut com p l ex sys tems? We know that
the nu m ber of m o l ecules in a cup of w a ter is not gre a ter than the nu m ber of m o l ec u l e s
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in a human bei n g.And yet ,we understand that this is not qu i te the ri ght poi n t .We should
not be co u n ting the nu m ber of w a ter molecules in the pers on ,i n s te ad we might co u n t
the nu m ber of cell s , wh i ch is mu ch small er. Thus appe a rs the probl em of co u n ting the
nu m ber of com pon ents of a sys tem . In the con text of correl a ti ons in materi a l s , this was
bri ef ly discussed at the end of the last secti on . Let us assume for the mom ent that we
k n ow how to count the nu m ber of com pon en t s . It seems clear that sys tems with on ly a
few com pon ents should not be tre a ted by therm ody n a m i c s .One of the intere s ting qu e s-
ti ons we wi ll discuss is wh et h er in the limit of a very large nu m ber of com pon ents we
wi ll alw ays have a therm odynamic sys tem .S t a ted in a simpler way from the point of vi ew
of the stu dy of com p l ex sys tem s , the qu e s ti on becomes how large is too large or how
m a ny is too many. From the therm odynamic pers pective the qu e s ti on is, Un der wh a t
c i rc u m s t a n ces do we end up with the therm odynamic limit?

We now switch to a discussion of time-related assumptions.One of the basic as-
sumptions of thermodynamics is the ergodic theorem that enables the description of
a single system using an ensemble. When the ergodic theorem breaks down, as dis-
cussed in the previous section, additional fixed or quenched variables become im-
portant. This is the same as saying that there are significant differences between dif-
ferent examples of the macroscopic system we are interested in. This is a necessary
condition for the existence of a complex system. The alternative would be that all re-
alizations of the system would be the same, which does not coincide with intuitive no-
tions of complexity. We will discuss several examples of the breaking of the ergodic
theorem later. The simplest example is a magnet. The orientation of the magnet is an
additional parameter that must be specified, and therefore the ergodic theorem is vi-
olated for this system. Any system that breaks symmetry violates the ergodic theorem.
However, we do not accept a magnet as a complex system. Therefore we can assume
that the breaking of ergodicity is a necessary but not sufficient condition for com-
plexity. All of the systems we will discuss break ergodicity, and therefore it is always
necessary to specify which coordinates of the complex system are fixed and which are
to be assumed to be so rapidly varying that they can be assigned equilibrium
Boltzmann probabilities.

A special case of the breaking of the ergodic theorem, but one that strikes even
more deeply at the assumptions of thermodynamics, is a violation of the separation
of time scales. If there are dynamical processes that occur on every time scale, then it
becomes impossible to treat the system using the conventional separation of scales
into fast,slow and dynamic processes.As we will discuss in Section 1.10,the techniques
of renormalization that are used in phase transitions to deal with the existence of many
spatial scales may also be used to describe systems changing on many time scales.

Finally, inherent in thermodynamics,the concept of equilibrium and the ergodic
theorem is the assumption that the initial condition of the system does not matter. For
a complex system,the initial condition of the system does matter over the time scales
relevant to our observation. This brings us back to the concept of correlation time.
The correlation time describes the length of time over which the initial conditions are
relevant to the dynamics. This means that our observation of a complex system must
be shorter than a correlation time.The spatial analog, the correlation length,describes
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the effects of surfaces on the system. The discussion of the effects of subdivision also
implies that the system must be smaller than a correlation length. This means that
complex systems change their internal structure—adapt—to conditions at their
boundaries. Thus, a suggestive though incomplete summary of our discussion of
complexity in the context of thermodynamics is that a complex system is contained
within a single correlation distance and correlation time.

Activated Processes (and Glasses)

In the last section we saw figures (Fig. 1.3.7) showing the free energy as a function of
a macroscopic parameter with two minima. In this section we analyze a single parti-
cle system that has a potential energy with a similar shape (Fig. 1.4.1). The particle is
in equilibrium with a thermal reservoir. If the average energy is lower than the energy
of the barrier between the two wells, then the particle generally resides for a time in
one well and then switches to the other. At very low temperatures, in equilibrium,it
will be more and more likely to be in the lower well and less likely to be in the higher
well. We use this model to think about a system with two possible states, where one
state is higher in energy than the other. If we start the system in the higher energy state,
the system will relax to the lower energy state. Because the process of relaxation is en-
abled or accelerated by energy from the thermal resevoir, we say that it is activated.

1.4
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Figure 1.4.1 Illustration of the potential energy of a system that has two local minimum en-
ergy configurations x1 and x−1. When the temperature is lower than the energy barriers EB −
E−1 and EB − E1, the system may be considered as a two-state system with transitions between
them. The relative probability of the two states varies with temperature and the relative en-
ergy of the bottom of the two wells. The rate of transition also varies with temperature. When
the system is cooled systematically the two-state system is a simple model of a glass (Fig.
1.4.2). At low temperatures the system can not move from one well to the other, but is in
equilibrium within a single well. ❚
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1.4.1 Two-state systems
It might seem that a system with only two different states would be easy to analyze.
Eventually we will reach a simple problem. However, building the simple model will
require us to identify some questions and approximations relevant to our under-
standing of the application of this model to physical systems (e.g. the problem of pro-
tein folding found in Chapter 4). Rather than jumping to the simple two-state prob-
lem (Eq. (1.4.40) below), we begin from a particle in a double-well potential. The
kinetics and thermodynamics in this system give some additional content to the ther-
modynamic discussion of the previous section and introduce new concepts.

We consider Fig. 1.4.1 as describing the potential energy V(x) experienced by a
classical particle in one dimension. The region to the right of xB is called the right well
and to the left is called the left well.A classical trajectory of the particle with conserved
energy would consist of the particle bouncing back and forth within the potential well
between two points that are the solution of the equation V(x) = E, where E is the to-
tal energy of the particle. The kinetic energy at any time is given by

(1.4.1)

which determines the magnitude of the velocity at any position but not the direction.
The velocity switches direction every bounce.When the energy is larger than EB , there
is only one distinct trajectory at each energy. For energies larger than E1 but smaller
than EB , there are two possible trajectories, one in the right well—to the right of xB —
and one in the left well. Below E1, which is the minimum energy of the right well,there
is again only one trajectory possible, in the left well. Below E−1 there are no possible
locations for the particle.

If we consider this system in isolation,there is no possibility that the particle will
change from one trajectory to another. Our first objective is to enable the particle to
be in contact with some other system (or coordinate) with which it can transfer en-
ergy and momentum. For example, we could imagine that the particle is one of many
moving in the double well—like the ideal gas. Sometimes there are collisions that
change the energy and direction of the motion. The same effect would be found for
many other ways we could imagine the particle interacting with other systems. The
main approximation, however, is that the interaction of the particle with the rest of
the universe occurs only over short times. Most of the time it acts as if it were by itself
in the potential well. The particle follows a trajectory and has an energy that is the sum
of its kinetic and potential energies (Eq.(1.4.1)). There is no need to describe the en-
ergy associated with the interaction with the other systems. All of the other particles
of the gas (or whatever picture we imagine) form the thermal reservoir, which has a
well-defined temperature T.

We can increase the rate of collisions between the system and the reservoir with-
out changing our description. Then the particle does not go very far before it forgets
the direction it was traveling in and the energy that it had. But as long as the collisions
themselves occur over a short time compared to the time between collisions,any time
we look at the particle, it has a well-defined energy and momentum. From moment

      
E(x, p)−V (x) = 1

2
mv

2
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to moment,the kinetic energy and momentum changes unpredictably. Still,the posi-
tion of the particle must change continuously in time. This scenario is known as dif-
fusive motion. The different times are related by:

collision (interaction) time << time between collisions << transit time

where the transit time is the time between bounces from the walls of the potential well
if there were no collisions—the period of oscillation of a particle in the well. The par-
ticle undergoes a kind of random walk, with its direction and velocity changing ran-
domly from moment to moment. We will assume this scenario in our treatment of
this system.

When the par ticle is in contact with a thermal reservoir, the laws of thermody-
namics apply. The Boltzmann probability gives the probability that the particle is
found at position x with momentum p:

(1.4.2)

Formally, this expression describes a large number of independent systems that make
up a canonical ensemble.The ensemble of systems provides a formally precise way of
describing probabilities as the number of systems in the ensemble with a particular
value of the position and momentum. As in the previous section, Z guarantees that
the sum over all probabilities is 1. The factor of h is not relevant in what follows, but
for completeness we keep it and associate it with the momentum integral, so that
Σp → ∫dp /h.

If we are interested in the position of the particle,and are not interested in its mo-
mentum, we can simplify this expression by integrating over all values of the mo-
mentum. Since the energy separates into kinetic and potential energy:

(1.4.3)

The resulting expression looks similar to our original expression. Its meaning is some-
what different,however, because V(x) is only the potential energy of the system. Since
the kinetic energy contributes equivalently to the probability at every location, V(x)
determines the probability at every x. An expression of the form e−E/kT is known as the
Boltzmann factor of E. Thus Eq.(1.4.3) says that the probability P(x) is proportional
to the Boltzmann factor of V(x). We will use this same trick to describe the probabil-
ity of being to the right or being to the left of xB in terms of the minimum energy of
each well.

To simplify to a two-state system, we must define a variable that specifies only
which of the two wells the particle is in. So we label the system by s = ±1, where s = +1
if x > xB and s = −1 if x < xB for a particular realization of the system at a particular
time, or:

    

P(x) =
e −V(x )/kT (dp /h)∫ e − p 2 / 2mkT

dx∫ e −V(x )/kT (dp /h)∫ e − p
2

/2mkT
=

e −V(x)/kT

dx∫ e −V (x )/kT

    

P(x, p) = e −E(x ,p)/kT / Z

Z =
x ,p

∑ e −E(x ,p)/kT =
1

h
dxdp∫ e −E(x ,p)/kT
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s = sign(x − xB) (1.4.4)

Probabilistically, the case x = xB never happens and therefore does not have to be ac-
counted for.

We can calculate the probability P(s) of the system having a value of s =+1 using:

(1.4.5)

The largest con tri buti on to this prob a bi l i ty occ u rs wh en V(x) is small e s t . We assu m e
that k T is small com p a red to EB, t h en the va lue of the integral is dom i n a ted by the re-
gi on immed i a tely in the vi c i n i ty of the minimum en er gy. De s c ri bing this as a two - s t a te
s ys tem is on ly meaningful wh en this is tru e . We simplify the integral by expanding it in
the vi c i n i ty of the minimum en er gy and keeping on ly the qu ad ra tic term :

(1.4.6)

where

(1.4.7)

is the effective spring constant and 1 is the frequency of small oscillations in the right
well. We can now write Eq. (1.4.5) in the form

(1.4.8)

Because the integrand in the numerator falls rapidly away from the point x = x1, we
could extend the lower limit to −∞. Similarly, the probability of being in the left
well is:

(1.4.9)

Here the upper limit of the integral could be extended to ∞. It is simplest to assume
that k1 = k−1. This assumption, that the shape of the wells are the same, does not sig-
nificantly affect most of the discussion (Question 1.4.1–1.4.2). The two probabilities
are proportional to a new constant times the Boltzmann factor e−E/kT of the energy at
the bottom of the well. This can be seen e ven without performing the integrals in
Eq. (1.4.8) and Eq. (1.4.9). We redefine Z for the two-state representation:

    

P(−1) =

e −E −1 /kT dx e −k−1 (x−x −1 )
2

/2kT

−∞

x B

∫
dx∫ e −V (x)/kT

    

P(1) =

e −E1 /kT dx e −k1 (x−x 1)2 /2kT

x B

∞

∫
dx∫ e −V (x )/kT

    

k1 = m 1
2 =

d 2V(x)

dx 2
x 1

    
V (x) = E1 + 1

2
m 1

2(x − x1)2 + … =E1 + 1
2

k1(x − x1)2 + …

    

P(1) =

dx e −V (x )/kT

x B

∞

∫
dx∫ e −V (x)/ kT
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(1.4.10)

(1.4.11)

The new normalization Zs can be obtained from:

(1.4.12)

giving

(1.4.13)

which is different from the value in Eq. (1.4.2). We arrive at the desired two-state
result:

(1.4.14)

where f is the Fermi probability or Fermi function:

(1.4.15)

For readers who were introduced to the Fermi function in quantum statistics,it is not
unique to that field, it occurs anytime there are exactly two different possibilities.
Similarly,

(1.4.16)

which is consistent with Eq. (1.4.12) above since

(1.4.17)

Question 1.4.1 Discuss how k 1 ≠ k−1 would affect the results for the two-
state system in equilibrium. Obtain expressions for the probabilities in

each of the wells.

Solution 1.4.1 Extending the integrals to ±∞, as described in the text after
Eq. (1.4.8) and Eq. (1.4.9), we obtain:

(1.4.18)

(1.4.19)

    

P(−1) =
e −E1 / kT 2 kT /k−1

dx∫ e −V (x )/ kT

    

P(1) =
e −E1 /kT 2 kT /k1

dx∫ e −V (x)/ kT

    f (x) + f (−x) = 1

    
P(−1) =

e −E−1 /kT

e −E1 / kT +e −E −1 /kT
=

1

1+e (E −1 −E1 )/ kT
= f (E−1 − E1)

    
f (x) =

1

1+e x /kT

    
P(1) =

e −E1 /kT

e −E1 /kT + e −E−1 /kT
=

1

1+ e (E1−E−1 )/kT
= f (E1 − E−1)

    Z s = e −E1 /kT + e −E −1 / kT

    P(1)+ P(−1) = 1

    
P(1) =

e −E1 /kT

Z s

    
P(−1) =

e −E −1 /kT

Z s
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Because of the approximate extension of the integrals, we are no longer guar-
anteed that the sum of these probabilities is 1. However, within the accuracy
of the approximation, we can reimpose the normalization condition. Before
we do so, we choose to rewrite k1 = m 1

2 = m(2 1)2, where 1 is the natural
frequency of the well. We then ignore all common factors in the two proba-
bilities and write

(1.4.20)

(1.4.21)

(1.4.22)

Or we can write, as in Eq. (1.4.14)

(1.4.23)

and similarly for P(−1). ❚

Question 1.4.2 Redefine the energies E1 and E−1 to include the effect of
the difference between k1 and k−1 so that the probability P(1) (Eq.

(1.4.23)) can be written like Eq. (1.4.14) with the new energies. How is the
result related to the concept of free energy and entropy?

Solution 1.4.2 We define the new energy of the right well as

(1.4.24)

This definition can be seen to recover Eq. (1.4.23) from the form of Eq.
(1.4.14) as

(1.4.25)

Eq. (1.4.24) is very reminiscent of the definition of the free energy Eq.
(1.3.33) if we use the expression for the entropy:

(1.4.26)

Note that if we consider the temperature dependence, Eq. (1.4.25) is not
identical in its behavior with Eq.(1.4.14). The free energy, F1, depends on T,
while the energy at the bottom of the well, E1, does not. ❚

In Question 1.4.2, Eq. (1.4.24), we have defined what might be interpreted as a
free energy of the right well. In Section 1.3 we defined only the free energy of the sys-
tem as a whole. The new free energy is for part of the ensemble rather than the whole
ensemble. We can do this quite generally. Start by identifying a certain subset of all

    S1 = −k ln( 1)

    P(1) = f (F1 − F−1)

    F1 = E1 +kT ln( 1)

    

P(1) =
1

1+ ( 1 / −1)e (E1−E−1 )/kT

    ′ Z s = −1
−1e −E1 /kT + −1

−1e −E−1 /kT

    
P(−1) = −1

−1e −E−1 /kT

′ Z s

    
P(1) = 1

−1e −E1 /kT

′ Z s
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possible states of a system. For example, s = 1 in Eq. (1.4.4). Then we define the free
energy using the expression:

(1.4.27)

This is similar to the usual expression for the free energy in terms of the partition
function Z, but the sum is only over the subset of states. When there is no ambiguity,
we often drop the subscript and write this asF(1). From this definition we see that the
probability of being in the subset of states is proportional to the Boltzmann factor of
the free energy

(1.4.28)

If we have several different subsets that account for all possibilities, then we can nor-
malize Eq. (1.4.28) to find the probability itself. If we do this for the left and right
wells, we immediately arrive at the expression for the probabilities in Eq.(1.4.14) and
Eq. (1.4.16), with E1 and E−1 replaced by Fs(1) and Fs(−1) respectively. From
Eq.(1.4.28) we see that for a collection of states,the free energy plays the same role as
the energy in the Boltzmann probability.

We note that Eq. (1.4.24) is not the same as Eq.(1.4.27). However, as long as the
relative energy is the same, F1 − F−1 = Fs(1) − Fs(−1),the normalized probability is un-
changed. When k1 = k−1, the entropic part of the free energy is the same for both wells.
Then direct use of the energy instead of the free energy is valid,as in Eq.(1.4.14). We
can evaluate the free energy of Eq. (1.4.27), including the momentum integral:

(1.4.29)

(1.4.30)

where we have used the definition of the well oscillation frequency above Eq.(1.4.20)
to simplify the expression.A similar expression holds for Z−1. The result would be ex-
act for a pure harmonic well.

The new definition of the free energy of a set of states can also be used to under-
stand the treatment of macroscopic systems,specifically to explain why the energy is
determined by minimizing the free energy. Partition the possible microstates by the
value of the energy, as in Eq. (1.3.35). Define the free energy as a function of the en-
ergy analogous to Eq. (1.4.27)

(1.4.31)

    

F(U) = −kT ln E x ,p{ }( ),Ue
−E x ,p{ }( )/ kT

{x ,p}

∑
 

 
  

 

 
  

    Fs(1) = E1 +kT ln(h 1 /kT )

    

Z 1 = dx
x B

∞

∫ (dp /h)∫ e −E(x ,p)/ kT = dx
x B

∞

∫ e −V (x)/kT (dp /h)∫ e −p2 / 2mkT

≈ e −E1 /kT dx e −k1 (x−x 1)
2

/2kT

x B

∞

∫ 2 mkT /h ≈ e −E1/ kT m /k1 2 kT /h

= e −E1 /kTkT /h 1

    P(1) ∝e −Fs (1)/ kT

    

Fs(1) = −kT ln( s ,1 e −E({x ,p})/ kT

{x ,p}

∑ ) = −kT ln(Z 1)
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Since the relative probability of each value of the energy is given by

(1.4.32)

the most likely energy is given by the lowest free energy. For a macroscopic system,
the most likely value is so much more likely than any other value that it is observed
in any measurement. This can immediately be generalized. The minimization of the
free energy gives not only the value of the energy but the value of any macroscopic
parameter.

1.4.2 Relaxation of a two-state system
To investigate the kinetics of the two-state system, we assume an ensemble of systems
that is not an equilibrium ensemble. Instead,the ensemble is characterized by a time-
dependent probability of occupying the two wells:

(1.4.33)

Normalization continues to hold at every time:

(1.4.34)

For example, we might consider starting a system in the upper well and see how the
system evolves in time. Or we might consider starting a system in the lower well and
see how the system evolves in time. We answer the question using the time-evolving
probabilities that describe an ensemble of systems with the same starting condition.
To achieve this objective, we construct a differential equation describing the rate of
change of the probability of being in a particular well in terms of the rate at which sys-
tems move from one well to the other. This is just the Master equation approach from
Section 1.2.4.

The systems that make transitions from the left to the right well are the ones that
cross the point x = xB. More precisely, the rate at which transitions occur is the prob-
ability current per unit time of systems at xB, moving toward the right. Similar to Eq.
(1.3.47) used to obtain the pressure of an ideal gas on a wall,the number of particles
crossing xB is the probability of systems at xB with velocity v, times their velocity:

(1.4.35)

where J(1|−1) is the number of systems per unit time moving from the left to the
right. There is a hidden assumption in Eq. (1.4.35). We have adopted a notation that
treats all systems on the left together. When we are considering transitions,this is only
valid if a system that crosses x = xB from right to left makes it down into the well on
the left, and thus does not immediately cross back over to the side it came from.

We further assume that in each well the systems are in equilibrium, even when
the two wells are not in equilibrium with each other. This means that the probability
of being in a particular location in the right well is given by:

      

J(1 |−1) = (dp /h)vP(x B , p;t)
0

∞

∫

    P(1;t) + P(−1;t) = 1

    

P(1) → P(1;t)

P(−1) → P(−1;t)

    P(U) ∝e −F(U )/kT
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(1.4.36)

In equilibrium,this statement is true because then P(1) = Z1 /Z. Eq.(1.4.36) presumes
that the rate of collisions between the particle and the thermal reservoir is faster than
both the rate at which the system goes from one well to the other and the frequency
of oscillation in a well.

In order to evaluate the transition rate Eq.(1.4.35), we need the probability at xB.
We assume that the systems that cross xB moving from the left well to the right well
(i.e.,moving to the right) are in equilibrium with systems in the left well from where
they came. Systems that are moving from the right well to the left have the e quilib-
rium distribution characteristic of the right well. With these assumptions, the rate at
which systems hop from the left to the right is given by:

(1.4.37)

We find using Eq. (1.4.29) that the current of systems can be written in terms of a
transition rate per system:

(1.4.38)

Similarly, the current and rate at which systems hop from the right to the left are given
by:

(1.4.39)

When k1 = k−1 then 1 = −1. We continue to deal with this case for simplicity and de-
fine = 1 = −1. The expressions for the rate of transition suggest the interpretation
that the frequency is the rate of attempt to cross the barrier. The probability of cross-
ing in each attempt is given by the Boltzmann factor, which gives the likelihood that
the energy exceeds the barrier. While this interpretation is appealing, and is often
given,it is misleading. It is better to consider the frequency as describing the width of
the well in which the particle wanders. The wider the well is,the less likely is a barrier
crossing. This interpretation survives better when more general cases are considered.

The tra n s i ti on ra tes en a ble us to con s tru ct the time va ri a ti on of the prob a bi l i ty
of occ u pying each of the well s . This gives us the co u p l ed equ a ti ons for the two
prob a bi l i ti e s :

(1.4.40)

    
˙ P (−1;t) = R(−1|1)P(1;t) − R(1| −1)P(−1;t)

    
˙ P (1;t) = R(1| −1)P(−1;t) − R(−1|1)P(1;t)

    

J(−1 |1) = R(−1 |1)P(1;t)

R(−1 |1) = 1e
−(E B −E1 )/ kT

    

J(1| −1) = R(1| −1)P(−1;t)

R(1| −1) = −1e
− EB −E −1( ) /kT

    

J(1 |−1) = (dp /h)(p /m) P(−1;t)e −(EB +p 2 / 2m)/ kT /Z −1
 
 
  

 
 

0

∞

∫
= P(−1;t)e −EB / kT (kT /h)/Z −1

    

P(x, p;t) = P(1;t)e −E (x ,p)/kT /Z1

Z 1 = dxdp
x B

∞

∫ e −E(x,p)/ kT
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These are the Ma s ter equ a ti ons (Eq . (1.2.86)) for the two - s t a te sys tem . We have ar-
rived at these equ a ti ons by introducing a set of a s su m pti ons for tre a ting the kinet-
ics of a single parti cl e . The equ a ti ons are mu ch more gen era l , s i n ce they say on ly
that there is a ra te of tra n s i ti on bet ween one state of the sys tem and the other. It is
the corre s pon den ce bet ween the two - s t a te sys tem and the moving parti cle that we
h ave establ i s h ed in Eq s . (1.4.38) and (1.4.39). This corre s pon den ce is approx i m a te .
Eq . (1.4.40) does not rely upon the rel a ti onship bet ween EB and the ra te at wh i ch
s ys tems move from one well to the other. However, it does rely upon the assu m p-
ti on that we need to know on ly wh i ch well the sys tem is in to specify its ra te of
tra n s i ti on to the other well . On avera ge this is alw ays tru e , but it would not be a
good de s c ri pti on of the sys tem , for ex a m p l e , i f en er gy is con s erved and the key
qu e s ti on determining the kinetics is wh et h er the parti cle has more or less en er gy
than the barri er EB.

We can solve the coupled equations in Eq. (1.4.40) directly. Both equations are
not necessary, given the normalization constraint Eq.(1.4.34). Substituting P(−1;t) =
1 − P(1;t) we have the equation

(1.4.41)

We can rewrite this in terms of the equilibrium value of the probability. By definition
this is the value at which the time derivative vanishes.

(1.4.42)

where the right-hand side follows from Eq.(1.4.38) and Eq.(1.4.39) and is consistent
with Eq. (1.4.13), as it must be. Using this expression, Eq. (1.4.24) becomes

(1.4.43)

where we have defined an additional quantity

(1.4.44)

The solution of Eq. (1.4.43) is

(1.4.45)

This solution describes a decaying exponential that changes the probability from the
starting value to the equilibrium value. This explains the definition of , called the re-
laxation time. Since it is inversely related to the sum of the rates of transition between
the wells,it is a typical time taken by a system to hop between the wells. The relaxation
time does not depend on the starting probability. We note that the solution of
Eq.(1.4.41) does not depend on the explicit form of P(1; ∞) or . The definitions im-
plied by the first equal signs in Eq.(1.4.42) and Eq.(1.4.44) are sufficient. Also, as can
be quickly checked, we can replace the index 1 with the index −1 without changing
anything else in Eq (1.4.45). The other equations are valid (by symmetry) after the
substitution 1 ↔ −1.

    P(1;t) =(P(1;0)− P(1;∞))e −t / + P(1;∞)

    1/ = (R(1| −1) + R(−1 |1)) = (e −(EB −E1 )/ kT +e −(EB −E−1)/kT )

    
˙ P (1;t) =(P(1;∞)− P(1;t))/

    P(1;∞) = R(−1| 1) /(R(1| −1) + R(−1|1)) = f (E1 − E−1)

    
˙ P (1;t) = R(−1 |1) − P(1;t)(R(1 |−1)+ R(−1|1))
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There are several intuitive relationships between the equilibrium probabilities
and the transition rates that may be written down. The first is that the ratio of the
equilibrium probabilities is the ratio of the transition rates:

(1.4.46)

The second is that the equilibrium probability divided by the relaxation time is the
rate of transition:

(1.4.47)

Question 1.4.3 Eq. (1.4.45) implies that the relaxation time of the sys-
tem depends largely on the smaller of the two energy barriers EB − E1 and

EB − E−1. For Fig. 1.4.1 the smaller barrier is EB − E1. Since the relaxation time
is independent of the starting probability, this barrier controls the rate of re-
laxation whether we start the system from the lower well or the upper well.
Why does the barrier EB − E1 control the relaxation rate when we start from
the lower well?

Solution 1.4.3 Even though the rate of transition from the lower well to the
upper well is controlled by EB − E−1, the fraction of the ensemble that must
make the transition in order to reach equilibrium depends on E1. The higher
it is,the fewer systems must make the transition from s = −1 to s = 1. Taking
this into consideration implies that the time to reach equilibrium depends
on EB − E1 rather than EB − E−1. ❚

1.4.3 Glass transition
Glasses are materials that when cooled from the liquid do not undergo a conventional
transition to a solid. Instead their viscosity increases,and in the vicinity of a particu-
lar temperature it becomes so large that on a reasonable time scale they can be treated
as solids.However, on long enough time scales,they flow as liquids. We will model the
glass transition using a two-state system by considering what happens as we cool
down the two-state system. At high enough temperatures, the system hops back and
forth between the two minima with rates given by Eqs.(1.4.38) and (1.4.39). is a mi-
croscopic quantity; it might be a vibration rate in the material. Even if the barriers are
higher than the temperature, EB − E±1 >> kT, the system will still be able to hop back
and forth quite rapidly from a macroscopic perspective.

As the system is cooled down, the hopping back and forth slows down. At some
point the rate of hopping will become longer than the time we are observing the sys-
tem. Systems in the higher well will stay there. Systems in the lower well will stay
there. This means that the population in each well becomes fixed. Even when we
continue to cool the system down, there will be no change, and the ensemble will no
longer be in equilibrium. Within each well the system will continue to have a proba-
bility distribution for its energy given by the Boltzmann probability, but the relative

    P1(∞) = R(−1|1)

    P1(∞) P−1(∞) = R(−1|1)/R(1| −1)
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populations of the two wells will no longer be described by the equilibrium
Boltzmann probability.

To gain a feeling for the numbers,a typical atomic vibration rate is 1012/sec. For
a barrier of 1eV, at twice room temperature, kT ≈ 0.05eV (600°K), the transition rate
would be of order 103/sec. This is quite slow from a microscopic perspective, but at
room temperature it would be only 10−6/sec, or one transition per year.

The rate at which we cool the system down plays an essential role. If we cool
faster, then the temperature at which transitions stop is higher. If we cool at a slower
rate, then the temperature at which the transitions stop is lower. This is found to be
the case for glass transitions, where the cooling rate determines the departure point
from the equilibrium trajectory of the system,and the eventual properties of the glass
are also determined by the cooling rate. Rapid cooling is called quenching. If we raise
the temperature and lower it slowly, the procedure is called annealing.

Using the model two - s t a te sys tem we can simu l a te what would happen if we per-
form an ex peri m ent of cooling a sys tem that becomes a gl a s s .F i g. 1.4.2 shows the prob-
a bi l i ty of being in the upper well as a functi on of the tem pera tu re as the sys tem is coo l ed
down . The curves dep a rt from the equ i l i brium curve in the vi c i n i ty of a tra n s i ti on tem-
pera tu re we might call a freezing tra n s i ti on , because the kinetics become frozen . Th e
glass tra n s i ti on is not a tra n s i ti on like a first- or secon d - order tra n s i ti on (Secti on 1.3.4)
because it is a tra n s i ti on of the kinetics ra t h er than of the equ i l i brium stru ctu re of t h e
s ys tem . Bel ow the freezing tra n s i ti on , the rel a tive prob a bi l i ty of the sys tem being in the
u pper well is given approx i m a tely by the equ i l i brium prob a bi l i ty at the tra n s i ti on .

The freezing transition of the relative population of the upper state and the lower
state is only a simple model of the glass transition;however, it is also more widely ap-
plicable. The freezing does not depend on cooperative effects of many particles. To
find examples, a natural place to look is the dynamics of individual atoms in solids.
Potential energies with two wells occur for impurities, defects and even bulk atoms in
a solid. Impurities may have two different local configurations that differ in energ y
and are separated by a barrier. This is a direct analog of our model two-state system.
When the temperature is lowered, the relative population of the two configurations
becomes frozen. If we raise the temperature, the system can equilibrate again.

It is also possible to artificially cause impurity configurations to have unequal en-
ergies.One way is to apply uniaxial stress to a crystal—squeezing it along one axis. If
an impurity resides in a bond between two bulk atoms, applying stress will raise the
energy of impurities in bonds oriented with the stress axis compared to bonds per-
pendicular to the stress axis. If we start at a relatively high temperature, apply stress
and then cool down the material, we can freeze unequal populations of the impurity.
If we have a way of measuring relaxation, then by raising the temperature gradually
and observing when the defects begin to equilibrate we can discover the barrier to re-
laxation. This is one of the few methods available to study the kinetics of impurity re-
orientation in solids.

The two-state system provides us with an example of how a simple system may
not be able to equilibrate over experimental time scales. It also shows how an e qui-
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librium ensemble can be used to treat relative probabilities within a subset of states.
Because the motion within a particular well is fast,the relative probabilities of differ-
ent positions or momenta within a well may be described using the Boltzmann
probability. At the same time, the relative probability of finding a system in each of
the two wells depends on the initial conditions and the history of the system—what
temperature the system experienced and for how long. At sufficiently low tempera-
tures, this relative probability may be treated as fixed. Systems that are in the higher
well may be assumed to stay there. At intermediate temperatures, a treatment of the
dynamics of the transition between the two wells can (and must) be included. This
manifests a violation of the ergodic theorem due to the divergence of the time scale
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Figure 1.4.2 Plot of the fraction of the systems in the higher energy well as a function of
temperature. The equilibrium value is shown with the dashed line. The solid lines show what
happens when the system is cooled from a high temperature at a particular cooling rate. The
example given uses E1 − E−1 = 0.1eV and EB − E−1 = 1.0eV. Both wells have oscillation fre-
quencies of v = 1012/sec. The fastest cooling rate is 200°K/sec and each successive curve is
cooled at a rate that is half as fast, with the slowest rate being 0.4°K/sec. For every cooling
rate the system stops making transitions between the wells at a particular temperature that
is analogous to a glass transition in this system. Below this temperature the probability be-
comes essentially fixed. ❚
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for equilibration between the two wells. Thus we have identified many of the fea-
tures that are necessary in describing nonequilibrium systems: divergent time scales,
violation of the ergodic theorem, frozen and dynamic coordinates. We have illus-
trated a method for treating systems where there is a separation of long time scales
and short time scales.

Question 1.4.4 Write a program that can generate the time dependence
of the two-state system for a specified time history. Reproduce Fig. 1.4.2.

For an additional “experiment,” try the following quenching and annealing
sequence:

a. Starting from a high enough temperature to be in equilibrium, cool the sys-
tem at a rate of 10°K/sec down to T = 0.

b. Heat the system up to temperature Ta and keep it there for one second.

c. Cool the system back down to T = 0 at rate of 100°K/sec.

Plot the results as a function of Ta. Describe and explain them in words. ❚

1.4.4 Diffusion
In this secti on we bri ef ly con s i der a mu l tiwell sys tem . An example is illu s tra ted in
F i g. 1 . 4 . 3 , wh ere the po ten tial well depths and barri ers va ry from site to site . A simpler
case is found in Fig. 1 . 4 . 4 , wh ere all the well depths and barri ers are the same. A con-
c rete example would be an inters ti tial impuri ty in an ideal crys t a l . The impuri ty live s
in a peri odic en er gy that repeats every integral mu l tiple of an el em en t a ry length a.

We can apply the same analysis from the previous section to describe what hap-
pens to a system that begins from a particular well at x = 0. Over time, the system
makes transitions left and right at random,in a manner that is reminiscent of a ran-
dom walk.We will see in a moment that the connection with the random walk is valid
but requires some additional discussion.
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Figure 1.4.3 Illustration of a multiple-well system with barrier heights and well depths that
vary from site to site. We focus on the uniform system in Fig. 1.4.4. ❚
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The probability of the system being in a particular well is changed by probability
currents into the well and out from the well. Systems can move to or from the well im-
mediately to their right and immediately to their left. The Master equation for the ith
well in Fig. 1.4.3 is:

(1.4.48)

(1.4.49)

where Ei is the depth of the ith well and EB(i + 1|i) is the barrier to its right. For the
periodic system of Fig. 1.4.4 ( i → , EB(i + 1|i) → EB) this simplifies to:

(1.4.50)

(1.4.51)

Since we are already describing a continuum differential equation in time,it is conve-
nient to consider long times and write a continuum equation in space as well.
Allowing a change in notation we write

(1.4.52)

Introducing the elementary distance between wells a we can rewrite Eq. (1.4.50)
using:

(1.4.53)

    

(P(i −1;t)+ P(i + 1;t) − 2P(i;t))

a2

→
(P(xi − a;t)+ P(xi + a;t) − 2P(xi ;t))

a2
→

2

x 2
P(x ;t)

    P(i;t) →P(xi ;t)

    R = e − (E B− E 0) /kT

    
˙ P (i;t) = R(P(i −1;t)+ P(i + 1;t) − 2P(i ;t))

    

R(i + 1|i) = ie
−(EB (i +1|i )−Ei )/kT

R(i − 1|i) = ie
−(EB (i|i−1)−Ei )/kT

    
˙ P (i;t) = R(i |i − 1)P(i − 1;t) + R(i |i +1)P(i +1;t) −(R(i + 1|i) + R(i −1 |i))P(i;t)
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Figure 1.4.4 When the barrier heights and well depths are the same, as illustrated, the long
time behavior of this system is described by the diffusion equation. The evolution of the sys-
tem is controlled by hopping events from one well to the other. The net effect over long times
is the same as for the random walk discussed in Section 1.2. ❚
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where the last expression assumes a is small on the scale of interest. Thus the contin-
uum version of Eq. (1.4.50) is the conventional diffusion equation:

(1.4.54)

The diffusion constant D is given by:

(1.4.55)

The solution of the diffusion equation, Eq. (1.4.54), depends on the initial con-
ditions that are chosen. If we consider an ensemble of a system that starts in one well
and spreads out over time, the solution can be checked by substitution to be the
Gaussian distribution found for the random walk in Section 1.2:

(1.4.56)

We see that motion in a set of uniform wells after a long time reduces to that of a ran-
dom walk.

How does the similari ty to the ra n dom walk arise? This might appear to be a nat-
u ral re su l t ,s i n ce we showed that the Gaussian distri buti on is qu i te gen eral using the cen-
tral limit theorem . The scen a rio here ,h owever, is qu i te differen t . The cen tral limit the-
orem was proven in Secti on 1.2.2 for the case of a distri buti on of prob a bi l i ties of s tep s
t a ken at specific time interva l s . Here we have a time con ti nu u m . Hopping events may
h a ppen at any ti m e . Con s i der the case wh ere we start from a particular well . Our differ-
en tial equ a ti on de s c ri bes a sys tem that might hop to the next well at any ti m e . A hop is
an even t , and we might con cern ours elves with the distri buti on of su ch events in ti m e .
We have assu m ed that these events are uncorrel a ted .Th ere are unphysical con s equ en ce s
of this assu m pti on . For ex a m p l e , no matter how small an interval of time we ch oo s e ,t h e
p a rti cle has some prob a bi l i ty of traveling arbi tra ri ly far aw ay. This is not nece s s a ri ly a
correct micro s copic pictu re , but it is the con ti nuum model we have devel oped .

There is a procedure to convert the event-controlled hopping motion between
wells into a random walk that takes steps with a certain probability at specific time in-
tervals. We must select a time interval. For this time interval, we evaluate the total
probability that hops move a system from its original position to all possible positions
of the system. This would give us the function f (s) in Eq.(1.2.34). As long as the mean
square displacement is finite,the central limit theorem continues to apply to the prob-
ability distribution after a long enough time. The generality of the conclusion also im-
plies that the result is more widely applicable than the assumptions indicate.However,
there is a counter example in Question 1.4.5.

Question 1.4.5 Discuss the case of a parti cle that is not in con t act with a
t h ermal re s evoir moving in the mu l tiple well sys tem (en er gy is con s erved ) .

    

P(x,t) =
1

4 Dt
e −x

2
/4Dt =

1

2
e −x

2
/2

2

= 2Dt

    D = a 2R = a 2 e −(EB −E0)/ kT

    

˙ P (x;t) = D
2

x 2
P(x;t)
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Solution 1.4.5 If the energy of the system is lower than EB , the system stays
in a single well bouncing back and forth. A model that describes how tran-
sitions occur between wells would just say there are none.

For the case where the energy is larger than EB, the system will move
with a periodically varying velocity in one direction. There is a problem in
selecting an ensemble to describe it. If we choose the ensemble with only
one system moving in one direction, then it is described as a deterministic
walk. This description is consistent with the motion of the system.
However, we might also think to describe the system using an ensemble
consisting of particles with the same energy. In this case it would be one
particle moving to the right and one moving to the left. Taking an interval
of time to be the time needed to move to the next well, we would find a
transition probability of 1/2 to move to the right and the same to the left.
This would lead to a conventional random walk and will give us an incor-
rect result for all later times.

This example illustrates the need for an assumption that has not yet been
explicitly mentioned. The ensemble must describe systems that can make
transitions to each other. Since the energy-conserving systems cannot switch
directions, the ensemble cannot include both directions. It is enough, how-
ever, for there to be a small nonzero probability for the system to switch di-
rections for the central limit theorem to apply. This means that over long
enough times, the distribution will be Gaussian. Over short times,however,
the probability distribution from the random walk model and an almost bal-
listic system would not be very similar. ❚

We can generalize the multiple well picture to describe a biased random walk.
The potential we would use is a “washboard potential,” illustrated in Fig. 1.4.5. The
Master equation is:

(1.4.57)

(1.4.58)

To obtain the continuum limit, replace i → x : P(i + 1;t) → P(x + a,t), and
P(i − 1;t) → P(x − a,t), and expand in a Taylor series to second order in a to obtain:

(1.4.59)

(1.4.60)

    D = a 2(R+ + R− )/2

      v = a(R+ − R−)

      

˙ P (x;t) = −v
x

P(x ;t) + D
2

x 2
P(x ;t)

    

R+ = ie
− E+ /kT

R− = ie
− E− /kT

    
˙ P (i;t) = R+ P(i − 1;t) + R−P(i +1;t)− (R+ + R− )P(i;t)
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The solution is a moving Gaussian:

(1.4.61)

Since the description of diffusive motion always allows the system to stay where it is,
there is a limit to the degree of bias that can occur in the random walk. For this limit
set R− = 0. Then D = av/2 and the spreading of the probability is given by = √avt.
This shows that unlike the biased random walk in Section 1.2, diffusive motion on a
washboard with a given spacing a cannot describe ballistic or deterministic motion in
a single direction.

Cellular Automata

The first four sections of this chapter were dedicated to systems in which the existence
of many parameters (degrees of freedom) describing the system is hidden in one way
or another. In this section we begin to describe systems where many degrees of free-
dom are explicitly represented. Cellular automata (CA) form a general class of mod-
els of dynamical systems which are appealingly simple and yet capture a rich variety
of behavior. This has made them a favorite tool for studying the generic behavior of
and modeling complex dynamical systems. Historically CA are also intimately related
to the development of concepts of computers and computation. This connection con-
tinues to be a theme often found in discussions of CA. Moreover, despite the wide dif-
ferences between CA and conventional computer architectures,CA are convenient for

1.5

      

P(x,t) =
1

4 Dt
e −(x−vt )

2
/ 4Dt =

1

2
e −(x−vt )

2
/2

2

= 2Dt
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Figure 1.4.5 The biased random walk is also found in a multiple-well system when the illus-
trated washboard potential is used. The velocity of the system is given by the difference in
hopping rates to the right and to the left. ❚
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computer simulations in general and parallel computer simulations in particular.
Thus CA have gained importance with the increasing use of simulations in the devel-
opment of our understanding of complex systems and their behavior.

1.5.1 Deterministic cellular automata
The concept of cellular automata begins from the concept of space and the locality of
influence. We assume that the system we would like to represent is distributed in
space,and that nearby regions of space have more to do with each other than regions
far apart. The idea that regions nearby have greater influence upon each other is of-
ten associated with a limit (such as the speed of light) to how fast information about
what is happening in one place can move to another place.*

Once we have a system spread out in space, we mark off the space into cells. We
then use a set of variables to describe what is happening at a given instant of time in
a particular cell.

s(i, j, k ;t) = s(xi, yj, zk;t) (1.5.1)

where i, j, k are integers (i, j, k ∈Z),and this notation is for a three-dimensional space
(3-d). We can also describe automata in one or two dimensions (1-d or 2-d) or higher
than three dimensions. The time dependence of the cell variables is given by an iter-
ative rule:

s(i, j, k;t) = R({s(i ′ − i, j ′ − j, k ′ − k ;t − 1)} i ′, j ′, k ′ ∈ Z) (1.5.2)

where the rule R is shown as a function of the values of all the variables at the previ-
ous time,at positions relative to that of the cell s(i, j, k ;t − 1). The rule is assumed to
be the same everywhere in the space—there is no space index on the rule. Differences
between what is happening at different locations in the space are due only to the val-
ues of the variables, not the update rule. The rule is also homogeneous in time; i.e.,
the rule is the same at different times.

The locality of the rule shows up in the form of the rule. It is assumed to give the
value of a particular cell variable at the next time only in terms of the values of cells
in the vicinity of the cell at the previous time. The set of these cells is known as its
neighborhood. For example, the rule might depend only on the values of twenty-
seven cells in a cube centered on the location of the cell itself.The indices of these cells
are obtained by independently incrementing or decrementing once, or leaving the
same, each of the indices:

s(i, j, k;t) = R(s(i ± 1,0, j ± 1, 0, k ± 1, 0;t − 1)) (1.5.3)
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*These assumptions are both reasonable and valid for many systems. However, there are systems where
this is not the most natural set of assumptions. For example, when there are widely divergent speeds of
propagation of different quantities (e.g.,light and sound) it may be convenient to represent one as instan-
taneous (light) and the other as propagating (sound). On a fundamental level, Einstein, Podalsky and
Rosen carefully formulated the simple assumptions of local influence and found that quantum mechanics
violates these simple assumptions.A complete understanding of the nature of their paradox has yet to be
reached.
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where the informal notation i ± 1,0 is the set {i − 1,i,i + 1}. In this case there are a to-
tal of twenty-seven cells upon which the update rule R(s) depends. The neighborhood
could be smaller or larger than this example.

CA can be usefully simplified to the point where each cell is a single binary vari-
able. As usual, the binary variable may use the notation {0,1}, {−1,1}, {ON,OFF} or
{↑,↓}. The terminology is often suggested by the system to be described. Two 1-d ex-
amples are given in Question 1.5.1 and Fig. 1.5.1. For these 1-d cases we can show the
time evolution of a CA in a single figure,where the time axis runs vertically down the
page and the horizontal axis is the space axis.Each figure is a CA space-time diagram
that illustrates a particular history.

In these examples, a finite space is used rather than an infinite space. We can de-
fine various boundary conditions at the edges.The most common is to use a periodic
boundary condition where the space wraps around to itself. The one-dimensional ex-
amples can be described as circles.A two-dimensional example would be a torus and
a three-dimensional example would be a generalized torus. Periodic boundary con-
ditions are convenient, because there is no special position in the space. Some care
must be taken in considering the boundary conditions even in this case, because there
are rules where the behavior depends on the size of the space. Another standard kind
of boundary condition arises from setting all of the values of the variables outside the
finite space of interest to a particular value such as 0.

Question 1.5.1 Fill in the evolution of the two rules of Fig. 1.5.1. The
first CA (Fig. 1.5.1(a)) is the majority rule that sets a cell to the majority

of the three cells consisting of itself and its two neighbors in the previous
time. This can be written using s(i ;t) = ±1 as:

s(i ;t + 1) = sign(s(i − 1;t) + s(i ;t) + s(i + 1;t)) (1.5.4)

In the figure {−1, + 1} are represented by {↑, ↓} respectively.
The second CA (Fig. 1.5.1(b)), called the mod2 rule,is obtained by set-

ting the i th cell to be OFF if the number of ON squares in the neighborhood
is e ven, and ON if this number is odd. To write this in a simple form use
s(i;t) = {0, 1}. Then:

s(i ;t + 1) = mod2 (s(i − 1;t) + s(i ; t) + s(i + 1;t)) (1.5.5)

Solution 1.5.1 Notes:

1. The first rule (a) becomes trivial almost immediately, since it achieves a
fixed state after only two updates. Many CA, as well as many physical
systems on a macroscopic scale, behave this way.

2. Be careful about the boundary conditions when updating the rules,par-
ticularly for rule (b).

3. The second rule (b) goes through a sequence of states very different
from each other. Surprisingly, it will recover the initial configuration af-
ter eight updates. ❚
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Figure 1.5.1 Two examples of one dimensional (1-d) cellular automata. The top row in each
case gives the initial conditions. The value of a cell at a particular time is given by a rule that
depends on the values of the cells in its neighborhood at the previous time. For these rules
the neighborhood consists of three cells: the cell itself and the two cells on either side. The
first time step is shown below the initial conditions for (a) the majority rule, where each cell
is equal to the value of the majority of the cells in its neighborhood at the previous time and
(b) the mod2 rule which sums the value of the cells in the neighborhood modulo two to ob-
tain the value of the cell in the next time. The rules are written in Question 1.5.1. The rest
of the time steps are to be filled in as part of this question. ❚
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Question 1.5.2 The evo luti on of the mod2 rule is peri odic in ti m e . Af ter
ei ght update s , the initial state of the sys tem is recovered in Fig. 1 . 5 . 1 ( b ) .

Because the state of the sys tem at a particular time determines uniqu ely the
s t a te at every su cceeding ti m e , this is an 8-cycle that wi ll repeat itsel f . Th ere
a re sixteen cells in the space shown in Fig. 1 . 5 . 1 ( b ) . Is the nu m ber of cells con-
n ected with the length of the cycle? Try a space that has ei ght cells (Fig.1 . 5 . 2 ( a ) ) .

Solution 1.5.2 For a space with eight cells, the maximum length of a cycle
is four. We could also use an initial condition that has a space periodicity of
four in a space with eight cells (Fig. 1.5.2(b)). Then the cycle length would
only be two. From these examples we see that the mod2 rule returns to the
initial value after a time that depends upon the size of the space. More
precisely, it depends on the periodicity of the initial conditions. The time
periodicity (cycle length) for these examples is simply related to the space
periodicity. ❚

Question 1.5.3 Look at the mod2 rule in a space with six cells
(Fig. 1.5.2(c)) and in a space with five cells (Fig. 1.5.2(d)) .What can you

conclude from these trials?

Solution 1.5.3 The mod2 rule can behave quite differently depending on
the periodicity of the space it is in.The examples in Question 1.5.1 and 1.5.2
considered only spaces with a periodicity given by 2k for some k. The new ex-
amples in this question show that the evolution of the rule may lead to a
fixed point much like the majority rule. More than one initial condition
leads to the same fixed point. Both the example shown and the fixed point
itself does. Systematic analyses of the cycles and fixed points (cycles of pe-
riod one) for this and other rules of this type,and various boundary condi-
tions have been performed. ❚

The choice of initial conditions is an important aspect of the operation of many
CA. Computer investigations of CA often begin by assuming a “seed” consisting of a
single cell with the value +1 (a single ON cell) and all the rest −1 (OFF). Alternatively,
the initial conditions may be chosen to be random: s(i, j, k;0) = ±1 with equal proba-
bility. The behavior of the system with a particular initial condition may be assumed
to be generic, or some quantity may be averaged over different choices of initial
conditions.

Like the iterative maps we considered in Section 1.1,the CA dynamics may be de-
scribed in terms of cycles and attractors. As long as we consider only binary variables
and a finite space, the dynamics must repeat itself after no more than a number of
steps equal to the number of possible states of the system. This number grows expo-
nentially with the size of the space. There are 2N states of the system when there are a
total of N cells. For 100 cells the length of the longest possible cycle would be of order
1030. To consider such a long time for a small space may seem an unusual model of
space-time. For most analogies of CA with physical systems,this model of space-time
is not the most appropriate. We might restrict the notion of cycles to apply only when
their length does not grow exponentially with the size of the system.
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Rules can be distinguished from each other and classified according to a variety
of features they may possess. For example, some rules are reversible and others are
not. Any reversible rule takes each state onto a unique successor. Otherwise it would
be impossible to construct a single valued inverse mapping. Even when a rule is
reversible,it is not guaranteed that the inverse rule is itself a CA,since it may not de-
pend only on the local values of the variables. An example is given in question 1.5.5.
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Figure 1.5.2 Four additional examples for the mod2 rule that have different initial condi-
tions with specific periodicity: (a) is periodic in 8 cells, (b) is periodic in 4 cells, though it
is shown embedded in a space of periodicity 8, (c) is periodic in 6 cells, (d) is periodic in 5
cells. By filling in the spaces it is possible to learn about the effect of different periodicities
on the iterative properties of the mod2 rule. In particular, the length of the repeat time (cy-
cle length) depends on the spatial periodicity. The cycle length may also depend on the spe-
cific initial conditions. ❚
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Question 1.5.4 Which if any of the two rules in Fig 1.5.1 is reversible?

Solution 1.5.4 The majority rule is not reversible, because locally we can-
not identify in the next time step the difference between sequences that con-
tain (11111) and (11011), since both result in a middle three of (111).

A discussion of the mod2 rule is more involved,since we must take into
consideration the size of the space. In the examples of Questions 1.5.1–1.5.3
we see that in the space of six cells the rule is not reversible. In this case sev-
eral initial conditions lead to the same result. The other examples all appear
to be reversible, since each initial condition is part of a cycle that can be run
backward to invert the rule. It turns out to be possible to construct explicitly
the inverse of the mod2 rule. This is done in Question 1.5.5. ❚

Extra Credit Question 1.5.5 Find the inverse of the mod2 rule,when this
is possible. This question involves some careful algebraic manipulation

and may be skipped.

Solution 1.5.5 To find the inverse of the mod2 rule,it is useful to recall that
equality modulo 2 satisfies simple addition properties including:

s1 = s2 ⇒ s1 + s = s2 + s mod2 (1.5.6)

as well as the special property:

2s = 0 mod2 (1.5.7)

Together these imply that variables may be moved from one side of the
equality to the other:

s1 + s = s2 ⇒ s1 = s2 + s mod2 (1.5.8)

Our task is to find the value of all s(i;t) from the values of s(j;t + 1) that
are assumed known. Using Eq. (1.5.8), the mod2 update rule (Eq. (1.5.5))

s(i;t + 1) = (s(i − 1;t) + s(i;t) + s(i + 1;t)) mod2 (1.5.9)

can be rewritten to give us the value of a cell in a layer in terms of the next
layer and its own neighbors:

s(i − 1;t) = s(i ;t + 1) + s(i;t) + s(i + 1;t ) mod2 (1.5.10)

Substitute the same equation for the second term on the right (using one
higher index) to obtain

s(i − 1;t) = s(i;t + 1) + [s(i + 1;t + 1) + s(i + 1;t) + s(i + 2;t)] + s(i + 1;t)
mod2 (1.5.11)

the last term cancels against the middle term of the parenthesis and we have:

s(i − 1;t) = s(i;t + 1) + s(i + 1;t + 1) + s(i + 2;t) mod2 (1.5.12)

It is convenient to rewrite this with one higher index:

s(i;t) = s(i + 1;t + 1) + s(i + 2;t + 1) + s(i + 3;t) mod2 (1.5.13)

118 I n t r oduc t i on  a n d  P re l i m i n a r i e s

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 118
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:16 AM  Page 118



Interestingly, this is actually the solution we have been looking for,
though some discussion is necessary to show this. On the right side of the
equation appear three cell values. Two of them are from the time t + 1, and
one from the time t that we are trying to reconstruct. Since the two cell val-
ues from t + 1 are assumed known, we must know only s(i + 3; t) in order to
obtain s(i;t). We can iterate this expression and see that instead we need to
know s(i + 6;t) as follows:

s(i;t) = s(i + 1;t +1) + s(i + 2;t + 1)

+ s(i + 4;t + 1) + s(i + 5;t +1) + s(i + 6;t)
mod2 (1.5.14)

There are two possible cases that we must deal with at this point. The
first is that the number of cells is divisible by three,and the second is that it
is not. If the number of cells N is divisible by three, then after iterating Eq.
(1.5.13) a total of N/3 times we will have an expression that looks like

s(i;t) = s(i + 1;t +1) + s(i + 2;t + 1)

+ s(i + 4;t + 1) + s(i + 5;t +1) + s(i + 6;t)
mod2 (1.5.15)

+ . . .

+ s(i + N − 2;t + 1) + s(i + N − 1;t + 1) + s(i; t)

where we have used the property of the periodic boundary conditions to set
s(i + n;t) = s(i;t). We can cancel this value from both sides of the equation.
What is left is an equation that states that the sum over particular values of
the cell variables at time t + 1 must be zero.

0 = s(i + 1; t + 1) + s (i + 2; t + 1)

+ s (i + 4; t + 1) + s(i + 5; t +1) + s(i + 6; t)
mod2 (1.5.16)

+ . . .

+ s (i + N − 2; t + 1) + s(i + N − 1; t + 1)

This means that any set of cell values that is the result of the mod2 rule up-
date must satisfy this condition. Consequently, not all possible sets of cell
values can be a result of mod2 updates. Thus the rule is not one-to-one and
is not invertible when N is divisible by 3.

When N is not divisible by three, this problem does not arise, because
we must go around the cell ring three times before we get back to s(i;t). In
this case,the analogous equation to Eq.(1.5.16) would have every cell value
appearing exactly twice on the right of the equation. This is because each cell
appears in two out of the three travels around the ring. Since the cell values
all appear twice,they cancel,and the equation is the tautology 0 = 0. Thus in
this case there is no restriction on the result of the mod2 rule.

We almost have a full procedure for reconstructing s(i; t). Choose the
value of one particular cell variable, say s(1;t) = 0. From Eq.(1.5.13), obtain
in sequence each of the cell variables s(N − 2;t), s(N − 5,t), . . . By going
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around the ring three times we can find uniquely all of the values. We now
have to decide whether our original choice was correct. This can be done by
directly applying the mod2 rule to find the value of say, s(1; t + 1). If we ob-
tain the right value, then we have the right choice; if the wrong value, then
all we have to do is switch all of the cell values to their opposites. How do we
know this is correct?

There was only one other possible choice for the value of s(1; t) = 1. If
we were to choose this case we would find that each cell value was the oppo-
site, or one’s complement, 1 − s(i; t) of the value we found. This can be seen
from Eq. (1.5.13). Moreover, the mod2 rule preserves complementation.
Which means that if we complement all of the values of s(i; t) we will find
the complements of the values of s(1; t + 1). The proof is direct:

1 − s(i;t + 1) = 1 − (s(i − 1;t) + s(i;t) + s(i + 1;t))

= (1 − s(i − 1;t)) + (1 − s(i;t)) + (1 − s(i + 1;t))) − 2 mod2 (1.5.17)

= (1 − s(i − 1;t)) + (1 − s(i;t)) + (1 − s(i + 1;t)))

Thus we can find the unique predecessor for the cell values s(i;t + 1). With
some care it is possible to write down a fully algebraic expression for the
value of s(i;t) by implementing this procedure algebraically. The result f or
N = 3k + 1 is:

mod2 (1.5.18)

A similar result for N = 3k + 2 can also be found.
Note that the inverse of the mod2 rule is not a CA because it is not a lo-

cal rule. ❚

One of the interesting ways to classify CA—introduced by Wolfram—separates
them into four classes depending on the nature of their limiting behavior. This
scheme is particularly interesting for us,since it begins to identify the concept of com-
plex behavior, which we will address more fully in a later chapter. The notion of com-
plex behavior in a spatially distributed system is at least in part distinct from the con-
cept of chaotic behavior that we have discussed previously. Specifically, the
classification scheme is:

Class-one CA: evolve to a fixed homogeneous state

Class-two CA: evolve to fixed inhomogeneous states or cycles

Class-three CA: evolve to chaotic or aperiodic behavior

Class-four CA: evolve to complex localized structures

One example of each class is given in Fig. 1.5.3. It is assumed that the length of the cy-
cles in class-two automata does not grow as the size of the space increases. This clas-
sification scheme has not yet found a firm foundation in analytical work and is sup-
ported largely by observation of simulations of various CA.

    

s(i;t ) = s(i;t +1) + (
j=1

(N −1) /3

∑ s(i + 3 j − 2;t + 1)+ s(i + 3 j;t + 1))
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F i g u re 1.5.3 I l l u s t ra t ion of four CA update rules with ra ndom initial cond i t io ns that are in a
p e r io d ic space with a period of 100 cells. The initial cond i t io ns are shown at the top and time
p roceeds do w nw a rd. Each is updated for 100 steps. O N cells are ind icated as filled squa re s. O F F

cells are not shown. Each of the rules gives the value of a cell in terms of a ne ig h b o r hood of
five cells at the pre v ious time. The ne ig h b o r hood consists of the cell itself and the two cells
to the left and to the rig ht. The rules are known as “totalistic” rules since they de p e nd only
on the sum of the variables in the ne ig h b o r ho o d. Us i ng the no t a t ion si = 0,1, the rules ma y
be re p re s e nted using i(t) = si − 2(t − 1) + si − 1(t − 1) + si(t − 1) + si + 1(t − 1) + si + 2(t − 1 )
by specifying the values of i(t) for which si(t) is O N. T hese are (a) only i(t) = 2, (b) only

i(t) = 3, (c) i(t) = 1 and 2, and (d) i(t) = 2 and 4. See paper 1.3 in Wo l f ram’s collectio n
of articles on CA. ❚
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It has been suggested that class-four automata have properties that enable them
to be used as computers.Or, more precisely, to simulate a computer by setting the ini-
tial conditions to a set of data representing both the program and the input to the
program. The result of the computation is to be obtained by looking some time later
at the state of the system. A criteria that is clearly necessary for an automaton to be
able to act as a computer is that the result of the dynamics is sensitive to the initial
conditions. We will discuss the topic of computation further in Section 1.8.

The flip side of the use of a CA as a model of computation is to design a com-
puter that will simulate CA with high efficiency. Such machines have been built, and
are called cellular automaton machines (CAMs).

1.5.2 2-d cellular automata
Two- and three-dimensional CA provide more opportunities for contact with physi-
cal systems. We illustrate by describing an example of a 2-d CA that might serve as a
simple model of droplet growth during condensation. The rule,il lustrated in part pic-
torially in Fig. 1.5.4, may be described by saying that a particular cell with four or
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Figure 1.5.4 Illustration of a 2-d CA that may be thought of as a simple model of droplet
condensation. The rule sets a cell to be ON (condensed) if four or more of its neighbors are
condensed in the previous time, and OFF (uncondensed) otherwise. There are a total of 29=512
possible initial configurations; of these only 10 are shown. The ones on the left have 4 or
more cells condensed and the ones on the right have less than 4 condensed. This rule is ex-
plained further by Fig. 1.5.5 and simulated in Fig. 1.5.6. ❚
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more “condensed” neighbors at time t is condensed at time t + 1. Neighbors are
counted from the 3 × 3 square region surrounding the cell, including the cell itself.

Fig. 1.5.5 shows a simulation of this rule starting from a random initial starting
point of approximately 25% condensed (ON) and 75% uncondensed (OFF) cells. Over
the first few updates, the random arrangement of dots resolves into droplets, where
isolated condensed cells disappear and regions of higher density become the droplets.
Then over a longer time, the droplets grow and reach a stable configuration.

The characteristics of this rule may be understood by considering the properties
of boundaries between condensed and uncondensed regions,as shown in Fig. 1.5.6.
Boundaries that are vertical,horizontal or at a 45˚ diagonal are stable. Other bound-
aries will move,increasing the size of the condensed region. Moreover, a concave cor-
ner of stable edges is not stable. It will grow to increase the condensed region.On the
other hand,a convex corner is stable. This means that convex droplets are stable when
they are formed of the stable edges.

It can be shown that for this size space,the 25% initial filling is a transition den-
sity, where sometimes the result will fill the space and sometimes it will not. For
higher densities, the system almost always reaches an end point where the whole
space is condensed. For lower densities, the system almost always reaches a stable set
of droplets.

This example illustrates an important point about the dynamics of many sys-
tems, which is the existence of phase transitions in the kinetics of the system. Such
phase transitions are similar in some ways to the thermodynamic phase transitions
that describe the equilibrium state of a system changing from, for example,a solid to
a liquid. The kinetic phase transitions may arise from the choice of initial conditions,
as they did in this example. Alternatively, the phase transition may occur when we
consider the behavior of a class of CA as a function of a parameter. The parameter
gradually changes the local kinetics of the system; however, measures of its behavior
may change abruptly at a particular value. Such transitions are also common in CA
when the outcome of a particular update is not deterministic but stochastic, as dis-
cussed in Section 1.5.4.

1.5.3 Conway’s Game of Life
One of the most popular CA is known as Conway’s Game of Life. Conceptually, it is
designed to capture in a simple way the reproduction and death of biological organ-
isms. It is based on a model where,locally, if there are too few organisms or too many
organisms the organisms will disappear. On the other hand,if the number of organ-
isms is just right,they will multiply. Quite surprisingly, the model takes on a life of its
own with a rich dynamical behavior that is best understood by direct observation.

The specific rule is defined in terms of the 3 × 3 neighborhood that was used in
the last section. The rule,illustrated in Fig. 1.5.7,specifies that when there are less than
three or more than four ON (populated) cells in the neighborhood,the central cell will
be OFF (unpopulated) at the next time. If there are three ON cells,the central cell will
be ON at the next time. If there are four ON cells,then the central cell will keep its pre-
vious state—ON if it was ON and OFF if it was OFF.
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Figure 1.5.5 S i mu l a t ion of the conde ns a t ion CA described in Fig. 1.5.4. The initial cond i t io ns
a re chosen by setting ra ndomly each site O N with a probability of 1 in 4. The initial few steps
result in isolated O N sites disappearing and small ra g ged droplets of O N sites fo r m i ng in hig he r -
de nsity re g io ns. The droplets grow and smo o t hen their bounda r ies until at the sixtieth fra me
a static arra nge me nt of convex droplets is re a c he d. The first few steps are shown on the first
p a ge. Every tenth step is shown on the second page up to the sixtieth. 
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Figure 1.5.5 C o n t i n u e d . T he initial occupation probability of 1 in 4 is near a phase tra ns i-
t ion in the kine t ics of this mo del for a space of this size. For slig htly hig her de ns i t ies the fi-
nal config u ra t ion consists of a droplet covering the whole space. For slig htly lower de ns i t ie s
t he final config u ra t ion is of isolated dro p l e t s. At a probability of 1 in 4 either may occur de-
p e nd i ng on the specific initial state. ❚
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Figure 1.5.6 The droplet condensation model of Fig. 1.5.4 may be understood by noting that
certain boundaries between condensed and uncondensed regions are stable. A completely sta-
ble shape is illustrated in the upper left. It is composed of boundaries that are horizontal,
vertical or diagonal at 45˚. A boundary that is at a different angle, such as shown on the up-
per right, will move, causing the droplet to grow. On a longer length scale a stable shape
(droplet) is illustrated in the bottom figure. A simulation of this rule starting from a random
initial condition is shown in Fig. 1.5.5. ❚
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F i g. 1.5.8 shows a simu l a ti on of the rule starting from the same initial con d i ti on s
u s ed for the con den s a ti on rule in the last secti on . Th ree sequ en tial frames are shown ,
t h en after 100 steps an ad d i ti onal three frames are shown . Frames are also shown after
200 and 300 step s .Af ter this amount of time the rule sti ll has dynamic activi ty from fra m e
to frame in some regi ons of the sys tem , while others are app a ren t ly static or under go sim-
ple cyclic beh avi or. An example of c yclic beh avi or may be seen in several places wh ere
t h ere are hori zontal bars of t h ree O N cells that swi tch every time step bet ween hori zon-
tal and verti c a l . Th ere are many more com p l ex local stru ctu res that repeat cycl i c a lly wi t h
mu ch lon ger repeat cycl e s .Moreover, t h ere are special stru ctu res call ed gl i ders that tra n s-
l a te in space as they cycle thro u gh a set of con f i g u ra ti on s . The simplest gl i der is shown
in Fig. 1 . 5 . 9 ,a l ong with a stru ctu re call ed a gl i der gun, wh i ch cre a tes them peri od i c a lly.

We can make a con n ecti on bet ween Conw ay ’s Game of L i fe and the qu ad ra tic it-
era tive map con s i dered in Secti on 1.1. The ri ch beh avi or of the itera tive map was fo u n d
bec a u s e , for low va lues of the va ri a ble the itera ti on would increase its va lu e , while for
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Figure 1.5.7 The CA rule Conway’s Game of Life is illustrated for a few cases. When there are
fewer than three or more than four neighbors in the 3 × 3 region the central cell is OFF in the
next step. When there are three neighbors the central cell is ON in the next step. When there
are four neighbors the central cell retains its current value in the next step. This rule was de-
signed to capture some ideas about biological organism reproduction and death where too
few organisms would lead to disappearance because of lack of reproduction and too many
would lead to overpopulation and death due to exhaustion of resources. The rule is simulated
in Fig. 1.5.8 and 1.5.9. ❚
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Figure 1.5.8 Simulation of Conway’s Game of Life starting from the same initial conditions
as used in Fig. 1.5.6 for the condensation rule where 1 in 4 cells are ON. Unlike the conden-
sation rule there remains an active step-by-step evolution of the population of ON cells for
many cycles. Illustrated are the three initial steps, and three successive steps each starting
at steps 100, 200 and 300. 
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Figure 1.5.8 Continued. After the initial activity that occurs everywhere, the pattern of ac-
tivity consists of regions that are active and regions that are static or have short cyclical ac-
tivity. However, the active regions move over time around the whole space leading to changes
everywhere. Eventually, after a longer time than illustrated here, the whole space becomes ei-
ther static or has short cyclical activity. The time taken to relax to this state increases with
the size of the space. ❚
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Figure 1.5.9 Special initial conditions simulated using Conway’s Game of Life result in struc-
tures of ON cells called gliders that travel in space while progressing cyclically through a set
of configurations. Several of the simplest type of gliders are shown moving toward the lower
right. The more complex set of ON cells on the left, bounded by a 2 × 2 square of ON cells on
top and bottom, is a glider gun. The glider gun cycles through 30 configurations during which
a single glider is emitted. The stream of gliders moving to the lower right resulted from the
activity of the glider gun. ❚
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h i gh va lues the itera ti on would dec rease its va lu e . Conw ay ’s Game of L i fe and other CA
that ex h i bit intere s ting beh avi or also contain similar nonlinear feed b ack . Moreover, t h e
s p a tial arra n gem ent and coupling of the cells gives rise to a va ri ety of n ew beh avi ors .

1.5.4 Stochastic cellular automata
In addition to the deterministic automaton of Eq. (1.5.3), we can define a stochastic
automaton by the probabilities of transition from one state of the system to another:

P({s(i, j, k; t)}|{s(i, j, k; t − 1)}) (1.5.19)

This general stochastic rule for the 2N states of the system may be simplified.We have
assumed for the deterministic rule that the rule for updating one cell may be per-
formed independently of others. The analog for the stochastic rule is that the update
probabilities for each of the cells is independent. If this is the case,then the total prob-
ability may be written as the product of probabilities of each cell value. Moreover, if
the rule is local,the probability for the update of a particular cell will depend only on
the values of the cell variables in the neighborhood of the cell we are considering.

(1.5.20)

where we have used the notation N(i , j , k ; t) to indicate the values of the cell variables
in the neighborhood of (i , j , k). For example, we might consider modifying the
droplet condensation model so that a cell value is set to be ON with a certain proba-
bility (depending on the number of ON neighbors) and OFF otherwise.

Stochastic automata can be thought of as modeling the effects of noise and more
specifically the ensemble of a dynamic system that is subject to thermal noise. There
is another way to make the analogy between the dynamics of a CA and a thermody-
namic system that is exact—if we consider not the space of the automaton but the
d + 1 dimensional space-time. Consider the ensemble of all possible histories of the
CA. If we have a three-dimensional space,then the histories are a set of variables with
four indices {s(i, j, k, t)}. The probability of a particular set of these variables occur-
ring (the probability of this history) is given by

(1.5.21)

This expression is the product of the probabilities of each update occurring in the his-
tory. The first factor on the right is the probability of a particular initial state in the
ensemble we are considering. If we consider only one starting configuration,its prob-
ability would be one and the others zero.

We can relate the probability in Eq.(1.5.21) to thermodynamics using Boltzmann
probability. We simply set it to the expression for the Boltzmann probability at a par-
ticular temperature T.

P({s(i, j, k,t)}) = e −E({s(i, j, k, t)})/kT (1.5.22)

There is no need to include the normalization constant Z because the probabilities are
automatically normalized. What we have done is to define the energy of the particu-
lar state as:

E({s(i, j, k, t)}) = kT ln (P({s(i, j, k,t)})) (1.5.23)

    

P({s(i, j,k,t)})=
t

∏ P0(s(i, j ,k;t)| N(i, j ,k;t −1))
i ,j,k
∏ P({s(i, j,k;0)})

    

P({s(i, j, k; t)}| {s(i, j, k; t − 1)})= P0(s(i, j, k; t)| N(i, j, k; t − 1))
i, j,k
∏
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This expression shows that any d dimensional automaton can be related to a d + 1 di-
mensional system described by equilibrium Boltzmann probabilities. The ensemble
of the d + 1 dimensional system is the set of time histories of the automaton.

There is an important cautionary note about the conclusion reached in the last
paragraph. While it is true that time histories are directly related to the ensemble of a
thermodynamic system,there is a hidden danger in this analogy. These are not typi-
cal thermodynamic systems, and therefore our intuition about how they should be-
have is not trustworthy. For example, the time direction may be very different from
any of the space directions. For the d + 1 dimensional thermodynamic system, this
means that one of the directions must be singled out. This kind of asymmetry does
occur in thermodynamic systems, but it is not standard. Another example of the dif-
ference between thermodynamic systems and CA is in their sensitivity to boundary
conditions. We have seen that many CA are quite sensitive to their initial conditions.
While we have shown this for deterministic automata,it continues to be true for many
stochastic automata as well. The analog of the initial conditions in a d + 1 dimensional
thermodynamic system is the surface or boundary conditions. Thermodynamic sys-
tems are typically insensitive to their boundary conditions. However, the relationship
in Eq.(1.5.23) suggests that at least some thermodynamic systems are quite sensitive
to their boundary conditions. An interesting use of this analogy is to attempt to dis-
cover special thermodynamic systems whose behavior mimics the interesting behav-
ior of CA.

1.5.5 CA generalizations
There are a variety of generalizations of the simplest version of CA which are useful
in developing models of particular systems. In this section we briefly describe a few of
them as illustrated in Fig. 1.5.10.

It is often convenient to consider more than one variable at a particular site.
One way to think about this is as multiple spaces (planes in 2-d,lines in 1-d) that are
coupled to each other. We could think about each space as a different physical quan-
tity. For example, one might represent a magnetic field and the other an electric
field. Another possibility is that we might use one space as a thermal reservoir. The
system we are actually interested in might be simulated in one space and the thermal
reservoir in another. By considering various combinations of multiple spaces repre-
senting a physical system, the nature of the physical system can become quite rich in
its structure.

We can also consider the update rule to be a compound rule formed of a sequence
of steps.Each of the steps updates the cells. The whole rule consists of cycling through
the set of individual step rules. For example,our update rule might consist of two dif-
ferent steps. The first one is performed on every odd step and the second is performed
on every even step. We could reduce this to the previous single update step case by
looking at the composite of the first and second steps. This is the same as looking at
only every even state of the system. We could also reduce this to a multiple space rule,
where both the odd and even states are combined together to be a single step.
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However, it may be more convenient at times to think about the system as perform-
ing a cycle of update steps.

Finally, we can allow the state of the system at a particular time to depend on the
state of the system at several previous times,not just on the state of the system at the
previous time.A rule might depend on the most recent state of the system and the pre-
vious one as well. Such a rule is also equivalent to a rule with multiple spaces, by con-
sidering both the present state of the system and its predecessor as two spaces. One
use of considering rules that depend on more than one time is to enable systematic
construction of reversible deterministic rules from nonreversible rules. Let the origi-
nal (not necessarily invertible) rule be R(N(i, j, k ; t)). A new invertible rule can be
written using the form

s(i, j, k ; t) = mod2(R(N(i, j, k ;t − 1)) + s(i, j, k ; t − 2)) (1.5.24)

The inverse of the update rule is immediately constructed using the properties of ad-
dition modulo 2 (Eq. (1.5.8)) as:

s(i, j, k ; t − 2) = mod2(R(N(i, j, k ; t − 1)) + s(i, j, k ; t)) (1.5.25)

1.5.6 Conserved quantities and Margolus dynamics
Standard CA are not well suited to the description of systems with constraints or con-
servation laws. For example, if we want to conserve the number of ON cells we must
establish a rule where turning OFF one cell (switching it from ON to OFF) is tied to
turning ON another cell. The standard rule considers each cell separately when an up-
date is performed. This makes it difficult to guarantee that when this particular cell is
turned OFF then another one will be turned ON. There are many examples of physical
systems where the conservation of quantities such as number of particles, energy and
momentum are central to their behavior.

A systematic way to construct CA that describe systems with conserved quanti-
ties has been developed. Rules of this kind are known as partitioned CA or Margolus
rules (Fig. 1.5.11). These rules separate the space into nonoverlapping partitions (also
known as neighborhoods). The new value of each cell in a partition is given in terms
of the previous values of the cells in the same partition. This is different from the con-
ventional automaton, since the local rule has more than one output as well as more
than one input. Such a rule is not sufficient in itself to describe the system update,
since there is no communication in a single update between different partitions. The
complete rule must specify how the partitions are shifted after each update with re-
spect to the underlying space. This shifting is an essential part of the dynamical rule
that restores the cellular symmetry of the space.

The convenience of this kind of CA is that specification of the rule gives us direct
control of the dynamics within each partition, and therefore we can impose conser-
vation rules within the partition. Once the conservation rule is imposed inside the
partition, it will be maintained globally—throughout the whole space and through
every time step. Fig. 1.5.12 illustrates a rule that conserves the number of ON cells in-
side a 2 × 2 neighborhood. The ON cells may be thought of as particles whose num-
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Figure 1.5.10 Schematic illustrations of several modifications of the simplest CA rule. The
basic CA rule updates a set of spatially arrayed cell variables shown in (a). The first modifi-
cation uses more than one variable in each cell. Conceptually this may be thought of as de-
scribing a set of coupled spaces, where the case of two spaces is shown in (b). The second
modification makes use of a compound rule that combines several different rules, where the
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case of two rules is shown in (c). The third modification shown in (d) makes use of a rule that
depends on not just the most recent value of the cell variables but also the previous one. Both
(c) and (d) may be described as special cases of (b) where two successive values of the cell
variables are considered instead as occurring at the same time in different spaces. ❚
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Conventional CA rule

Partitioned (Margolus) CA rule

Partition Alternation

Figure 1.5.11 Pa r t i t io ned CA (Ma rgolus rules) enable the imposition of cons e r v a t ion laws in
a direct way. A convent io nal CA gives the value of an ind i v idual cell in terms of the pre v io u s
values of cells in its ne ig h b o r hood (top). A partitio ned CA gives the value of several cells in a
p a r t icular partition in terms of the pre v ious values of the same cells (center). This enables con-
s e r v a t ion rules to be imposed directly within a particular partition. An example is given in Fig .
1.5.12. In add i t ion to the rule for upda t i ng the partition, the dy na m ics must specify how the
p a r t i t io ns are to be shifted from step to step. For example (bottom), the use of a 2 × 2 parti-
t ion may be impleme nted by alterna t i ng the partitio ns from the solid lines to the da s hed line s.
Every even update the da s hed lines are used and every odd update the solid lines are used to
p a r t i t ion the space. This re s t o res the cellular perio d icity of the space and enables the cells to
c o m mu n icate with each othe r, which is not possible without the shifting of partitio ns. ❚
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ber is conserved. The only requirement is that each of the possible arrangement of
particles on the left results in an arrangement on the right with the same number of
particles. This rule is augmented by specifying that the 2 × 2 partitions are shifted by
a single cell to the right and down after every update. The motion of these particles is
that of an unusual gas of particles.

The rule shown is only one of many possible that use this 2 × 2 neighborhood
and conserve the number of particles. Some of these rules have additional properties
or symmetries.A rule that is constructed to conserve particles may or may not be re-
versible. The one illustrated in Fig. 1.5.12 is not reversible. There exist more than one
predecessor for particular values of the cell variables. This can be seen from the two
mappings on the lower left that have the same output but different input.A rule that
conserves particles also may or may not have a particular symmetry, such as a sym-
metry of reflection.A symmetry of reflection means that reflection of a configuration
across a particular axis before application of the rule results in the same effect as re-
flection after application of the rule.

The existence of a well-defined set of rules that conserves the number of parti-
cles enables us to choose to study one of them for a specific reason. Alternatively, by
randomly constructing a rule which conserves the number of particles, we can learn
what particle conservation does in a dynamical system independent of other regular-
ities of the system such as reversibility and reflection or rotation symmetries. More
systematically, it is possible to consider the class of automata that conserve particle
number and investigate their properties.

Question 1.5.6 Design a 2-d Margolus CA that represents a particle or
chemical reaction: A + B ↔ C. Discuss some of the parameters that must

be set and how you could use symmetries and conservation laws to set them.

Solution 1.5.6 We could use a 2 × 2 partition just like that in Fig. 1.5.12.
On each of the four squares there can appear any one of the four possibili-
ties (O, A, B, C). There are 44 = 256 different initial conditions of the parti-
tion.Each of these must be paired with one final condition,if the rule is de-
terministic. If the rule is probabilistic, then probabilities must be assigned
for each possible transition.

To represent a chemical reaction, we choose cases where A and B are ad-
jacent (horizontally or vertically) and replace them with a C and a 0. If we
prefer to be consistent, we can always place the C where A was before. To go
the other direction, we take cases where C is next to a 0 and replace them with
an A and a B. One question we might ask is, Do we want to have a reaction
whenever it is possible, or do we want to assign some probability for the re-
action? The latter case is more interesting and we would have to use a prob-
abilistic CA to represent it. In addition to the reaction, the rule would in-
clude particle motion similar to that in Fig. 1.5.12.

To apply symmetries, we could assume that reflection along horizontal
or vertical axes, or rotations o f the partition by 90˚ before the update, will
have the same effect as a reflection or rotation of the partition after the
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update. We could also assume that A, B and C move in the same way when
they are by themselves. Moreover, we might assume that the rule is symmet-
ric under the transformation A ↔ B.

There is a simpler approach that requires enumerating many fewer states.
We choose a 2 × 1 rectangular partition that has only two cells,and 42 = 16
possible states. Of these, four do not change: [A,A], [B,B], [C,C] and [0,0].
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Figure 1.5.12 Illustration of a particular 2-d Margolus rule that preserves the number of ON

cells which may be thought of as particles in a gas. The requirement for conservation of num-
ber of particles is that every initial configuration is matched with a final configuration hav-
ing the same number of ON cells. This particular rule does not observe conventional symme-
tries such as reflection or rotation symmetries that might be expected in a typical gas. Many
rules that conserve particles may be constructed in this framework by changing around the
final states while preserving the number of particles in each case. ❚
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Eight others are paired because the cell values can be switched to achieve
particle motion (with a certain probability): [A,0] ↔ [0,A], [B,0] ↔ [0,B],
[C,A] ↔ [A,C],and [C,B] ↔ [B,C].Finally, the last four, [C,0],[0,C], [A,B]
and [B, A],can participate in reactions. If the rule is deterministic,they must
be paired in a unique way for possible transitions. Otherwise,each possibil-
ity can be assigned a probability:[C,0] ↔ [A,B],[0,C] ↔ [B,A],[C,0] ↔[B,A]
and [0,C] ↔ [A,B]. The switching of the particles without undergoing reac-
tion for these states may also be allowed with a certain probability. Thus,each
of the four states can have a nonzero transition probability to each of the oth-
ers. These probabilities may be related by the symmetries mentioned before.
Once we have determined the update rule for the 2x1 partition, we can choose
several ways to map the partitions onto the plane.The simplest are obtained
by dividing each of the 2 × 2 partitions in Fig. 1.5.11 horizontally or verti-
cally. This gives a total of four ways to partition the plane. These four can al-
ternate when we simulate this CA. ❚

1.5.7 Differential equations and CA
Cellular automata are an alternative to differential equations for the modeling of
physical systems. Differential equations when modeled numerically on a computer
are often discretized in order to perform integrals. This discretization is an approxi-
mation that might be considered essentially equivalent to setting up a locally discrete
dynamical system that in the macroscopic limit reduces to the differential equation.
Why not then start from a discrete system and prove its relevance to the problem of
interest? This a priori approach can provide distinct computational advantages. This
argument might lead us to consider CA as an approximation to differential equa-
tions. However, it is possible to adopt an even more direct approach and say that dif-
ferential equations are themselves an approximation to aspects of physical reality. CA
are a different but equally valid approach to approximating this reality. In general,
differential equations are more convenient for analytic solution while CA are more
convenient for simulations. Since complex systems of differential equations are often
solved numerically anyway, the alternative use of CA appears to be worth systematic
consideration.

While both cellular automata and differential equations can be used to model
macroscopic systems,this should not be taken to mean that the relationship between
differential equations and CA is simple. Recognizing a CA analog to a standard dif-
ferential equation may be a difficult problem.One of the most extensive efforts to use
CA for simulation of a system more commonly known by its differential equation is
the problem of hydrodynamics. Hydrodynamics is typically modeled by the Navier-
Stokes equation. A type of CA called a lattice gas (Section 1.5.8) has been designed
that on a length scale that is large compared to the cellular scale reproduces the be-
havior of the Navier-Stokes equation. The difficulties of solving the differential equa-
tion for specific boundary conditions make this CA a powerful tool for studying hy-
drodynamic flow.
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A frequently occurring differential equation is the wave equation. The wave equa-
tion describes an elastic medium that is approximated as a continuum. The wave
equation emerges as the continuum limit of a large variety of systems. It is to be ex-
pected that many CA will also display wavelike properties. Here we use a simple ex-
ample to illustrate one way that wavelike properties may arise. We also show how the
analogy may be quite different than intuition might suggest. The wave equation writ-
ten in 1-d as

(1.5.26)

has two types of solutions that are waves traveling to the right and to the left with wave
vectors k and frequencies of oscillation k = ck:

(1.5.27)

A particular solution is obtained by choosing the coefficients Ak and Bk. These solu-
tions may also be written in real space in the form:

f = Ã(x − ct) + B̃(x + ct) (1.5.28)

where

(1.5.29)

are two arbitrary functions that specify the initial conditions of the wave in an infi-
nite space.

We can construct a CA analog of the wave equation as illustrated in Fig. 1.5.13. It
should be understood that the wave equation will arise only as a continuum or long
wave limit of the CA dynamics.However, we are not restricted to considering a model
that mimics a vibrating elastic medium. The rule we construct consists of a 1-d par-
titioned space dynamics.Each update, adjacent cells are paired into partitions of two
cells each. The pairing switches from update to update,analo gous to the 2-d example
in Fig. 1.5.11. The dynamics consists solely of switching the contents of the two adja-
cent cells in a single partition. Starting from a particular initial configuration, it can
be seen that the contents of the odd cells moves systematically in one direction (right
in the figure),while the contents of the even cells moves in the opposite direction (left
in the figure). The movement proceeds at a constant velocity of c = 1 cell/update. Thus
we identify the contents of the odd cells as the rightward traveling wave,and the even
cells as the leftward traveling wave.

The dynamics of this CA is the same as the dynamics of the wave equation of
Eq.(1.5.28) in an infinite space. The only requirement is to encode appropriately the
initial conditions Ã(x), B̃(x) in the cells. If we use variables with values in the conven-
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tional real continuum si ∈ℜ , then the (discretized) waves may be encoded directly. If
a binary representation si = ±1 is used, the local average over odd cells represents the
right traveling wave Ã(x − ct),and the local average over even cells represents the left
traveling wave B̃(x + ct).

1.5.8 Lattice gases
A lattice gas is a type of CA designed to model gases or liquids of colliding particles.
Lattice gases are formulated in a way that enables the collisions to conserve
momentum as well as number of particles. Momentum is represented by setting the
velocity of each particle to a discrete set of possibilities.A simple example, the HPP
gas,is illustrated in Fig. 1.5.14.Each cell contains four binary variables that represent
the presence (or absence) of particles with unit velocity in the four compass directions
NESW. In the figure,the presence of a particle in a cell is indicated by an arrow. There
can be up to four particles at each site.Each particle present in a single cell must have
a distinct velocity.
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Figure 1.5.13 A simple 1-d CA using a Margolus rule, which switches the values of the two
adjacent cells in the partition, can be used to model the wave equation. The partitions al-
ternate between the two possible ways of partitioning the cells every time step. It can be
seen that the initial state is propagated in time so that the odd (even) cells move at a fixed
rate of one cell per update to the right (left). The solutions of the wave equation likewise
consist of a right and left traveling wave. The initial conditions of the wave equation solu-
tion are the analog of the initial condition of the cells in the CA. ❚
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The dynamics of the HPP gas is performed in two steps that alternate: propaga-
tion and collision. In the propagation step, particles move from the cell they are in to
the neighboring cell in the direction of their motion. In the collision step, each cell
acts independently, changing the particles from incoming to outgoing according to
prespecified collision rules. The rule for the HPP gas is illustrated in Fig. 1.5.15.
Because of momentum conservation in this rule, there are only two possibilities for
changes in the particle velocity as a result of a collision.A similar lattice gas,the FHP
gas, which is implemented on a hexagonal lattice of cells rather than a square lattice,
has been proven to give rise to the Navier-Stokes hydrodynamic equations on a
macroscopic scale. Due to properties of the square lattice in two dimensions, this be-
havior does not occur for the HPP gas. One way to understand the limitation of the
square lattice is to realize that for the HPP gas (Fig. 1.5.14),momentum is conserved
in any individual horizontal or vertical stripe of cells. This type of conservation law is
not satisfied by hydrodynamics.

1.5.9 Material growth
One of the natural physical systems to model using CA is the problem of layer-by-
layer material growth such as is achieved in molecular beam epitaxy. There are many
areas of study of the growth of materials. For example,in cases where the material is
formed of only a single type of atom,it is the surface structure during growth that is
of interest. Here, we focus on an example of an alloy formed of several different atoms,
where the growth of the atoms is precisely layer by layer. In this case the surface struc-
ture is simple, but the relative abundance and location of different atoms in the ma-
terial is of interest. The simplest case is when the atoms are found on a lattice that is
prespecified, it is only the type of atom that may vary.

The analogy with a CA is established by considering each layer of atoms, when it
is deposited, as represented by a 2-d CA at a particular time. As shown in Fig. 1.5.16
the cell values of the automaton represent the type of atom at a particular site. The
values of the cells at a particular time are preserved as the atoms of the layer deposited
at that time. It is the time history of the CA that is to be interpreted as representing
the structure of the alloy. This picture assumes that once an atom is incorporated in
a complete layer it does not move.

In order to construct the CA, we assume that the probability of a particular atom
being deposited at a particular location depends on the atoms residing in the layer
immediately preceding it. The stochastic CA rule in the form of Eq.(1.5.20) specifies
the probability of attaching each kind of atom to every possible atomic environment
in the previous layer.

We can illustrate how this might work by describing a specific example.There ex-
ist alloys formed out of a mixture of gallium,arsenic and silicon.A material formed
of equal proportions of gallium and arsenic forms a GaAs crystal, which is exactly like
a silicon crystal, except the Ga and As atoms alternate in positions. When we put sili-
con together with GaAs then the silicon can substitute for either the Ga or the As
atoms. If there is more Si than GaAs, then the crystal is essentially a Si crystal with
small regions of GaAs,and isolated Ga and As. If there is more GaAs than Si,then the
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Propagation step

Collision step

Figure 1.5.14 Illustration of the
update of the HPP lattice gas. In a
lattice gas, binary variables in each
cell indicate the presence of parti-
cles with a particular velocity. Here
there are four possible particles in
each cell with unit velocities in the
four compass directions, NESW.
Pictorially the presence of a particle
is indicated by an arrow in the di-
rection of its velocity. Updating the
lattice gas consists of two steps:
propagating the particles according
to their velocities, and allowing the
particles to collide according to a
collision rule. The propagation step
consists of moving particles from
each cell into the neighboring cells
in the direction of their motion. The
collision step consists of each cell
independently changing the veloci-
ties of its particles. The HPP colli-
sion rule is shown in Fig. 1.5.15, and
implemented here from the middle
to the bottom panel. For conve-
nience in viewing the different steps
the arrows in this figure alternate
between incoming and outcoming.
Particles before propagation (top)
are shown as outward arrows from
the center of the cell. After the prop-
agation step (middle) they are
shown as incoming arrows. After col-
lision (bottom) they are again
shown as outgoing arrows. ❚
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t t

Figure 1.5.16 Illustration of the time history of a CA and its use to model the structure of
a material (alloy) formed by a layer by layer growth. Each horizontal dashed line represents
a layer of the material. The alloy has three types of atoms. The configuration of atoms in each
layer depends only on the atoms in the layer preceding it. The type of atom, indicated in the
figure by filled, empty and shaded dots, are determined by the values of the cell variables of
the CA at a particular time, si(t) = ±1,0. The time history of the CA is the structure of the
material. ❚

Figure 1.5.15 The
collision rule for
the HPP lattice gas.
With the exception
of the case of two
particles coming in
from N and S and
leaving from E and
W, or vice versa
(dashed box), there
are no changes in
the particle veloci-
ties as a result of
collisions in this
rule. Momentum
conservation does
not allow any other
changes. ❚
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crystal will be essentially a GaAs crystal with isolated Si atoms. We can model the
growth of the alloys formed by different relative proportions of GaAs and Si of the
form (GaAs)1-xSix using a CA. Each cell of the CA has a variable with three possible
values si = ±1,0 that would represent the occupation of a crystal site by Ga, As and Si
respectively. The CA rule (Eq. (1.5.20)) would then be constructed by assuming dif-
ferent probabilities for adding a Si, Ga and As atom at the surface. For example, the
likelihood of finding a Ga next to a Ga atom or an As next to an As is small, so the
probability of adding a Ga on top of a Ga can be set to be much smaller than other
probabilities. The probability of an Si atom si = 0 could be varied to reflect different
concentrations of Si in the growth. Then we would be able to observe how the struc-
ture of the material changes as the Si concentration changes.

This is one of many examples of physical, chemical and biological systems that
have been modeled using CA to capture some of their dynamical properties. We will
encounter others in later chapters.

Statistical Fields

In real systems as well as in kinetic models such as cellular automata (CA) discussed
in the previous section, we are often interested in finding the state of a system—the
time averaged (equilibrium) ensemble when cycles or randomness are present—that
arises after the fast initial kinetic processes have occurred. Our objective in this sec-
tion is to treat systems with many degrees of freedom using the tools of equilibrium
statistical mechanics (Section 1.3). These tools describe the equilibrium ensemble di-
rectly rather than the time evolution. The simplest example is a collection of inter-
acting binary variables, which is in many ways analogous to the simplest of the CA
models. This model is known as the Ising model,and was introduced originally to de-
scribe the properties of magnets.Each of the individual variables corresponds to a mi-
croscopic magnetic region that arises due to the orbital motion of an electron or the
internal degree of freedom known as the spin of the electron.

The Ising model is the simplest model of i n teracting degrees of f reedom . E ach 
of the va ri a bles is bi n a ry and the interacti ons bet ween them are on ly spec i f i ed by on e
p a ra m eter—the strength of the interacti on . Rem a rk a bly, m a ny com p l ex sys tems we
wi ll be con s i dering can be model ed by the Ising model as a first approx i m a ti on . We
wi ll use several vers i ons of the Ising model to discuss neu ral net works in Ch a pter 2 and
pro teins in Ch a pter 4. The re a s on for the usefulness of this model is the very ex i s ten ce
of i n teracti ons bet ween the el em en t s . This interacti on is not pre s ent in simpler mod-
els and re sults in va rious beh avi ors that can be used to understand some of the key as-
pects of com p l ex sys tem s . The con cepts and tools that are used to stu dy the Ising model
also may be tra n s ferred to more com p l i c a ted model s . It should be unders tood , h ow-
ever, that the Ising model is a simplistic model of m a gn ets as well as of o t h er sys tem s .

In Section 1.3 we considered the ideal gas with collisions. The collisions were a
form of interaction. However, these interactions were incidental to the model because
they were assumed to be so short that they were not present during observation. This
is no longer true in the Ising model.

1.6
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1.6.1 The Ising model without interactions
The Ising model describes the energy of a collection of elements (spins) represented
by binary variables.It is so simple that there is no kinetics, only an energy E[{si}].Later
we will discuss how to reintroduce a dynamics for this model. The absence of a dy-
namics is not a problem for the study of the equilibrium properties of the system,
since the Boltzmann probability (Eq.(1.3.29)) depends only upon the energy. The en-
ergy is sp ecified as a function of the values of the binary variables {si = ±1}. Unless
necessary, we will use one index for all of the spin variables regardless of dimension-
ality. The use of the term “spin” originates from the magnetic analogy. There is no
other specific term,so we adopt this terminology. The term “spin” emphasizes that the
binary variable represents the state of a physical entity such that the collection of spins
is the system we are interested in.A spin can be il lustrated as an arrow of fixed length
(see Fig. 1.6.1). The value of the binary variable describes its orientation, where +1 in-
dicates a spin oriented in the positive z direction (UP),and –1 indicates a spin oriented
in the negative z direction (DOWN).

Before we consider the effects of interactions between the spins, we start by con-
sidering a system where there are no interactions. We can write the energy of such a
system as:

(1.6.1)

Where ei(si) is the energy of the i th spin that does not depend on the values of any of
the other spins. Since si are binary we can write this as:

(1.6.2)

All of the terms that do not depend on the spin va ri a bles have been co ll ected toget h er
i n to a con s t a n t . We set this constant to zero by redefining the en er gy scale. The qu a n ti-
ties {hi} de s c ri be the en er gy due to the ori en t a ti on of the spins. In the magn etic sys tem
t h ey corre s pond to an ex ternal magn etic field that va ries from loc a ti on to loc a ti on .L i ke
s m a ll magn et s , spins try to ori ent along the magn etic fiel d . A spin ori en ted along the
m a gn etic field (si and hi h ave the same sign) has a lower en er gy than if it is anti p a ra ll el
to the magn etic fiel d . As in Eq .( 1 . 6 . 2 ) , the con tri buti on of the magn etic field to the en-
er gy is −|hi | ( |hi| ) wh en the spin is para ll el (anti p a ra ll el) to the field directi on . Wh en con-
ven i ent we wi ll simplify to the case of a uniform magn etic fiel d , hi = h.

Wh en the spins are non i n teracti n g, the Ising model redu ces to a co ll ecti on of t wo -
s t a te sys tems that we inve s ti ga ted in Secti on 1.4. L a ter, wh en we introdu ce interacti on s
bet ween the spins, t h ere wi ll be differen ce s . For the non i n teracting case we can wri te the
prob a bi l i ty for a particular con f i g u ra ti on of the spins using the Boltzmann prob a bi l i ty:

(1.6.3)

    
P[{s i }]=

e − E[{si }]

Z
=

e
hi s i

i
∑

Z
=

e hi s i

i

∏
Z

    

E[{s i }]=
1

2
(ei (1)− ei (−1))si

i

∑ + (ei (1)+ ei (−1)) = E0 – his i

i

∑ → – his i

i

∑

    

E[{s i }]= ei (s i )
i

∑
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Figure 1.6.1 One way to visualize the Ising model is as a spatial array of binary variables
called spins, represented as UP or DOWN arrows. A one-dimensional (1-d) example with all spins
UP is shown on top. The middle and lower figures show two-dimensional (2-d) arrays which
have all spins UP (middle) or have some spins UP and some spins DOWN (bottom). ❚
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where = 1/kT. The partition function Z is given by:

(1.6.4)

where the second to last equality replaces the sum over all possible values of the spin
variables with a sum over each spin variable si = ±1 within the product. Thus the prob-
ability factors as:

(1.6.5)

This is a product over the result we found for probability of the two-state system (Eq.
(1.4.14)) if we write the energy of a single spin using the notation Ei(si) = –hisi.

Now that we have many spin variables, we can investigate the thermodynamics of
this model by writing down the free energy and entropy of this model. This is dis-
cussed in Question 1.6.1.

Question 1.6.1 Evaluate the thermodynamic free energy, energy and en-
tropy for the Ising model without interactions.

Solution 1.6.1 The free energy is given in terms of the partition function
by Eq. (1.3.37):

(1.6.6)

The latter expression is a more common way of writing this result.
The thermodynamic energy of the system is found from Eq.(1.3.38) as

(1.6.7)

Th ere is another way to obtain the same re su l t . The therm odynamic en er gy is
the avera ge en er gy of the sys tem (Eq .( 1 . 3 . 3 0 ) ) , wh i ch can be eva lu a ted direct ly:

(1.6.8)

which is the same as before. We have used the possibility of writing the prob-
ability of a single spin variable independent of the others in order to perform
this average. It is convenient to define the local magnetization mi as the av-
erage value of a particular spin variable:

(1.6.9)
    

mi = si = si Ps i
(s i )

s i =±1

∑ = Psi
(1) − Psi

(−1)

    

U = E[{s i }] = – his i

i

∑ = – hi si

i

∑ = – hi si

s i

∑ P(s i )
i

∑

= − hi
(e hi −e − hi )

(e hi +e − hi )i
∑ = − hi tanh(

i
∑ h i )

    

U = −
ln(Z)

= −
hi (e

hi − e − hi )

(e hi + e − hi )i

∑ = − hi tanh(
i

∑ hi )

    

F = −kT ln(Z) = −kT ln
i

∑ e hi + e − hi 
 

 
 = −kT ln

i

∑ 2cosh hi( )( )

    

P[{s i }]= P(si )
i

∏ =
e hi s i

e hi + e − hi

 

 
  

 

 
  

i
∏

    

Z =
{s i}

∑ e − E[{s i}] =
{si }

∑ e hi s i

i
∏ = e his i

s i

∑
i

∏ = e hi + e − hi 
 

 
 

i
∏
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Or using Eq. (1.6.5):

(1.6.10)

In Fig. 1 . 6 . 2 , the magn eti z a ti on at a particular site is plotted as a functi on of t h e
m a gn etic field for several different tem pera tu res ( = 1 /kT ) .The magn eti z a ti on
i n c reases with increasing magn etic field and with dec reasing tem pera tu re unti l
it satu ra tes asym pto ti c a lly to a va lue of +1 or –1. In terms of the magn eti z a ti on
the en er gy is:

(1.6.11)

We can calculate the entropy of the Ising model using Eq. (1.3.36)

(1.6.12)
    

S = k U +k lnZ = −k hi tanh(
i

∑ hi ) + k ln
i

∑ 2cosh hi( )( )

    

U = – himi

i

∑

    
mi = si = tanh( hi )
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Figure 1.6.2 Plot of the magnetization at a particular site as a function of the magnetic field
for independent spins in a magnetic field. The magnetization is the average of the spin value,
so the magnetization shows the degree to which the spin is aligned to the magnetic field.
The different curves are for several temperatures = 0.5,1,2 ( = 1/kT). The magnetization
has the same sign as the magnetic field. The magnitude of the spin increases with increasing
magnetic field. Increasing temperature, however, decreases the alignment due to increased
random motion of the spins. The maximum magnitude of the magnetization is 1, correspond-
ing to a fully aligned spin. ❚
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which is not particularly enlightening. However, we can rewrite this in terms
of the magnetization using the identity:

(1.6.13)

and the inverse of Eq. (1.6.10):

(1.6.14)

Substituting into Eq. (1.6.12) gives

(1.6.15)

Rearranging slightly, we have:

(1.6.16)

The final expression can be derived,at least for the case when all mi are
the same, by counting the number of states directly. It is worth deriving the
entropy twice,because it may be used more generally than this treatment in-
dicates. We will assume that all hi = h are the same. The energy then depends
only on the total magnetization:

(1.6.17)

To obtain the entropy from the counting of states (Eq.(1.3.25)) we evaluate
the number of states within a particular narrow energy range. Since the en-
ergy is the sum over the values of the spins,it may also be written as the dif-
ference between the number of UP spins N(1) and DOWN spins N(−1):

E[{si}] = –h(N(1) − N(−1)) (1.6.18)

Thus, to find the entropy for a particular energy we must count how many
states there are with a particular number of UP and DOWN spins. Moreover,
flipping a spin from DOWN to UP causes a fixed increment in the energy.
Thus there is no need to include in the counting the width of the energy in-
terval in which we are counting states. The number of states with N(1) UP

spins and N(−1) DOWN spins is:

(1.6.19)
    

(E,N) =
N

N(1)

 

 
 

 

 
 =

N!

N(1)!N(−1)!
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∑
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i
∑ = −hNm
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1

2
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∑
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i

∑ +kN ln(2) −k
1

2
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∑ 1− mi
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1

2
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cosh(x) =
1

1− tanh2(x)
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The ent ropy can be written using Sterling’s approximation (Eq. (1.2.27)),
neglecting terms that are less than of order N, as:

S = k ln( (E,N)) = k[N(lnN − 1) − N(1)(lnN(1) −1) − N(−1)(lnN(−1)–1]

= k[N lnN − N(1)lnN(1) − N(−1)lnN(−1)] (1.6.20)

the latter following from N = N(1) + N(−1). To simplify this expression fur-
ther, we write it in terms of the magnetization. Using Ps i

(−1) + Psi
(1) = 1 and

Eq. (1.6.9) for the magnetization we have the probability that a particular
spin is UP and DOWN in terms of the magnetization as:

Psi
(1) = (1 + m) / 2

Psi
(−1) = (1 − m) / 2

(1.6.21)

Since there are many spins in the system, we can obtain the number of UP

spins using

N(1) = NPsi
(1) = N(1 + m) / 2

N(−1) = NPsi
(1) = N(1 − m) / 2

(1.6.22)

Using these expressions, Eq.(1.6.20) becomes the same as Eq.(1.6.16), with
hi = h.

There is an important difference between the two derivations, in that
the second assumed that all of the magnetic fields were the same. Thus, the
first derivation appears more general. However, since the original system has
no interactions, we could consider each of the spins with its own field hi as a
separate system. If we want to calculate the entropy of the individual spin,
we would consider an ensemble of such spins. The ensemble consists of
many spins with the same field h = hi. The derivation of the entropy using
the ensemble would be identical to the derivation we have just given, except
that at the end we would divide by the number of different systems in the en-
semble N. Adding together the entropies of different spins would then give
exactly Eq. (1.6.16).

The en tropy of a spin from Eq . (1.6.16) is maximal for a magn eti z a ti on of
zero wh en it has the va lue k l n ( 2 ) . From the ori ginal def i n i ti on of the en tropy,
this corre s ponds to the case wh en there are ex act ly two different po s s i ble state s
of the sys tem . It thus corre s ponds to the case wh ere the prob a bi l i ty of e ach
s t a te s = ±1 is 1/2. The minimal en tropy is for ei t h er m = 1 or m = −1—wh en
t h ere is on ly one po s s i ble state of the spin, so the en tropy must be zero. ❚

1.6.2 The Ising model
We now add the essential aspect of the Ising model—interactions between the spins.
The location of the spins in space was unimportant in the case of the noninteracting
model. However, for the interacting model, we consider the spins to be located on a
periodic lattice in space. Similar to the CA models of Section 1.5, we allow the spins
to interact only with their nearest neighbors. It is conventional to interpret neighbors
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strictly as the spins with the shortest Euclidean distance from a particular site. This
means that for a cubic lattice there are two, four and six neighbors in one, two and
three dimensions respectively. We will assume that the interaction with each of the
neighbors is the same and we write the energy as:

(1.6.23)

The notation <ij> under the summation indicates that the sum is to be performed
over all i and j that are nearest neighbors. For example,in one dimension this could
be written as:

(1.6.24)

If we wanted to emphasize that each spin interacts with its two neighbors, we could
write this as

(1.6.25)

wh ere the factor of 1/2 corrects for the do u ble co u n ting of the interacti on bet ween every
t wo nei gh boring spins. In two and three dimen s i ons (2-d and 3-d), t h ere is need of ad-
d i ti onal indices to repre s ent the spatial depen den ce . We could wri te the en er gy in 2-d as:

(1.6.26)

and in 3-d as:

(1.6.27)

In these sums,each nearest neighbor pair appears only once. We will be able to hide
the additional indices in 2-d and 3-d by using the nearest neighbor notation <ij> as
in Eq. (1.6.23).

The interacti on J bet ween spins may arise from many different source s . Similar to
the deriva ti on of hi in Eq .( 1 . 6 . 2 ) , this is the on ly form that an interacti on bet ween two
spins can take (Questi on 1.6.2). Th ere are two disti n ct po s s i bi l i ties for the beh avi or of
the sys tem depending on the sign of the interacti on . Ei t h er the interacti on tries to ori-
ent the spins in the same directi on (J > 0) or in the oppo s i te directi on (J < 0). The for-
m er is call ed a ferrom a gn et and is the com m on form of a magn et . The other is call ed
an anti ferrom a gn et (Secti on 1.6.4) and has very different ex ternal properties but can
be repre s en ted by the same model , with J h aving the oppo s i te sign .

Question 1.6.2 Show that the form of the interaction given in Eq.
(1.6.24) Jss ′ is the most general interaction between two spins.

Solution 1.6.2 We write as a general form of the energy of two spins:

    

E[{s i, j,k}]= – hi, j,ks i, j,k

i ,j,k

∑ − J (si ,j ,ksi +1, j,k

i , j,k

∑ + si ,j,ks i ,j+1,k +s i, j,ks i, j,k+1)

    

E[{s i, j }]= – hi ,j si ,j

i ,j

∑ − J (s i, jsi +1,j

i ,j

∑ + si ,j si ,j +1)

    

E[{s i }]= – h is i

i

∑ − J
1

2
(si si +1

i

∑ + si si −1)

    

E[{s i }]= – h is i

i

∑ − J si s i+1

i

∑

    

E[{s i }]= – h is i

i

∑ − J s is j

<ij>
∑
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(1.6.28)

If we expand this we wi ll find a constant term , terms that are linear in s and s ′
and a term that is proporti onal to ss ′. The linear terms give rise to the local fiel d
hi, and the final term is the interacti on . Th ere are other po s s i ble interacti on s
that could be wri t ten that would inclu de three or more spins. ❚

In a magnetic system, each microscopic spin is itself the source of a small mag-
netic field. Magnets have the property that they can be the source of a macroscopic
magnetic field. When a material is a source of a magnetic field, we say that it is mag-
netized. The magnetic field arises from constructive superposition of the microscopic
sources of the magnetic field that we represent as spins.In effect,the small spins com-
bine together to form a large spin. We have seen in Section 1.6.1 that when there is a
magnetic field hi, each spin will orient itself with the magnetic field. This means that
in an external field—a field due to a source outside of the magnet—there will be a
macroscopic orientation of the spins and they will in turn give rise to a magnetic field.
Magnets,however, can be the source of a magnetic field even when there is no exter-
nal field. This occurs only below a particular temperature known as the Curie tem-
perature of the material. At higher temperatures,a magnetization exists only in an ex-
ternal magnetic field. The Ising model captures this behavior by showing that the
interactions between the spins can cause a spontaneous orientation of the spins with-
out any external field. The spontaneous magnetization is a collective phenomenon. It
would not exist for an isolated spin or even for a small collection of interacting spins.

Ultimately, the reason that the spontaneous magnetization is a collective phe-
nomenon has more to do with the kinetics than the thermodynamics of the system.
The spontaneous magnetization must occur in a particular direction. Without an ex-
ternal field,there is no reason for any particular direction, but the system must choose
one. In our case,it must choose between one of two possibilities—UP or DOWN. Once
the magnetization occurs,it breaks a symmetry of the system, because we can now tell
the difference between UP and DOWN on the macroscopic scale. At this point,the ki-
netics of the system must reenter. If the system were able to flip between UP and
DOWN very rapidly, we would not be able to measure either case. However, we know
that if all of the spins have to flip at once, the likelihood of this happening becomes
vanishingly small as the number of spins grows. Thus for a large number of spins in
a macroscopic material, this flipping becomes slower than our observation of the
magnet.On the other hand,if we had only a few spins,they would still flip back and
forth. It is this property of the system that makes the spontaneous magnetization a
collective phenomenon.

Returning briefly to the discussion at the end of Section 1.3,we see that by choos-
ing a direction for the magnetization,the magnet breaks the ergodic theorem. It is no
longer possible to represent the system using an ensemble with all possible states of

    

e(s , ′ s ) = e(1,1)
(1+ s)(1+ ′ s )

4
+ e(1,−1)

(1+s)(1− ′ s )

4

+e(1,−1)
(1− s)(1+ ′ s )

4
+ e(−1, −1)

(1−s)(1− ′ s )

4
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the system. We must exclude half of the states that have the opposite magnetization.
The reason, as we described there, is because of the existence of a slow process, or a
long time scale, that prevents the system from going from one choice of magnetiza-
tion to the other.

The ex i s ten ce of a spon t a n eous magn eti z a ti on arises because of the en er gy lower-
ing of the sys tem wh en nei gh boring spins align with each other. At su f f i c i en t ly low
tem pera tu re s , this causes the sys tem to align co ll ectively one way or another. Above the
Cu rie tem pera tu re , Tc , the en er gy gain by align m ent is de s troyed by the tem pera tu re -
i n du ced ra n dom flipping of i n d ivi dual spins.We say that the high er tem pera tu re ph a s e
is a disordered ph a s e , as com p a red to the ordered low tem pera tu re ph a s e , wh ere all
spins are align ed . Wh en we think abo ut this therm ody n a m i c a lly, the disorder is an 
ef fect of optimizing the en tropy, wh i ch prom o tes the disordered state and com pete s
with the en er gy as the tem pera tu re is incre a s ed .

1.6.3 Mean field theory
Despite the simplicity of the Ising model, it has never been solved exactly except in
one dimension, and in two dimensions for hi = 0. The techniques that are useful in
these cases do not generalize well. We will emphasize instead a powerful approxima-
tion technique for describing systems of many interacting parts known as the mean
field approximation. The idea of this approximation is to treat a single element of the
system under the average influence of the rest of the system. The key to doing this cor-
rectly is to recognize that this average must be performed self-consistently. The mean-
ing of self-consistency will be described shortly. The mean field approximation can-
not be applied to all interacting systems. However, when it can be, it enables the
system to be understood in a direct way.

To use the mean field approximation we single out a particular spin si and find
the effective field (or mean field) it experiences hi′. This field is obtained by replacing
all variables in the energy by their average values, except for si. This leads to an effec-
tive energy EMF(si) for si. To obtain it we can neglect all terms in the energy (Eq.
(1.6.23)) that do not include si.

(1.6.29)

The sum is over all nearest neighbors of si. If we are able to find what the mean field
hi′ is, then we can solve this interacting Ising model using the solution of the Ising
model without interactions. The problem is that in order to find the field we have to
know the average value of the spins,which in turn depends on the effective fields. This
is the self-consistency. We will develop a single algebraic equation for the solution. It
is interesting first to consider this problem when the external fields hi are zero. Eq.
(1.6.29) shows that a mean field might still exist.When the external field is zero, each
of the spin variables has the same equation. We might guess that the average value of
the spin in one location will be the same as that in any other location:

    

EMF (s i ) = –his i − J si < s j >
jnn
∑ = – ′ h is i

′ h i = hi + J < s j >
jnn
∑
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m = mi = < si > (1.6.30)

In this case our equations become

where z is the number of nearest neighbors,known as the coordination number of the
system. Eq.(1.6.10) gives us the value of the average magnetization when the spin is
subject to a field.Using this same expression under the influence of the mean field we
have

m = tanh( hi′) = tanh( zJm) (1.6.32)

This is the self-consistent equation, which g ives the value of the magnetization in
terms of itself. The solution of this equation may be found graphically, as illustrated
in Fig. 1.6.3, by plotting the functions y = m and y = tanh( zJm) and finding their in-
tersections. There is always a solution m = 0. In addition, for values of zJ > 1, there
are two more solutions related by a change of sign m = ±m0( zJ), where we name the
positive solution m0( zJ). When zJ = 1, the line y = m is tangent to the plot o f y =
tanh( zJm) at m = 0. For values zJ > 1,the value of y = tanh( zJm) must rise above
the line y = m for small positive m and then cross it. The crossing point is the solution
m0( zJ). m0( zJ) approaches one asymptotically as zJ → ∞, e. g. as the temperature
goes to zero. A plot of m0( zJ) from a numerical solution of Eq. (1.6.32) is shown in
Fig. 1.6.4.

We see that there are two different regimes for this model with a transition at a
temperature Tc given by zJ = 1 or

kTc = zJ (1.6.33)

To understand what is happening it is helpful to look at the energy U(m) and the free
energy F(m) as a function of the magnetization,assuming that all spins have the same
magnetization. We will treat the magnetization as a parameter that can be varied. The
actual magnetization is determined by minimizing the free energy.

To determine the energy, we must average Eq.(1.6.23), which includes a product
of spins on neighboring sites. The mean field approximation treats each spin as if it
were independent of other spins except for their average field. This implies that we
have neglected correlations between the value of one spin and the others around it.
Assuming that the spins are uncorrelated means the average over the product over two
spins may be approximated by the product over the averages:

<sisj > ≈ <si><sj> = m2 (1.6.34)

The average over the energy without any external fields is then:

(1.6.35)
    

U(m) = < −J s is j
<ij>
∑ > = −

1

2
NJzm2
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The factor of 1/2 arises because we count each interaction only once (see Eqs.
(1.6.24)–(1.6.27)). A sum over the average of EMF(si) would give twice as much, due
to counting each of the interactions twice.

Since we have fixed the magnetization of all spins to be the same, we can use the
entropy we found in Question 1.6.1 to obtain the free energy as:

(1.6.36)

This free en er gy is plotted in Fig. 1.6.5 as a functi on of m/J z for va rious va lues of
k T/J z. We see that the beh avi or of this sys tem is prec i s ely the beh avi or of a secon d -
order phase tra n s i ti on de s c ri bed in Secti on 1.3. Above the tra n s i ti on tem pera tu re
Tc t h ere is on ly one po s s i ble phase and bel ow Tc t h ere are two phases of equal en-

    

F(m) = −
1

2
NJzm2 − NkT ln(2) −

1

2
(1 + m)ln 1+m( ) +(1− m)ln 1− m( )( ) 
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Solution of
m=tanh( zJm)

F i g u re 1.6.3 G ra p h ical solution of Eq. (1.6.32) m = tanh( z J m) by plotting both the left-
a nd rig ht - h a nd sides of the equa t ion as a func t ion of m a nd looking for the int e r s e c t io ns.
m = 0 is always a solution. To cons ider other possible solutio ns we note that both func-
t io ns are ant i s y m me t r ic in m so we need only cons ider positive values of m. For every pos-
itive solution the re is a negative solution of equal ma g n i t ude. When z J = 1 the slope of
both sides of the equa t ion is the same at m = 0. For z J > 1 the slope of the rig ht is gre a t e r
than the left side. For large positive values of m t he rig ht side of the equa t ion is always
less than the left side. Thus for z J > 1, the re must be an add i t io nal solution. The solu-
t ion is plotted in Fig. 1.6.4. ❚
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er gy. Q u e s ti on 1.6.3 cl a rifies a technical point in this deriva ti on , and Questi on 1.6.4
gen era l i zes the soluti on to inclu de non zero magn etic fields hi ≠ 0.

Question 1.6.3 Show that the minima of the free energy are the solu-
tions of Eq.(1.6.32). This shows that our derivation is internally consis-

tent. Specifically, that our two ways of defining the mean field approxima-
tion, first using Eq. (1.6.29) and then using Eq. (1.6.34), are compatible.

Solution 1.6.3 Taking the derivative of Eq. (1.6.35) with respect to m and
setting it to zero gives:

(1.6.37)

Recognizing the inverse of tanh,as in Eq.(1.6.14), gives back Eq.(1.6.32) as
desired. ❚

Question 1.6.4 Find the replacements for Eq. (1.6.31)–(1.6.36) for the
case where there is a uniform external magnetic field hi = h. Plot the free

energy for a few cases.

    

0 = −Jzm −kT −
1

2
ln 1+m( )− ln 1−m( )( ) 
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Figure 1.6.4 The mean field approximation solution of the Ising model gives the magneti-
zation (average value of the spin) as a solution of Eq. (1.6.32). The solution is shown as a
function of zJ. As discussed in Fig. 1.6.3 and the text for  zJ > 1 there are three solutions.
Only the positive one is shown. The solution m = 0 is unstable, as can be seen by analysis of
the free energy shown in Fig. 1.6.5. The other solution is the negative of that shown. ❚
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Solution 1.6.4 Applying an external magnetic field breaks the symmetry
between the two different minima in the energy that we have found. In this
case we have instead of Eq. (1.6.29)

EMF(si) = –hi′si

hi ′ = h + zJm
(1.6.38)

The self-consistent equation instead of Eq. (1.6.32) is:

m = tanh( h + zJm) (1.6.39)

Averaging over the energy gives:

(1.6.40)

The entropy is unchanged, so the free energy becomes:

(1.6.41)

Several plots are shown in Fig. 1 . 6 . 5 . Above k Tc of Eq . (1.6.33) the app l i c a ti on
of an ex ternal magn etic field gives rise to a magn eti z a ti on by shifting the lo-
c a ti on of the single minimu m . Bel ow this tem pera tu re there is a ti l ting of t h e
t wo minima. Thu s , going from a po s i tive to a nega tive va lue of h would give
an abru pt tra n s i ti on—a firs t - order tra n s i ti on wh i ch occ u rs at ex act ly h = 0 . ❚

In discussing the mean field equations, we have assumed that we could specify
the magnetization as a parameter to be optimized. However, the prescription we have
from thermodynamics is that we should take all possible states of the system with a
Boltzmann probability. What is the justification for limiting ourselves to only one
value of the magnetization? We can argue that in a macroscopic system, the optimal

    

F(m) = −Nhm −
1

2
NJzm 2 − NkT ln(2) −

1

2
(1+ m)ln 1+ m( ) +(1− m)ln 1−m( )( ) 

 
 

 

 
 

    

U(m) = < −h s i
i

∑ − J s is j
<ij>
∑ > =−Nhm −

1

2
NJzm 2
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F i g u re 1.6.5 Plots of the mean field approx i ma t ion to the free ene rg y. (a) shows the free en-
e rgy for h = 0 as a func t ion of m for various values of k T. The free ene rgy m a nd k T a re me a-
s u red in units of J z. As the tempera t u re is lowered below k T/z J = 1 the re are two minima in-
stead of one (shown by arrows). These minima are the solutio ns of Eq. (1.6.32) (see Questio n
1.6.3). The solutio ns are illustrated in Fig. 1.6.4. (b) Shows the same curves as (a) but with a
ma g ne t ic field h/z J = 0.1. The location of the minimum gives the value of the ma g ne t i z a t io n .
T he ma g ne t ic field causes a ma g ne t i z a t ion to exist at all tempera t u re s, but it is larger at lower
t e m p e ra t u re s. At the lowest tempera t u re shown k T/z J = 0.8 the effect of the phase tra ns i t io n
can be seen in the beginnings of a second (metastable) minimum at negative values of the ma g-
ne t i z a t ion. (c) shows plots at a fixed tempera t u re of k T/z J = 0.8 for differe nt values of the ma g-
ne t ic fie l d. As the value of the field goes from positive to ne g a t i v e, the minimum of the fre e
e ne rgy switches from positive to negative values discont i nuo u s l y. At exactly h = 0 the re is a dis-
c o nt i nuous jump from positive to negative ma g ne t i z a t ion—a first-order phase tra ns i t io n . ❚
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value of the magnetization will so dominate other magnetizations that any other pos-
sibility is negligible. This is reasonable except for the case when the magnetic field is
close to zero, below Tc , and we have two equally likely magnetizations. In this case,the
usual justification does not hold, though it is often implicitly applied.A more com-
plete justification requires a discussion of kinetics given in Section 1.6.6.

Using the results of Question 1.6.4, we can draw a phase diagram like that illus-
trated in Section 1.3 for water (Fig. 1.3.7). The phase diagram of the Ising model (Fig.
1.6.6) describes the transitions as a function of temperature (or ) and magnetic field
h. It is very simple for the case of the magnetic system,since the first-order phase tran-
sition line lies along the h = 0 axis and ends at the second-order transition point given
by Eq. (1.6.33).

1.6.4 Antiferromagnets
We found the existence of a phase transition in the last section from the self-consistent
mean field result (Eq. (1.6.32)), which showed that there was a nonzero magnetiza-
tion for zJ > 1. This condition is satisfied for small enough temperature as long as
J > 0. What about the case of J < 0? There are no additional solutions of Eq.(1.6.32)
for this case. Does this mean there is no phase transition? Actually, it means that one
of our assumptions is not a good one. When J < 0,each spin would like (has a lower
energy if…) its neighbors to antialign rather than align their spins. However, we have
assumed that all spins have the same magnetization, Eq. (1.6.30). The self-consistent
equation assumes and does not guarantee that all spins have the same magnetization.
This assumption is not a good one when the spins are trying to antialign.
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kT

kTc=zJ

first order transition

h
Figure 1.6.6 The phase
diagram of the Ising
model found from the
mean field approxima-
tion. The line of first-or-
der phase transitions at
h = 0 ends at the sec-
ond-order phase transi-
tion point given by
Eq. (1.6.32). For posi-
tive values of h there is
a net positive magneti-
zation and for negative
values there is a nega-
tive magnetization. The
change through h = 0 is
continuous above the
second-order transition
point, and discontinu-
ous below it. ❚
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Figure 1.6.7 In order
to obtain mean field
equations for the anti-
ferromagnetic case J <
0 we consider a square
lattice (top) and label
every site according to
the sum of its rectilin-
ear indices as odd
(open circles) or even
(filled circles). A few
sites are shown with in-
dices. Each site is un-
derstood to be the loca-
tion of a spin. We then
invert the spins (rede-
fine them by s → −s)
that are on odd sites
and find that the new
system satisfies the
same equations as the
ferromagnet. The same
trick works for any bi-
partite lattice; for ex-
ample the hexagonal
lattice shown (bottom).
By using this trick we
learn that at low tem-
peratures the system
will have a spontaneous
magnetism that is posi-
tive on odd sites and
negative on even sites
or the opposite. ❚
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We can solve the case of a sys tem with J < 0 on a squ a re or cubic latti ce direct ly us-
ing a tri ck . We label every spin by indices (i , j) in 2-d, as indicated in Fig. 1 . 6 . 7 , or (i , j, k)
in 3-d. Th en we con s i der sep a ra tely the spins whose indices sum to an odd nu m ber
( “odd spins”) and those whose indices sum to an even nu m ber (“even spins” ) . No te
that all the nei gh bors of an odd spin are even and all nei gh bors of an even spin are od d .
Now we invert all of the odd spins. Ex p l i c i t ly we define new spin va ri a bles in 3-d as

s ′ijk = (−1)i +j+ksijk
(1.6.42)

In terms of these new spins,the energy without an external magnetic field is the same
as before, except that each term in the sum has a single additional factor of (–1). There
is only one factor of (−1) because every nearest neighbor pair has one odd and one
even spin. Thus:

(1.6.43)

We have com p l eted the tra n s form a ti on by defining a new interacti on J ′ = –J > 0. In
terms of the new va ri a bl e s , we are back to the ferrom a gn et . The soluti on is the
s a m e , and bel ow the tem pera tu re given by k Tc = zJ ′ t h ere wi ll be a spon t a n eo u s
m a gn eti z a ti on of the new spin va ri a bl e s . What happens in terms of the ori gi n a l
va ri a bles? Th ey become anti a l i gn ed . All of the even spins have magn eti z a ti on in
one directi on , U P, and the odd spins have magn eti z a ti on in the oppo s i te directi on ,
DOW N, or vi ce vers a . This lowers the en er gy of the sys tem , because the nega tive in-
teracti on J < 0 means that all of the nei gh boring spins want to anti a l i gn . This is
c a ll ed an anti ferrom a gn et .

The trick we have used to solve the antif erromagnet works for certain kinds of
periodic arrangements of spins called bipartite lattices. A bipartite lattice can be di-
vided into two lattices so that all the nearest neighbors of a member of one lattice are
members of the other lattice. This is exactly what we need in order for our redefini-
tion of the spin variables to work. Many lattices are bipartite,including the cubic lat-
tice and the hexagonal honeycomb lattice illustrated in Fig. 1.6.7. However, the trian-
gular lattice, illustrated in Fig. 1.6.8, is not.

The t riangular lattice exemplifies an important concept in interacting systems
known as frustration. Consider what happens when we try to assign magnetizations
to each of the spins on a triangular lattice in an effort to create a configuration with a
lower energy than a disordered system. We start at a position marked (1) on Fig. 1.6.8
and assign it a magnetization of m. Then, since it wants its neighbors to be an-
tialigned, we assign position (2) a magnetization of −m. What do we do with the spin
at (3)? It has interactions both with the spin at (1) and with the spin at (2). These in-
teractions would have it be antiparallel with both—an impossible task.We say that the
spin at (3) is frustrated,since it cannot simultaneously satisfy the conflicting demands
upon it. It should not come as a surprise that the phenomenon of frustration becomes
a commonplace occurrence in more complex systems. We might even say that frus-
tration is a source of complexity.

    

E[{ ′ s i }]= −J s is j

<ij>
∑ = −(−J) ′ s i ′ s j

<ij>
∑ = − ′ J ′ s i ′ s j

<ij>
∑

162 I n t r oduc t i o n an d  P re l i m i n a r i e s

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 162
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:16 AM  Page 162



S ta t i s t i c a l  f i e l d s 163

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 163
Title: Dynamics Complex Systems Short / Normal / Long

(1) (2)

(3)

Figure 1.6.8 A triangular
lattice (top) is not a bi-
partite lattice. In this
case we cannot solve the
antiferromagnet J < 0 by
the same method as used
for the square lattice (see
Fig. 1.6.7). If we try to as-
sign magnetizations to
different sites we find
that assigning a magneti-
zation to site (1) would
lead site (2) to be an-
tialigned. This combina-
tion would, however re-
quire site (3) to be
antialigned to both sites
(1) and (2), which is im-
possible. We say that site
(3) is “frustrated.” The
bottom illustration shows
what happens when we
take the hexagonal lattice
from Fig. 1.6.7 and super-
pose the magnetizations
on the triangular lattice
leaving the additional
sites (shaded) as unmag-
netized (see Questions
1.6.5–1.6.7). ❚
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Question 1.6.5 Despite the existence of frustration, it is possible to
construct a state with lower energy than a completely disordered state

on the triangular lattice. Construct one of them and evaluate its free
energy.

Solution 1.6.5 We con s tru ct the state by ex tending the process discussed in
the text for assigning magn eti z a ti ons to indivi dual site s . We start by assigning a
m a gn eti z a ti on m to site (1) in Fig. 1.6.8 and −m to site (2). Because site (3) is
f ru s tra ted , we assign it no magn eti z a ti on . We con ti nue by assigning magn eti z a-
ti ons to any site that alre ady has two nei gh bors that are assign ed magn eti z a-
ti on s . We assign a magn eti z a ti on of m wh en the nei gh bors are −m and 0, a
m a gn eti z a ti on of −m wh en the nei gh bors are m and 0 and a magn eti z a ti on of
0 wh en the nei gh bors are m and −m. This gives the illu s tra ti on at the bo t tom of
F i g. 1 . 6 . 8 . Com p a ring with Fig. 1 . 6 . 7 , we see that the magn eti zed sites corre-
s pond to the hon eycomb latti ce . O n e - t h i rd of the triangular latti ce sites have a
m a gn eti z a ti on of +m, −m and 0. E ach magn eti zed site has three nei gh bors of
the oppo s i te magn eti z a ti on and three unmagn eti zed site s . The free en er gy of
this state is given by:

(1.6.44)

The first term is the energy. Each nearest neighbor pair of spins that are an-
tialigned provides an energy Jm2. Let us call this a bond between two spins.
There are a total of three interactions for every spin (each spin interacts with
six other spins but we can count each interaction only once). However, on
average there is only one out of three interactions that is a bond in this sys-
tem. To count the bonds, note that one out of three spins (with mi = 0) has
no bonds, while the other two out of three spins each have three bonds. This
gives a total of six bonds for three sites, but each bond must be counted only
once for a pair of interacting spins. We divide by two to get three bonds for
three spins, or an average of one bond per site. The second term in Eq.
(1.6.44) is the entropy of the N / 3 unmagnetized sites,and the third term is
the entropy of the 2N / 3 magnetized sites.

Th ere is another way to sys tem a ti c a lly con s tru ct a state with an en er gy
l ower than a com p l etely disordered state . As s i gn magn eti z a ti on s +m a n d −m
a l tern a tely along one stra i ght line—a on e - d i m en s i onal anti ferrom a gn et .
Th en skip both nei gh boring lines by set ting all of t h eir magn eti z a ti ons to
zero. Th en repeat the anti ferrom a gn etic line on the next para ll el line. Th i s
con f i g u ra ti on of a l tern a ting anti ferrom a gn etic lines is also lower in en er gy
than the disordered state , but it is high er in en er gy than the con f i g u ra ti on
s h own in Fig. 1.6.8 at low en o u gh tem pera tu re s , as discussed in the nex t
qu e s ti on . ❚
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Question 1.6.6 Show that the state illustrated on the bottom of Fig. 1.6.8
has the lowest possible free energy as the temperature goes to zero, at

least in the mean field approximation.

Solution 1.6.6 As the temperature goes to zero, the entropic contribution
to the free energy is ir relevant. The energy of the Ising model is minimized
in the mean field approximation when the magnetization is +1 if the local
effective field is positive, or –1 ifit is negative. The magnetization is arbitrary
if the effective field is zero. If we consider three spins arranged in a triangle,
the lowest possible energy of the three interactions between them is given by
having one with m = +1, one with m = –1 and the other arbitrary. This is
forced, because we must have at least one +1 and one –1 and then the other
is arbitrary. This is the optimal energy for any triangle of interactions. The
configuration of Fig. 1.6.8 achieves this optimal arrangement for all triangles
and therefore must give the lowest possible energy of any state. ❚

Question 1.6.7 In the case of the ferromagnet and the antiferromagnet,
we found that there were two different states of the system with the same

energy at low temperatures. How many states are there of the kind shown in
Fig. 1.6.8 and described in Questions 1.6.5 and 1.6.6?

Solution 1.6.7 There are two ways to count the states. The first is to count
the number of distinct magnetization structures. This counting is as follows.
Once we assign the values of the magnetization on a single triangle, we have
determined them everywhere in the system. This follows by inspection or by
induction on the size of the assigned triangle. Since we can assign arbitrar-
ily the three different magnetizations (m, −m,0) within a triangle, there are
a total of six such distinct magnetization structures.

We can also count how many disti n ct arra n gem ents of spins there are .
This is rel evant at low tem pera tu res wh en we want to know the po s s i ble state s
at the lowest en er gy. We see that there are 2N/ 3 a rra n gem ents of the arbi tra ry
spins for each of the magn eti z a ti on s . If we want to count all of the state s , we
can almost mu l ti p ly this nu m ber by 6. We have to correct this sligh t ly bec a u s e
of s t a tes wh ere the arbi tra ry spins are all align ed U P or DOW N. Th ere are two
of these for each arra n gem ent of the magn eti z a ti on s , and these wi ll be
co u n ted twi ce . Making this correcti on gives 6(2N/ 3 − 1) state s . We see that
f ru s tra ti on gives rise to a large nu m ber of l owest en er gy state s .

We have not yet proven that these are the on ly states with the lowest en er gy.
This fo ll ows from the requ i rem ent that every tri a n gle must have its lowest po s-
s i ble en er gy, and the ob s erva ti on that set ting the va lue of the magn eti z a ti ons of
one tri a n gle then forces the va lues of a ll other magn eti z a ti ons uniqu ely. ❚

Question 1.6.8 We discovered that our assumption that all spins should
have the same magnetization does not always apply. How do we know

that we found the lowest energy in the case of the ferromagnet? Answer this
for the case of h = 0 and T = 0.

S ta t i s t i c a l  f i e l d s 165

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 165
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:16 AM  Page 165



Solution 1.6.8 To minimize the energy, we can consider each term of the
energy, which is just the product of spins on adjacent sites. The minimum
possible value for each term of a ferromagnet occurs for aligned spins. The
two states we found at T = 0 with mi = 1 and mi = –1 are the only possible
states with all spins aligned. Since they give the minimum possible energy,
they must be the correct states. ❚

1.6.5 Beyond mean field theory (correlations)
Mean field theory treats only the average orientation of each spin and assumes that
spins are uncorrelated. This implies that when one spin changes its sign, the other
spins do not respond. Since the spins are interacting, this must not be true in a more
complete treatment. We expect that even above Tc , nearby spins align to ea ch other.
Below Tc , nearby spins should be more aligned than would be suggested by the aver-
age magnetization. Alignment of spins implies their values are correlated. How do we
quantify the concept of correlation? When two spins are correlated they are more
likely to have the same value. So we might define the correlation of two spins as the
average of the product of the spins:

(1.6.45)

According to this definition, they are correlated if they are both always +1, so that
Psisj

(1,1) = 1. Then < sisj > achieves its maximum possible value +1. The problem with
this definition is that when si and sj are both always +1 they are completely indepen-
dent of each other, because each one is +1 independently of the other. Our concept of
correlation is the opposite of independence. We know that if spins are independent,
then their joint probability distribution factors (see Section 1.2)

P(si ,sj) = P(si)P(sj) (1.6.46)

Thus we define the correlation as a measure of the departure of the joint probability
from the product of the individual probabilities.

(1.6.47)

This definition means that when the correlation is zero, we can say that si and sj are in-
dependent. However, we must be careful not to assume that they are not aligned with
each other. Eq. (1.6.45) measures the spin alignment.

Question 1.6.9 One way to think about the difference between Eq.
(1.6.45) and Eq. (1.6.47) is by considering a hierarchy of correlations.

The first kind of correlation is of individual spins with themselves and is just
the average of the spin. The second kind are correlations between pairs of
spins that are not contained in the first kind. Define the next kind of corre-
lation in the hierarchy that would describe correlations between three spins
but exclude the correlations that appear in the first two.

    

sis j (P(s i ,s j ) − P(s i )P(s j )) = < si s j > − < si >< s j >
s i ,s j

∑

    

< s is j > = s is j P(s i ,s j )
s i ,s j

∑ = Ps is j
(1,1) + Psi s j

(−1, −1) − Ps i sj (−1,1)− Ps i s j
(1,−1)
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Solution 1.6.9 The first three elements in the hierarchy of correlations are:

< si >
< sisj > − < si > < sj > (1.6.48)

< sisjsk> − < sisj > < sk > − < sisk > < sj > − < sjsk > < si > +2 < si > < sj > < sk >

The expression for the correlation of three spins can be checked by seeing
what happens if the variables are independent. When variables are indepen-
dent, the average of their product is the same as the product of their aver-
ages. Then all averages become products of averages of single variables and
everything cancels. Similarly, if the first two variables si and sj are correlated
and the last one sk is independent of them,then the first two terms cancel and
the last three terms also cancel. Thus, this expression measures the correla-
tions of three variables that are not present in any two of them. ❚

Question 1.6.10 To see the difference between Eqs. (1.6.45) and
(1.6.47), evaluate them for two cases: (a) si is always equal to 1 and sj is

always equal to –1,and (b) si is always the opposite of sj but each of them av-
erages to zero (i.e., is equally likely to be +1 or –1).

Solution 1.6.10

a. Psisj
(1,−1) = 1, so < sisj > = −1, but < sisj > − < si > < sj > = 0.

b. < sisj > = −1, and < sisj > − < si > < sj > = −1. ❚

Comparing Eq. (1.6.34) with Eq. (1.6.47), we see that correlations measure the
departure of the system from mean field theory. When there is an average magnetiza-
tion, such as there is below Tc in a ferromagnet, the effect of the average magnetiza-
tion is removed by our definition of the correlation. This can also be seen from rewrit-
ing the expression for correlations as:

< sisj > − < si > < sj > = < (si − < si > ) (sj − < sj >) > (1.6.49)

Correlations measure the behavior of the difference between the spin and its average
value. In the rest of this section we discuss qualitatively the correlations that are found
in a ferromagnet and the breakdown of the mean field approximation.

The en er gy of a ferrom a gn et is determ i n ed by the align m ent of n ei gh bori n g
s p i n s . Po s i tive correl a ti ons bet ween nei gh boring spins redu ce its en er gy. Po s i tive
or nega tive correl a ti ons diminish the po s s i ble con f i g u ra ti ons of spins and there-
fore redu ce the en tropy. At very high tem pera tu re s , the com peti ti on bet ween the
en er gy and the en tropy is dom i n a ted by the en tropy, so there should be no corre-
l a ti ons and each spin is indepen den t . At low tem pera tu re s , well bel ow the tra n s i-
ti on tem pera tu re , the avera ge va lue of the spins is close to on e . For ex a m p l e , for

z J = 2 , wh i ch corre s ponds to T = Tc / 2, the va lue of m0( z J) is 0.96 (see Fig.
1 . 6 . 4 ) . So the correl a ti ons given by Eq . (1.6.47) play almost no ro l e . Correl a ti on s
a re most significant near Tc , so it is near the tra n s i ti on that the mean field ap-
prox i m a ti on is least va l i d .
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For all T > Tc and for h = 0, the magnetization is zero. However, starting from
high temperature, the correlation between neighboring spins increases as the tem-
perature is lowered. Moreover, the correlation of one spin with its neighbors,and their
correlation with their neighbors,induces a correlation of each spin with spins farther
away. The distance over which spins are correlated increases as the temperature de-
creases. The correlation decays exponentially, so a correlation length (T) may be de-
fined as the decay constant of the correlation:

< sisj > − < si > < sj > ∝ e −rij / (T ) (1.6.50)

where rij is the Euclidean distance between si and sj. At Tc the correlation length di-
verges. This is one way to think about how the phase transition occurs. The divergence
of the correlation length implies that two spins anywhere in the system become cor-
related. As mentioned previously, in order for the instantaneous magnetization to be
measured, there must also be a divergence of the relaxation time between opposite
values of the magnetization. This will be discussed in Sections 1.6.6 and 1.6.7.

For tem pera tu res just bel ow Tc , the avera ge magn eti z a ti on is small . The corre-
l a ti on length of the spins is large . The avera ge align m ent (Eq . (1.6.45)) is essen ti a lly
the same as the correl a ti on (Eq . ( 1 . 6 . 4 7 ) ) . However, as T is furt h er redu ced bel ow
Tc , the avera ge magn eti z a ti on grows prec i p i to u s ly and the correl a ti on measu res the
d i f feren ce bet ween the spin-spin align m ent and the avera ge spin va lu e . Both the
correl a ti on and the correl a ti on length dec rease aw ay from Tc . As the tem pera tu re
goes to zero, the correl a ti on length also goes to zero, even as the correl a ti on itsel f
va n i s h e s .

At T = Tc t h ere is a special circ u m s t a n ce wh ere the correl a ti on length is infinite .
This does not mean that the correl a ti on is unch a n ged as a functi on of the distance be-
t ween spins, rij. Si n ce the magn eti z a ti on is zero, the correl a ti on is the same as the spin
a l i gn m en t . If the align m ent did not dec ay with distance , the magn eti z a ti on would be
u n i ty, wh i ch is not correct . The infinite correl a ti on length corre s ponds to power law
ra t h er than ex pon en tial dec ay of the correl a ti on s .A power law dec ay of the correl a ti on s
is more gradual than ex pon en tial and implies that there is no ch a racteri s tic size for the
correl a ti on s : we can find correl a ted regi ons of spins that are of a ny size . Si n ce the cor-
rel a ted regi ons flu ctu a te , we say that there are flu ctu a ti ons on every length scale.

The existence of correlations on every length scale near the phase transition and
the breakdown of the mean field approximation that neglects these correlations
played an important role in the development of the theory of phase transitions. The
discrepancy between mean field predictions and experiment was one of the great un-
solved problems of statistical physics. The development of renormalization tech-
niques that directly consider the behavior of the system on different length scales
solved this problem. This will be discussed in greater detail in Section 1.10.

In Section 1.3 we discussed the nature of ensemble averages and indicated that
one of the central issues was determining the size of an independent system. For the
Ising model and other systems that are spatial ly uniform, it is the correlation length
that determines the size of an independent system. If a physical system is much larger
than a correlation length then the system is self-averaging, in that experimental mea-
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surements average over many independent samples.We see that far from a phase tran-
sition,uniform systems are generally self-averaging;near a phase transition,the phys-
ical size of a system may enter in a more essential way.

The mean field approx i m a ti on is su f f i c i ent to captu re the co ll ective beh avi or of t h e
Ising model . However, even Tc is not given correct ly by mean field theory, and indeed it
is difficult to calculate . The actual tra n s i ti on tem pera tu re differs from the mean fiel d
va lue by a factor that depends on the dimen s i on a l i ty and stru ctu re of the latti ce . In 1-d ,
the failu re of mean field theory is most severe ,s i n ce there is actu a lly no real tra n s i ti on .
Ma gn eti z a ti on does not occ u r, except in the limit of T → 0 . The re a s on that there is no
m a gn eti z a ti on in 1-d, is that there is alw ays a finite prob a bi l i ty that at some point alon g
the chain there wi ll be a swi tch from having spins DOW N to having spins U P. This is
true no matter how low the tem pera tu re is. The prob a bi l i ty of su ch a bo u n d a ry
bet ween U P a n d DOW N spins dec reases ex pon en ti a lly with the tem pera tu re . It is given
by 1/( 1 + e2J /k T) ≈ e −2J /k T at low tem pera tu re . Even one su ch bo u n d a ry de s troys the
avera ge magn eti z a ti on for an arbi tra ri ly large sys tem . While form a lly there is no ph a s e
tra n s i ti on in one dimen s i on , u n der some circ u m s t a n ces the ex pon en ti a lly growi n g
d i s t a n ce bet ween bo u n d a ries may have con s equ en ces like a phase tra n s i ti on . The ef fect
i s ,h owever, mu ch more gradual than the actual phase tra n s i ti ons in 2-d and 3-d.

The mean field approximation improves as the dimensionality increases. This is
a consequence of the increase in the number of neighbors. As the number of neigh-
bors increases,the averaging used for determining the mean field becomes more reli-
able as a measure of the environment of the spin. This is an important point that de-
serves some thought. As the number of different influences on a particular variable
increases, they become better represented as an average influence. Thus in 3-d, the
mean field approximation is better than in 2-d. Moreover, it turns out that rather than
just gradually improving as the number of dimensions increases, for 4-d the mean
field approximation becomes essentially exact for many of the properties of impor-
tance in phase transitions. This happens because correlations become irrelevant on
long length scales in more than 4-d. The number of effective neighbors of a spin also
increases if we increase the range of the interactions. Several different models with
long-range interactions are discussed in the following section.

The Ising model has no built-in dynamics;however, we often discuss fluctuations
in this model. The simplest fluctuation would be a single spin flipping in time. Unless
the average value of a spin is +1 or –1,a spin must spend some time in each state. We
can see that the presence of correlations implies that there must be fluctuations in time
that affect more than one spin. This is easiest to see if we consider a system above the
transition, where the average magnetization is zero. When one spin has the value +1,
then the average magnetization of spins around it will be positive. On average,a re-
gion of spins will tend to flip together from one sign to the other. The amount of time
that the region takes to flip depends on the length of the correlations. We have defined
correlations in space between two spins. We could generalize the definition in Eq.
(1.6.47) to allow the indices i and j to refer to different times as well as spatial posi-
tions. This would tell us about the fluctuations over time in the system. The analog of
the correlation length Eq.(1.6.50) would be the relaxation time (Eq.(1.6.69) below).
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The Ising model is useful for describing a large variety of systems;however, there
are many other statistical models using more complex variables and interactions that
have been used to represent various physical systems. In general, these models are
treated first using the mean field approximation. For each model,there is a lower di-
mension (the lower critical dimension) below which the mean field results are com-
pletely invalid. There is also an upper critical dimension, where mean field is exact.
These dimensions are not necessarily the same as for the Ising model.

1.6.6 Long-range interactions and the spin glass
Long-range interactions enable the Ising model to serve as a model of systems that are
much more complex than might be expected from the magnetic analog that moti-
vated its original int roduction. If we just consider ferromagnetic interactions sepa-
rately, the model with long-range interactions actually behaves more simply. If we just
consider antiferromagnetic interactions, larger scale patterns of UP and DOWN spins
arise. When we include both negative and positive interactions together, there will be
additional features that enable a richer behavior. We will start by considering the case
of ferromagnetic long-range interactions.

The primary effect of the increase in the range of ferromagnetic interactions is
improvement of the mean field approximation. There are several ways to model in-
teractions that extend beyond nearest neighbors in the Ising model. We could set a
sphere of a particular radius r0 around each spin and consider all of the spins within
the sphere to be neighbors of the spin at the center.

(1.6.51)

Here we do not restrict the summations over i and j in the second term,so we explic-
itly include a factor of 1/2 to avoid counting interactions twice.Alternatively, we could
use an interaction J(rij) that decays either exponentially or as a power law with dis-
tance from each spin:

(1.6.52)

In both Eqs. (1.6.51) and (1.6.52) the self-interaction terms i = j are generally to be
excluded. Since si

2 = 1 they only add a constant to the energy.
Q u i te gen era lly and indepen dent of the ra n ge or even the va ri a bi l i ty of i n terac-

ti on s , wh en all interacti ons are ferrom a gn eti c , J > 0, t h en all the spins wi ll align at low
tem pera tu re s . The mean field approx i m a ti on may be used to esti m a te the beh avi or. All
cases then redu ce to the same free en er gy (Eq . (1.6.36) or Eq . (1.6.41)) with a measu re
of the strength of the interacti ons rep l acing z J. The on ly differen ce from the neare s t
n ei gh bor model then rel a tes to the acc u racy of the mean field approx i m a ti on . It is sim-
plest to con s i der the model of a fixed interacti on strength with a cutof f l en g t h . Th e
mean field is acc u ra te wh en the correl a ti on length is shorter than the interacti on dis-
t a n ce . Wh en this occ u rs , a spin is interacting with other spins that are uncorrel a ted
with it. The avera ging used to obtain the mean field is then correct . Thus the approx-

    

E[{s i }]= – h is i

i

∑ −
1

2
J s is j

rij <r0

∑
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i m a ti on improves if the interacti on bet ween spins becomes lon ger ra n ged . However,
the correl a ti on length becomes arbi tra ri ly long near the phase tra n s i ti on . Thu s , for
l on ger interacti on len g t h s , the mean field approx i m a ti on holds cl o s er to Tc but even-
tu a lly becomes inacc u ra te in a narrow tem pera tu re ra n ge around Tc .Th ere is one model
for wh i ch the mean field approx i m a ti on is ex act indepen dent of tem pera tu re or di-
m en s i on . This is a model of i n f i n i te ra n ge interacti ons discussed in Questi on 1.6.11.
The distance - depen dent interacti on model of Eq . (1.6.52) can be shown to beh ave like
a finite ra n ge interacti on model for interacti ons that dec ay more ra p i dly than 1/r in 3-
d . For we a ker dec ay than 1/r this model is essen ti a lly the same as the lon g - ra n ge in-
teracti on model of Q u e s ti on 1.6.11. In teracti ons that dec ay as 1/r a re a borderline case.

Question 1.6.11 Solve the Ising model with infinite ranged interactions
in a uniform magnetic field. The infinite range means that all spins in-

teract with the same interaction strength. In o rder to keep the energy ex-
trinsic (proportional to the volume) we must make the interactions between
pairs of spins weaker as the system becomes larger, so replace J → J /N. The
energy is given by:

(1.6.53)

For simplicity, keep the i = j terms in the second sum even though they add
only a constant.

Solution 1.6.11 We can solve this problem exactly by rewriting the energy
in terms of a collective coordinate which is the average over the spin variables

(1.6.54)

in terms of which the energy becomes:

(1.6.55)

This is the same as the mean field Eq. (1.6.39) with the substitution Jz → J.
Here the equation is exact. The result for the entropy is the same as before,
since we have fixed the average value of the spin by Eq.(1.6.54). The solution
for the value of m for h = 0 is given by Eq.(1.6.32) and Fig. 1.6.4. For h ≠ 0
the discussion in Question 1.6.4 applies. ❚

The case of antiferromagnetic interactions will be considered in greater detail in
Chapter 7. If all interactions are antiferromagnetic J < 0,then extending the range of
the interactions tends to reduce their effect, because it is impossible for neighboring
spins to be antialigned and lower the energy. To be antialigned with a neighbor is to
be aligned with a second neighbor. However, by forming patches of UP and DOWN

spins it is possible to lower the energy. In an infinite-ranged antiferromagnetic sys-
tem,all possible states with zero magnetization have the same lowest energy at h = 0.

    
E({si }) = hNm −

1

2
JNm2

    

m =
1

N
s i

i

∑

    

E[{s i }]= –h si

i

∑ −
1

2N
J si s j

i, j

∑
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This can be seen from the energy expression in Eq.(1.6.55). In this sense,frustration
from many sources is almost the same as no interaction.

In addition to the ferromagnet and antiferromagnet, there is a third possibility
where there are both positive and negative interactions. The physical systems that
have motivated the study of such models are known as spin glasses. These are mate-
rials where magnetic atoms are found or placed in a nonmagnetic host.The randomly
placed magnetic sites interact via long-range interactions that oscillate in sign with
distance. Because of the randomness in the location of the spins, there is a random-
ness in the interactions between them. Experimentally, it is found that such systems
also undergo a transition that has been compared to a glass transition, and therefore
these systems have become known as spin glasses.

A model for these materials, known as the Sherrington-Kirkpatrick spin glass,
makes use of the Ising model with infinite-range random interactions:

(1.6.56)

Jij = ± J

The interactions Jij are fixed uncorrelated random variables—quenched variables.
The properties of this system are to be averaged over the random variables Jij but only
after it is solved.

Similar to the ferromagnetic or antiferromagnetic Ising model,at high tempera-
tures kT >> J the spin glass model has a disordered phase where spins do not feel the
effect of the interactions beyond the existence of correlations. As the temperature is
lowered,the system undergoes a transition that is easiest to describe as a breaking of
ergodicity. Because of the random interactions,some arrangements of spins are much
lower in energy than others. As with the case of the antiferromagnet on a t riangular
lattice,there are many of these low-energy states. The difference between any two of
these states is large,so that changing from one state to the other would involve the flip-
ping of a finite fraction of the spins of the system. Such a flipping would have to be
cooperative, so that overcoming the barrier between low-energy states becomes im-
possible below the transition temperature during any reasonable time. The low-
energy states have been shown to be organized into a hierarchy determined by the size
of the overlaps between them.

Question 1.6.12 Solve a model that includes a special set of correlated
random interactions of the type of the Sherrington-Kirkpatrick model,

where the interactions can be written in the separable form

Jij = i j

i = ±1
(1.6.57)

This is the Mattis model. For simplicity, keep the terms where i = j.

Solution 1.6.12 We can solve this probl em by defining a new set of va ri a bl e s

s′i = isi (1.6.58)

    

E[{s i }]= −
1

2N
J ijs i s j

ij

∑
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In terms of these variables the energy becomes:

(1.6.59)

which is the same as the ferromagnetic Ising model. The phase transition of
this model would lead to a spontaneous magnetization of the new variables.
This corresponds to a net orientation of the spins toward (or opposite) the
state si = i. This can be seen from

m = < s′i > = i< si > (1.6.60)

This model shows that a set of mixed interactions can cause the system to
choose a particular low-energy state that behaves like the ordered state found
in the ferromagnet. By extension, this makes it plausible that fully random
interactions lead to a variety of low-energy states. ❚

The existence of a large number of randomly located energy minima in the spin
glass might suggest that by engineering such a system we could control where the
minima occur. Then we might use the spin glass as a memory. The Mattis model pro-
vides a clue to how this might be accomplished. The use of an outer product repre-
sentation for the matrix of interactions turns out to be closely related to the model
developed by Hebb for biological imprinting of memories on the brain. The engi-
neering of minima in a long-range-interaction Ising model is precisely the model de-
veloped by Hopfield for the behavior of neural networks that we will discuss in
Chapter 2.

In the ferromagnet and antiferromagnet, there were intuitive ways to deal with
the breaking of ergodicity, because we could easily define a macroscopic parameter
(the magnetization) that differentiated between different macroscopic states of the
system. More general ways to do this have been developed for the spin glass and ap-
plied to the study of neural networks.

1.6.7 Kinetics of the Ising model
We have introdu ced the Ising model wi t h o ut the ben efit of a dy n a m i c s . Th ere are many
ch oi ces of dynamics that would lead to the equ i l i brium en s em ble given by the Is i n g
m odel . One of the most natu ral would arise from con s i dering each spin to have the
t wo - s t a te sys tem dynamics of Secti on 1.4. In this dy n a m i c s , tra n s i ti ons bet ween U P a n d
DOW N occur ac ross an interm ed i a te barri er that sets the tra n s i ti on ra te . We call this the
activa ted dynamics and wi ll use it to discuss pro tein folding in Ch a pter 4 because it can
be motiva ted micro s cop i c a lly. The activa ted dynamics de s c ri bes a con ti nuous ra te of
tra n s i ti on for each of the spins. It is of ten conven i ent to con s i der tra n s i ti ons as occ u r-
ring at discrete ti m e s . A parti c u l a rly simple dynamics of this kind was introdu ced by
G l a u ber for the Ising model . It also corre s ponds to the dynamics popular in studies of
n eu ral net works that we wi ll discuss in Ch a pter 2. In this secti on we wi ll show that the
t wo different dynamics are qu i te cl o s ely rel a ted . In Secti on 1.7 we wi ll con s i der severa l
o t h er forms of dynamics wh en we discuss Mon te Ca rlo simu l a ti on s .

    

E[{s i }]= −
1

2N
i js is j

ij
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1
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If there are many different possible ways to assign a dynamics to the Ising model,
how do we know which one is correct? As for the model itself, it is necessary to con-
sider the system that is being modeled in order to determine which kinetics is appro-
priate. However, we expect that there are many different choices for the kinetics that
will provide essentially the same results as long as we consider its long time behavior.
The central limit theorem in Section 1.2 shows that in a stochastic process, many in-
dependent steps lead to the same Gaussian distribution of probabilities,independent
of the specific steps that are taken. Similarly, if we choose a dynamics for the Ising
model that allows individual spin flips, the behavior of processes that involve many
spin flips should not depend on the specific dynamics chosen. Having said this, we
emphasize that the conditions under which different dynamic rules provide the same
long time behavior are not fully established. This problem is essential ly the same as
the problem of classifying dynamic systems in general. We will discuss it in more de-
tail in Section 1.7.

Both the activated dynamics and the Glauber dynamics assume that each spin re-
laxes from its present state toward its equilibrium distribution. Relaxation of each
spin is independent of other spins. The equilibrium distribution is determined by the
relative energy of its UP and DOWN state at a particular time. The energy diff erence
between having the i th spin si UP and DOWN is:

E+i({sj}j≠i) = E(si = +1,{sj}j≠i) −E(si = –1,{sj}j≠i) (1.6.61)

The probability of the spin being UP or DOWN is given by Eq. (1.4.14) as:

(1.6.62)

Psi
(−1) = 1 − f(E+i) = f(−E+i) (1.6.63)

In the activated dynamics, all spins perform transitions at all times with rates
R(1|–1) and R(−1|1) given by Eqs.(1.4.38) and (1.4.39) with a site-dependent energy
barrier EBi that sets the relaxation time for the dynamics i. As with the two-state
system, it is assumed that each transition occurs essentially instantaneously. The
choice of the barrier EBi is quite important for the kinetics, particularly since it may
also depend on the state of other spins with which the i th spin interacts. As soon as
one of the spins makes a transition,all of the spins with which it interacts must change
their rate of relaxation accordingly. Instead of considering directly the rate of transi-
tion, we can consider the evolution of the probability using the Master equation,
Eq. (1.4.40) or (1.4.43). This would be convenient for Master equation treatments of
the whole system. However, the necessity of keeping track of all of the probabilities
makes this impractical for all but simple considerations.

Glauber dynamics is simpler in that it considers only one spin at a time. The sys-
tem is updated in equal time intervals.Each time interval is divided into N small time
increments. During each time increment, we select a particular spin and only consider
its dynamics. The selected spin then relaxes completely in the sense that its state is set
to be UP or DOWN according to its equilibrium probability, Eq. (1.6.62). The transi-
tions of different spins occur sequentially and are not otherwise coupled. The way we

    
Ps i

(1) =
1

1+ e E+i / kT
= f (E+i )
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select which spin to update is an essential part of the Glauber dynamics. The simplest
and most commonly used approach is to select a spin at random in each time incre-
ment. This means that we do not guarantee that every spin is selected during a time
interval consisting of N spin updates.Likewise,some spins will be updated more than
once in a time interval.On average,however, every spin is updated once per time in-
terval.

In order to show that the Glauber dynamics are intimately related to the activated
dynamics, we begin by considering how we would implement the activated dynamics
on an ensemble of independent two-state systems whose dynamics are completely de-
termined by the relaxation time = (R(1|–1) + R(1|–1))−1 (Eq.(1.4.44)). We can think
about this ensemble as representing the dynamics of a single two-state system, or, in
a sense that will become clear, as representing a noninteracting Ising model. The to-
tal number of spins in our ensemble is N. At time t the ensemble is described by the
number of UP spins given by NP(1;t) and the number of DOWN spins NP(−1;t).

We describe the a ctivated dynamics of the ensemble using a small time interval
∆t, which eventually we would like to make as small as possible. During the interval
of time ∆t, which is much smaller than the relaxation time , a certain number of spins
make transitions. The probability that a particular spin will make a transition from
UP to DOWN is given by R(−1|1)∆t. The total number of spins making a transition
from DOWN to UP, and from UP to DOWN, is:

NP(−1;t)R(1|–1)∆t

NP(1;t)R(−1|1)∆t
(1.6.64)

respectively. To implement the dynamics, we must randomly pick out of the whole en-
semble this number of UP spins and DOWN spins and flip them. The result would be
a new number of UP and DOWN spins NP(1;t + ∆t) and NP(−1;t + ∆t). The process
would then be repeated.

It might seem that there is no reason to randomly pick the ensemble elements to
flip, because the result is the same if we rearrange the spins arbitrarily. However, if
each spin represents an identifiable physical system (e.g., one spin out of a noninter-
acting Ising model) that is performing an internal dynamics we are representing, then
we must randomly pick the spins to flip.

It is somewhat inconvenient to have to worry about selecting a particular num-
ber of UP and DOWN spins separately. We can modify our prescription so that we se-
lect a subset of the spins regardless of orientation. To achieve this, we must allow that
some of the selected spins will be flipped and some will not. We select a fraction of
the spins of the ensemble. The number of these that are DOWN is NP(−1; t). In or-
der to flip the same number of spins from DOWN to UP, as in Eq.(1.6.64), we must flip
UP a fraction R(1|–1)∆t / of the NP(−1; t) spins. Con s equ en t ly, the fracti on of s p i n s
we do not flip is (1 – R( 1 | – 1 )∆t / ) . Si m i l a rly, the nu m ber of s el ected U P spins is

N P ( 1;t) the fracti on of these to be flipped is R(−1|1 )∆t / , and the fracti on we do not
flip is (1 − R(−1|1) ∆t/ ) . In order for these ex pre s s i ons to make sense (to be po s i tive )

must be large en o u gh so that at least one spin wi ll be flipped . This implies > max
(R( 1 | – 1 )∆t, R(−1 | 1 )∆t) . Moreover, we do not want to be larger than it must be

S t a t i s t i c a l  f i e l d s 175

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 175
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:16 AM  Page 175



because this will just force us to select additional spins we will not be flipping. A con-
venient choice would be to take

= (R(1| − 1) + R(−1|1))∆t = ∆t / (1.6.65)

The consequences of this choice are quite interesting, since we find that the fraction
of selected DOWN spins to be flipped UP is R(1|–1) / (R(1|–1) + R(−1|1)) = P(1), the
equilibrium fraction of UP spins. The fraction not to be flipped is the equilibrium
fraction of DOWN spins. Similarly, the fraction o f selected UP spins that are to be
flipped DOWN is the equilibrium fraction of DOWN spins, and the fraction to be left
UP is the equilibrium fraction of UP spins. Consequently, the outcome of the dynam-
ics of the selected spin does not depend at all on the initial state of the spin. The re-
vised prescription for the dynamics is to select a fraction of spins from the ensem-
ble and set them according to their equilibrium probability.

We still must choose the time interval ∆t. The smallest time interval that makes
sense is the interval for which the number of selected spins would be just one. A
smaller number would mean that sometimes we would not choose any spins.Setting
the number of selected spins N = 1 using Eq. (1.6.65) gives:

(1.6.66)

which also implies the condition ∆t << , and means that the approximation of a fi-
nite time increment ∆t is directly coupled to the size of the ensemble. Our new pre-
scription is that we select a single spin and set it UP or DOWN according to its equi-
librium probability. This would be the prescription of Glauber dynamics if the
ensemble were considered to be the Ising model without interactions. Thus for a non-
interacting Ising model, the Glaub er dynamics and the activated dynamics are the
same. So far we have made no approximation except the finite size of the ensemble.
We still have one more step to go to apply this to the interacting Ising model.

The activa ted dynamics is a stoch a s tic dy n a m i c s , so it does not make sense to
discuss on ly the dynamics of a particular sys tem but the dynamics of an en s em bl e
of Ising model s . At any mom en t , the activa ted dynamics treats the Ising model as a
co ll ecti on of s everal kinds of s p i n s . E ach kind of spin is iden ti f i ed by a parti c u l a r
va lue of E+ and EB. These para m eters are con tro ll ed by the local envi ron m ent of t h e
s p i n . The dynamics is not con cern ed with the source of these qu a n ti ti e s , on ly thei r
va lu e s . The dynamics are that of an en s em ble con s i s ting of s everal kinds of s p i n s
with a different nu m ber Nk of e ach kind of s p i n , wh ere k i n dexes the kind of s p i n .
According to the re sult of the previous para gra ph , and spec i f i c a lly Eq . ( 1 . 6 . 6 5 ) , we
can perform this dynamics over a time interval ∆t by sel ecting Nk∆t / k spins of e ach
kind and updating them according to the Glauber met h od . This is stri ct ly
a pp l i c a ble on ly for an en s em ble of Ising sys tem s . If the Ising sys tem that we are con-
s i dering contains many correl a ti on len g t h s , Eq . ( 1 . 6 . 5 0 ) , t h en it repre s ents the en-
s em ble by itsel f . Thus for a large en o u gh Ising model , we can app ly this to a singl e
s ys tem .

    
∆ t =

1

N(R(1 | −1)+ R(−1|1))
=

N
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If we want to select spins arbitrarily, rather than of a particular kind, we must
make the assumption that all of the relaxation times are the same, k → . This as-
sumption means that we would select a total number of spins:

(1.6.67)

As before, ∆t may also be chosen so that in each time interval only one spin is selected.
Using two assumptions, we have been able to derive the Glauber dynamics di-

rectly from the activated dynamics.One of the assumptions is that the dynamics must
be considered to apply only as the dynamics of an ensemble. Even though both dy-
namics are stochastic dynamics, applying the Glauber dynamics directly to a single
system is only the same as the activated dynamics for a large enough system. The sec-
ond assumption is the equivalence of the relaxation times k. When is this assumption
valid? The expression for the relaxation time in terms of the two-state system is given
by Eq. (1.4.44) as

1/ = (R(1|–1) + R(−1|1)) = (e−(EB −E1) /kT + e −(EB−E−1)/kT) (1.6.68)

When the relative energy of the two states E1 and E−1 varies between different spins,
this will in general vary. The size of the relaxation time is largely controlled by the
smaller of the two energy differences EB − E1 and EB − E−1. Thus,maintaining the same
relaxation time would require that the smaller energy difference is nearly constant.
This is essential, because the relaxation time changes exponentially with the energy
difference.

We have shown that the Glauber dynamics and the activated dynamics are closely
related despite appearing to be quite different. We have also found how to generalize
the Glauber dynamics if we must allow different relaxation times for different spins.
Finally, we have found that the time increment for a single spin update corresponds
to /N. This means that a single Glauber time step consisting of N spin updates cor-
responds to a physical time —the microscopic relaxation time of the individual
spins.

At this point we have introduced a dynamics for the Ising model, and it should
be possible for us to investigate questions about its kinetics.Often questions about the
kinetics may be described in terms of time correlations. Like the correlation length,
we can introduce a correlation time s that is given by the decay of the spin-spin cor-
relation

< si(t ′)si(t) > − < si >2 ∝ e −|t −t ′|/ s (1.6.69)

For the case of a relaxing two-state system,the correlation time is the relaxation time
. This follows from Eq. (1.4.45), with some attention to notation as described in

Question 1.6.13.

Question 1.6.13 Show that for a two-state system, the correlation time
is the relaxation time .

  

Nk∆t

kk
∑ → N

∆t
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Solution 1.6.13 The difficulty in this question is restoring some of the no-
tational details that we have been leaving out for convenience. From
Eq. (1.6.45) we have for the average:

(1.6.70)

Let’s assume that t ′> t, then each of these joint probabilities of the form
Psi(t ′),si(t)(s2,s1) is g iven by the probability that the two-state system starts in
the state s1 at time t, multiplied by the probability that it will evolve from s1

into s2 at time t ′.

(1.6.71)

The first factor on the ri ght is call ed the con d i ti onal prob a bi l i ty. The prob-
a bi l i ty for a particular state of the spin is the equ i l i brium prob a bi l i ty
t h a t we wro te as P(1) and P(−1 ) . The con d i ti onal prob a bi l i ties sati s f y
Psi( t′) ,si(t)( 1s1) + Psi(t ′) ,si ( t )(−1s1) = 1 , so we can simplify Eq . (1.6.70) to :

(1.6.72)

The evolution of the probabilities are described by Eq.(1.4.45),repeated here:

P(1;t) = (P(1;0) − P(1;∞))e-t/ + P(1;∞) (1.6.73)

Since the conditional probability assumes a definite value for the initial state
(e.g., P(1;0) = 1 for Ps(t ′),s(t)(1|1)), we have:

Ps(t ′),s(t)(1|1) = (1 − P(1))e − (t′-t)/ + P(1)

Ps(t′),s(t)(−1|–1) = (1 − P(−1))e − (t′-t)/ + P(−1)
(1.6.74)

Inserting these into Eq. (1.6.72) gives:

(1.6.75)

The constant term on the right is the same as the square of the average of the
spin:

<si(t)>2 = (P(1) − P(−1))2 (1.6.76)

Inserting into Eq.(1.6.69) leads to the desired result (we have assumed that
t′ > t):

<si(t ′)si(t)> − <si(t )>2 = 4P(1)P(−1)e−(t′ − t)/ ∝ e−(t′ − t)/ (1.6.77) ❚

    

< s i ( ′ t )s i (t) > = (2 (1− P(1))e −( ′ t −t )/ + P(1)[ ] −1)P(1)

+ (2 (1− P(−1))e −( ′ t −t )/ + P(−1)[ ]− 1)P(−1)

= 4P(1)P(−1)e −( ′ t −t )/ +(P(1) − P(−1))2

    < s i ( ′ t )s i (t) > = (2Ps i ( ′ t ), si (t )(1|1)− 1)P(1) +(2Ps i ( ′ t ),s i (t)(−1| −1)− 1)P(−1)

    Ps i ( ′ t ),s i(t )(s2 ,s1) = Ps i ( ′ t ), si (t )(s2 |s1)Psi (t )(s1)

    

< s i ( ′ t )s i (t) > = Ps i ( ′ t ),s i (t )(1,1)+ Ps i ( ′ t ),s i (t )(−1, −1)

− Ps i ( ′ t ), s i (t)(1,−1) − Ps i( ′ t ),s i (t )(−1,1)
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From the beginning of our discussion of the Ising model,a central issue has been
the breaking of the ergodic theorem associated with the spontaneous magnetization.
Now that we have introduced a kinetic model, we will tackle this problem directly.
First we describe the problem fully. The ergodic theorem states that a time average
may be replaced by an ensemble average. In the ensemble,all possible states of the sys-
tem are included with their Boltzmann probability. Without formal justification, we
have treated the spontaneous magnetization of the Ising model at h = 0 as a macro-
scopically observable quantity. According to our prescription,this is not the case. Let
us perform the average < si > over the ensemble at T = 0 and h = 0. There are two pos-
sible states of the system with the same energy, one with {si = 1} and one with {si = –1}.
Since they must occur with equal probability by our assumption, we have that the av-
erage < si > is zero.

This argument breaks down because of the kinetics of the sys tem that preven t s
a tra n s i ti on from one state to the other du ring the co u rse of a measu rem en t . Thu s
we measu re on ly one of the two po s s i ble states and find a magn eti z a ti on of 1 or –1.
How can we prove that this sys tem breaks the er godic theorem? The most direct te s t
is to start from a sys tem with a sligh t ly po s i tive magn etic field near T = 0 wh ere the
m a gn eti z a ti on is +1 , and reverse the sign of the magn etic fiel d . In this case the equ i-
l i brium state of the sys tem should have a magn eti z a ti on of – 1 . In s te ad the sys tem wi ll
maintain its magn eti z a ti on as +1 for a long time before even tu a lly swi tching from
one to the other. The process of s wi tching corre s ponds to the kinetics of a firs t - order
tra n s i ti on .

1.6.8 Kinetics of a first-order phase transition
In this section we discuss the first-order transition kinetics in the Ising model. Similar
arguments apply to other first-order transitions like the freezing or boiling of water.
If we start with an Ising model in equilibrium at a temperature T < Tc and a small
positive magnetic field h << zJ, the magnetization of the system is essentially m0( zJ).
If we change the magnetic field suddenly to a small negative value, the equilibrium
state of the system is −m0( zJ);however, the system will require some time to change
its magnetization. The change in the magnetic field has very little effect on the energy
of an individual spin si. This energy is mostly due to the interaction with its neigh-
bors, with a relatively small contribution due to the external field. Most of the time
the neighbors are oriented UP, and this makes the spin have a lower energy when it is
UP. This gives rise to the magnetization m0( zJ). Until si’s neighbors change their av-
erage magnetization, si has no reason to change its magnetization. But then neither do
the neighbors. Thus, because each spin is in its own local equilibrium,the process that
eventually equilibrates the system requires a cooperative effect including more than
one spin. The process by which such a first-order transition occurs is not the simul-
taneous switching of all of the spins from one value to the other. This would require
an impossibly long time. Instead the t ransition occurs by nucleation and growth of
the equilibrium phase.

It is easiest to describe the nucleation process when T is sufficiently less than Tc ,

so that the spins are almost always +1. In mean field, already for T < 0.737Tc the
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probability of a spin being UP is greater than 90% (P(1) = (1 + m)/2 > 0.9),and for
T < 0.61Tc the probability of a spin being UP is greater than 95%. As long as T is
greater than zero, individual spins will flip from time to time. However, even though
the magnetic field would like them to be DOWN, their local environment consisting of
UP spins does not. Since the interaction with their neighbors is stronger than the in-
teraction with the external field,the spin will generally flip back UP after a short time.
There is a smaller probability that a second spin,a neighbor of the first spin, will also
flip DOWN. Because one of the neighbors of the second spin is already DOWN, there is
a lower energy cost than for the first one. However, the energy of the second spin is
still higher when it is DOWN, and the spins will generally flip back, first one then the
other. There is an even smaller probability that three interacting spins will flipDOWN.
The existence of two DOWN spins makes it more likely for the third to do so. If the first
two spins were neighbors,than the third spin can have only one of them as its neigh-
bor. So it still costs some energy to flip DOWN the third spin. If there are three spins
flipped DOWN in an L shape,the spin that completes a 2 × 2 square has two neighbors
that are +1 and two neighbors that are –1,so the interactions with its neighbors can-
cel. The external field then gives a preference for it to be DOWN. There is still a high
probability that several of the spins that are DOWN will flip UP and the little cluster
will then disappear. Fig. 1.6.9 shows various clusters and their energies compared to a
uniform region of +1 spins. As more spins are added,the internal region of the clus-
ter becomes composed of spins that have four neighbors that are all DOWN. Beyond a
certain size (see Question 1.6.14) the cluster of DOWN spins will grow, because adding
spins lowers the energy of the system. At some point the growing region of DOWN

spins encounters another region of DOWN spins and the whole system reaches its new
equilibrium state, where most spins are DOWN.

Question 1.6.14 Using an estimate of how the energy of large clusters of
DOWN spins grows, show that large enough clusters must have a lower

energy than the same region if it were composed of UP spins.

Solution 1.6.14 The en er gy of a clu s ter of DOW N spins is given by its inter-
acti on with the ex ternal magn etic field and the nu m ber of a n ti a l i gn ed bon d s
that form its bo u n d a ry. The ch a n ge in en er gy due to the ex ternal magn eti c
f i eld is ex act ly 2hNc , wh i ch is proporti onal to the nu m ber of spins in the
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Figure 1.6.9 Illustration of small clusters of DOWN spins shown as filled dark squares resid-
ing in a background of UP spins on a square lattice. The energies for creating the clusters are
shown. The magnetic field, h, is negative. The formation of such clusters is the first step to-
wards nucleation of a DOWN region when the system undergoes a first-order transition from UP

to DOWN. The energy is counted by the number of spins that are DOWN times the magnetic field
strength, plus the interaction strength times the number of antialigned neighboring spins,
which is the length of the boundary of the cluster. In a first-order transition, as the size of
the clusters grows the gain from orienting toward the magnetic field eventually becomes
greater than the loss from the boundary energy. Then the cluster becomes more likely to grow
than shrink. See Question 1.6.14 and Fig. 1.6.10. ❚
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clu s ter Nc . This is nega tive since h is nega tive . The en er gy of the bo u n d a ry is
proporti onal to the nu m ber of a n ti a l i gn ed bon d s , and it is alw ays po s i tive .
Because every ad d i ti onal anti a l i gn ed bond raises the clu s ter en er gy, t h e
bo u n d a ry of the clu s ter tends to be smooth at low tem pera tu re s . Th erefore , we
can esti m a te the bo u n d a ry en er gy using a simple shape like a squ a re or circ u-
lar clu s ter in 2-d (a cube or ball in 3-d). Ei t h er way the en er gy wi ll increase as
f JNc

(d- 1 ) /d, wh ere d is the dimen s i on a l i ty and f is a constant acco u n ting for the
s h a pe . Si n ce the nega tive con tri buti on to the en er gy incre a s e s , in proporti on
to the area (vo lume) of the clu s ter, and the po s i tive con tri buti on to the en er gy
i n c reases in proporti on to the peri m eter (su rf ace area) of the clu s ter, the neg-
a tive term even tu a lly wi n s .O n ce a clu s ter is large en o u gh so that its en er gy is
dom i n a ted by the interacti on with the magn etic fiel d ,t h en , on - avera ge , ad d i n g
an ad d i ti onal spin to the clu s ter wi ll lower the sys tem en er gy. ❚

Question 1.6.15 Without looking at Fig. 1.6.9, construct all of the dif-
ferent possible clusters of as many as five DOWN spins.Label them with

their energy.

Solution 1.6.15 See Fig. 1.6.9. ❚

The scenario just described, known as nucleation and growth, is generally re-
sponsible for the kinetics of first-order transitions. We can illustrate the process
schematically (Fig. 1.6.10) using a one dimensional plot indicating the energy per spin
of a cluster as a function of the number of atoms in the cluster. The energy of the clus-
ter increases at first when there are very few spins in the cluster, and then decreases
once it is large enough. Eventually the energy decreases linearly with the number of
spins in the cluster. The decrease per spin is the energy difference per spin between the
two phases. The first cluster size that is “over the hump” is known as the critical clus-
ter. The process of reaching this cluster is known as nucleation.A first estimate of the
time to nucleate a critical cluster at a particular place in space is given by the inverse
of the Boltzmann factor of the highest energy barrier in Fig. 1.6.10. This corresponds
to the rate of transition over the barrier given by a two-state system with this same
barrier (see Eq. (1.4.38) and Eq. (1.4.44)). The size of the critical cluster depends on
the magnitude of the magnetic field.A larger magnetic field implies a smaller critical
cluster. Once the critical cluster is reached,the kinetics corresponds to the biased dif-
fusion described at the end of Section 1.4. The primary difficulty with an illustration
such as Fig. 1.6.10 is that it is one-dimensional. We would need to show the energy of
each type of cluster and all of the ways one cluster can transform into another.
Moreover, the clusters themselves may move in space and merge or separate. In Fig.
1.6.11 we show frames from a simulation of nucleation in the Ising model using
Glauber dynamics. The frames illustrate the process of nucleation and growth.

Experimental studies of nucleation kinetics are sometimes quite difficult. In
physical systems,impurities often lower the barrier to nucleation and therefore con-
trol the rate at which the first-order transition occurs. This can be a problem for the
investigation of the inherent nucleation because of the need to study highly purified
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systems. However, this sensitivity should be understood as an opportunity for control
over the kinetics. It is similar to the sensitivity of electrical properties to dopant im-
purities in a semiconductor, which enables the construction of semiconductor de-
vices. There is at least one direct example of the control of the kinetics of a first-order
transition. Before describing the example,we review a few properties of the water-to-
ice transition. The temperature of the water-to-ice transition can be lowered signifi-
cantly by the addition of impurities. The freezing temperature of salty ocean water is
lower than that of pure water. This suppression is thermodynamic in origin, which
means that the Tc is actually lower. There exist fish that live in sub-zero-degrees ocean
water whose blood has less salt than the surrounding ocean. These fish use a family of
so-called antifreeze proteins that are believed to kinetically suppress the freezing of
their blood. Instead of lowering the freezing temperature,these proteins suppress ice
nucleation.

The existence of a long nucleation time implies that it is often possible to create
metastable materials. For example, supercooled water is water whose temperature has
been lowered below its freezing point. For many years, particle physicists used a su-
perheated fluid to detect elementary particles. Ultrapure liquids in large tanks were
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Figure 1.6.10 Schematic illustration of the energies that control the kinetics of a first-order
phase transition. The horizontal axis is the size of a cluster of DOWN spins Nc that are the equi-
librium phase. The cluster is in a background of UP spins that are the metastable phase. The
vertical axis is the energy of the cluster. Initially the energy increases with cluster size until
the cluster reaches the critical cluster size. Then the energy decreases. Each spin flip has its
own barrier to overcome, leading to a washboard potential. The highest barrier EBmax that the
system must overcome to create a critical nucleus controls the rate of nucleation. This is sim-
ilar to the relaxation of a two-level system discussed in Section 1.4. However, this simple pic-
ture neglects the many different possible clusters and the many ways they can convert into
each other by the flipping of spins. A few different types of clusters are shown in Fig. 1.6.9. ❚
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t=240

t=280 t=400

t=360

t=200 t=320

Figure 1.6.11 Frames from a simulation illustrating nucleation and growth in an Ising model
in 2-d. The temperature is T = zJ/3 and the magnetic field is h = −0.25. Glauber dynamics was
used. Each time step consists of N updates where the space size is N = 60 × 60. Frames shown
are in intervals of 40 time steps. The first frame shown is at t = 200 steps after the begin-
ning of the simulation. Black squares are DOWN spins and white areas are UP spins. The
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t=440

t=640

t=560

t=480

t=520

t=600

metastability of the UP phase is seen in the existence of only a few DOWN spins until the frame
at t = 320. All earlier frames are qualitatively the same as the frames at t = 200,240 and 280.
A critical nucleus forms between t = 280 and t = 320. This nucleus grows systematically un-
til the final frame when the whole system is in the equilibrium DOWN phase. ❚
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suddenly shifted above their boiling temperature. Small bubbles would then nucleate
along the ionization trail left by charged particles moving through the tank.The bub-
bles could be photographed and the tracks of the particles identified. Such detectors
were called bubble chambers. This methodology has been largely abandoned in favor
of electronic detectors. There is a limit to how far a system can be supercooled or su-
perheated. The limit is easy to understand in the Ising model. If a system with a pos-
itive magnetization m is subject to a negative magnetic field of magnitude greater
than zJm, then each individual spin will flip DOWN independent of its neighbors. This
is the ultimate limit for nucleation kinetics.

1.6.9 Connections between CA and the Ising model
Our primary objective throughout this section is the investigation of the equilibrium
properties of interacting systems. It is useful, once again, to consider the relationship
between the equilibrium ensemble and the kinetic CA we considered in Section 1.5.
When a deterministic CA evolves to a unique steady state independent of the initial
conditions, we can identify the final state as the T = 0 equilibrium ensemble. This is,
however, not the way we usually consider the relationship between a dynamic system
and its equilibrium condition. Instead, the equilibrium state of a system is generally
regarded as the time average over microscopic dynamics. Thus when we use the CA
to represent a microscopic dynamics, we could also identify a long time average of a
CA as the equilibrium ensemble. Alternatively, we can consider a stochastic CA that
evolves to a unique steady-state distribution where the steady state is the equilibrium
ensemble of a suitably defined energy function.

Computer Simulations (Monte Carlo,
Simulated Annealing)

Com p uter simu l a ti ons en a ble us to inve s ti ga te the properties of dynamical sys tems by
d i rect ly stu dying the properties of p a rticular model s . O ri gi n a lly, the introdu cti on of
com p uter simu l a ti on was vi ewed by many re s e a rch ers as an unde s i ra ble ad ju n ct to an-
a lytic theory. Cu rren t ly, s i mu l a ti ons play su ch an important role in scien tific stu d i e s
that many analytic re sults are not bel i eved unless they are te s ted by com p uter simu l a-
ti on . In part , this ref l ects the understanding that analytic inve s ti ga ti ons of ten requ i re
a pprox i m a ti ons that are not nece s s a ry in com p uter simu l a ti on s . Wh en a series of a p-
prox i m a ti ons has been made as part of an analytic stu dy, a com p uter simu l a ti on of t h e
ori ginal probl em can direct ly test the approx i m a ti on s . If the approx i m a ti ons are va l i-
d a ted , the analytic re sults of ten gen era l i ze the simu l a ti on re su l t s . In many other cases,
s i mu l a ti ons can be used to inve s ti ga te sys tems wh ere analytic re sults are unknown .

1.7.1 Molecular dynamics and deterministic simulations
The simulation of systems composed of microscopic Newtonian particles that expe-
rience forces due to interparticle interactions and external fields is called molecular
dynamics. The techniques of molecular dynamics simulations, which integrate

1.7

186 I n t r o duc t i on  a nd  P r e l i m i n a r i e s

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 186
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:17 AM  Page 186



Newton’s laws for individual particles,have been developed to optimize the efficiency
of computer simulation and to take advantage of parallel computer architectures.
Typically, these methods implement a discrete iterative map (Section 1.1) for the par-
ticle positions. The most common (Verlet) form is:

r(t) = 2r(t − ∆t) − r(t − 2∆t) + ∆t2 a(t − ∆t) (1.7.1)

where a(t) = F(t)/m is the force on the particle calculated from models for interparti-
cle and external forces. As in Section 1.1, time would be measured in units of the time
interval ∆t for convenience and efficiency of implementation. Eq. (1.7.1) is alge-
braically equivalent to the iterative map in Question 1.1.4, which is written as an up-
date of both position and velocity:

r(t) = r(t − ∆t) + ∆tv(t − ∆t /2)

v(t + ∆t /2) = v(t − ∆t /2) + ∆ta(t)
(1.7.2)

As indicated, the velocity is interpreted to be at half integral times, though this does
not affect the result of the iterative map.

For most such simulations of physical systems,the accuracy is limited by the use
of models for interatomic interactions. Modern efforts attempt to improve upon this
approach by calculating forces from quantum mechanics. However, such simulations
are very limited in the number of particles and the duration of a simulation.A useful
measure of the extent of a simulation is the product Ntmax of the amount of physical
time tmax, and the number of particles that are simulated N. Even without quantum
mechanical forces,molecular dynamics simulations are still far from being able to de-
scribe systems on a space and time scale comparable to human senses. However, there
are many questions that can be addressed regarding microscopic properties of mole-
cules and materials.

The development of appropriate simplified macroscopic descriptions of physical
systems is an essential aspect of our understanding of these systems. These models
may be based directly upon macroscopic phenomenology obtained from experiment.
We may also make use of the microscopic information obtained from various sources,
including both theory and experiment, to inform our choice of macroscopic models.
It is more difficult, but important as a strategy for the description of both simple and
complex systems, to develop systematic methods that enable macroscopic models to
be obtained directly from microscopic models. The development of such methods is
still in its infancy, and it is intimately related to the issues of emergent simplicity and
complexity discussed in Chapter 8.

Abstract mathematical models that describe the deterministic dynamics for var-
ious systems, whether represented in the form of differential equations or determin-
istic cellular automata (CA, Section 1.5), enable computer simulation and study
through integration of the differential equations or through simulation of the CA.
The effects of external influences, not incorporated in the parameters of the model,
may be modeled using stochastic variables (Section 1.2).Such models, whether of flu-
ids or of galaxies, describe the macroscopic behavior of physical systems by assuming
that the microscopic (e.g., molecular) motion is irrelevant to the macroscopic
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phenomena being described. The microscopic behavior is summarized by parameters
such as density, elasticity or viscosity. Such model simulations enable us to describe
macroscopic phenomena on a large range of spatial and temporal scales.

1.7.2 Monte Carlo simulations
In our investigations of various systems, we are often interested in average quantities
rather than a complete description of the dynamics.This was particularly apparent in
Section 1.3, when equilibrium thermodynamic properties of systems were discussed.
The ergodic theorem (Section 1.3.5) suggested that we can use an ensemble average
instead of the space-time average of an experiment. The ensemble average enables us
to treat problems analytically, when we cannot integrate the dynamics explicitly. For
example, we studied equilibrium properties of the Ising model in Section 1.6 without
reference to its dynamics. We were able to obtain estimates of its free energy, energy
and magnetization by averaging various quantities using ensemble probabilities.

However, we also found that there were quite severe limits to our analytic capa-
bilities even for the simplest Ising model. It was necessary to use the mean field ap-
proximation to obtain results analytically. The essential difficulty that we face in per-
forming ensemble averages for complex systems,and even for the simple Ising model,
is that the averages have to be performed over the many possible states of the system.
For as few as one hundred spins,the number of possible states of the system—2100—
is so large that we cannot average over all of the possible states. This suggests that we
consider approximate numerical techniques for studying the ensemble averages. In
order to perform the averages without summing over all the states, we must find some
way to select a representative sample of the possible states.

Mon te Ca rlo simu l a ti ons were devel oped to en a ble nu m erical avera ges to be per-
form ed ef f i c i en t ly. Th ey play a cen tral role in the use of com p uters in scien ce . Mon te
Ca rlo can be thought of as a gen eral way of e s ti m a ting avera ges by sel ecting a limited
sample of s t a tes of the sys tem over wh i ch the avera ges are perform ed . In order to opti-
m i ze conver gen ce of the avera ge , we take adva n t a ge of i n form a ti on that is known abo ut
the sys tem to sel ect the limited sample. As we wi ll see , u n der some circ u m s t a n ce s ,t h e
s equ en ce of s t a tes sel ected in a Mon te Ca rlo simu l a ti on may itsel f be used as a model of
the dynamics of a sys tem . Th en ,i f we are careful abo ut de s i gning the Mon te Ca rl o, we
can sep a ra te the time scales of a sys tem by tre a ting the fast degrees of f reedom using an
en s em ble avera ge and sti ll treat ex p l i c i t ly the dynamic degrees of f reedom .

To introduce the concept of Monte Carlo simulation,we consider finding the av-
erage of a function f (s), where the system variable s has the probability P(s). For sim-
plicity, we take s to be a single real variable in the range [−1,+1]. The average can be
approximated by a sum over equally spaced values si :

(1.7.3)

This formula works well if the functions f (s) and P(s) are reasonably smooth and uni-
form in magnitude. However, when they are not smooth,this sum can be a very inef-

    

< f (s) > = f (s)P(s)ds
−1

1

∫ ≈ f (s i )P(si )
s i

∑ s =
1

M
f (n/ M)P(n /M )

n=−M

M

∑
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ficient way to perform the integral. Consider this integral when P(s) is a Gaussian,and
f (s) is a constant:

(1.7.4)

A plot of the integrand in Fig. 1.7.1 shows that for <<1 we are performing the inte-
gral by summing many values that are essentially zero. These values contribute noth-
ing to the result and require as much computational effort as the comparatively few
points that do contribute to the integral near s = 0, where the function is large. The
few points near s = 0 will not give a very accurate estimate of the integral. Thus,most
of the computational work is being wasted and the integral is not accurately evalu-
ated. If we want to improve the accuracy of the sum, we have to increase the value of
M. This means we will be summing many more points that are almost zero.

To avoid this problem, we would like to focus our attention on the region in
Eq. (1.7.4) where the integrand is large. This can be done by changing how we select
the points where we perform the average. Instead of picking the points at equal inter-
vals along the line, we pick them with a probability given by P(s). This is the same as
saying that we have an ensemble representing the system with the state variable s.
Then we perform the ensemble average:

(1.7.5)
    

< f (s) > = f (s)P(s)ds∫ =
1

N
f (s)

s :P(s )

N

∑

    

< f (s) > ∝ e − s
2

/ 2
2

ds
−1

1

∫ ≈
1

M
e −(n/ M )

2
/2

2

n=− M

M

∑
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-1 −σ 0 1σ

Figure 1.7.1 Plot of the Gaussian distribution illustrating that an integral that is performed
by uniform sampling will use a lot of points to represent regions where the Gaussian is van-
ishingly small. The problem gets worse as becomes smaller compared to the region over
which the integral must be performed. It is much worse in typical multidimensional averages
where the Boltzmann probability is used. Monte Carlo simulations make such integrals com-
putationally feasible by sampling the integrand in regions of high probability. ❚
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The latter expression represents the sum over N values of s, where these values have
the probability distribution P(s). We have implicitly assumed that the function f (s) is
relatively smooth compared to P(s). In Eq. (1.7.5) we have replaced the integral with
a sum over an ensemble. The problem we now fa ce is to obtain the members of the
ensemble with probability P(s). To do this we will invert the ergodic theorem of
Section 1.3.5.

Since Section 1.3 we have described an ensemble as representing a system, if the
dynamics of the system satisfied the ergodic theorem. We now turn this around and
say that the ensemble sum in Eq.(1.7.5) can be represented by any dynamics that sat-
isfies the ergodic theorem, and which has as its equilibrium probability P(s). To do
this we introduce a time variable t that, for our current purposes, just indicates the
order of terms in the sum we are performing. The value of s appearing in the t th term
would be s(t). We then rewrite the ergodic theorem by considering the time average
as an approximation to the ensemble average (rather than the opposite):

(1.7.6)

The problem remains to sequentially generate the states s(t), or, in other words, to
specify the dynamics of the system. If we know the probability P(s),and s is a few bi-
nary or real variables,this may be done directly with the assistance of a random num-
ber generator (Question 1.7.1). However, often the system coordinate s represents a
large number of variables.A more serious problem is that for models of physical sys-
tems, we generally don’t know the probability distribution explicitly.

Thermodynamic systems are described by the Boltzmann probability
(Section 1.3):

(1.7.7)

where {x,p} are the microscopic coordinates of the system,and E({x,p}) is the micro-
scopic energy. An example of a quantity we might want to calculate would be the av-
erage energy:

(1.7.8)

In many cases,as discussed in Section 1.4, the quantity that we would like to find the
average of depends only on the position of particles and not on their momenta. We
then write more generally

(1.7.9)

    

P(s) = 1

Z s

e −F(s )/ kT

Z s = e −F(s )/kT

s
∑

    

U =
1

Z
E({x , p})e −E({x ,p})/ kT

{x ,p}

∑

    

P({x, p}) =
1

Z
e −E({x ,p})/ kT

Z = e −E({ x,p}) /kT

{x ,p}
∑

    
< f (s) > =

1

T
f (s(t))

t =1

T

∑
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where we use the system state variable s to represent the relevant coordinates of the
system. We make no assumption about the dimensionality of the coordinate s which
may, for example, be the coordinates {x} of all of the particles. F(s) is the free energy
of the set of states associated with the coordinate s. A precise definition, which indi-
cates both the variable s and its value s ′, is given in Eq. (1.4.27):

(1.7.10)

We note that Eq. (1.7.9) is often written using the notation E(s) (the energy of s) in-
stead of F(s) (the free energy of s),though F(s) is more correct. An average we might
calculate, of a quantity Q(s), would be:

(1.7.11)

where Q(s) is assumed to depend only on the variable s and not directly on {x,p}.
The problem with the evaluation of either Eq. (1.7.8) or Eq. (1.7.11) is that the

Boltzmann probability does not explicitly give us the probability of a particular state.
In order to find the actual probability, we need to find the partition function Z. To cal-
culate Z we need to perform a sum over all states of the system, which is computa-
tionally impossible.Indeed,if we were able to calculate Z, then,as discussed in Section
1.3, we would know the free energy and all the other thermodynamic properties of the
system. So a prescription that relies upon knowing the actual value of the probability
doesn’t help us. However, it turns out that we don’t need to know the actual proba-
bility in order to construct a dynamics for the system, only the relative probabilities
of particular states. The relative probability of two states, P(s) / P(s′),is directly given
by the Boltzmann probability in terms of their relative energy:

P(s) / P(s′) = e−(F(s)−F(s′))/kT (1.7.12)

This is the key to Monte Carlo simulations. It is also a natural result, since a system
that is evolving in time does not know global properties that relate to all of its possi-
ble states. It only knows properties that are related to the energy it has,and how this
energy changes with its configuration. In classical mechanics, the change of energy
with configuration would be the force experienced by a particle.

Our task is to describe a dynamics that generates a sequence of states of a system
s(t) with the proper probability distribution, P(s). The classical (Newtonian) ap-
proach to dynamics implies that a deterministic dynamics exists which is responsible
for generating the sequence of states of a physical system. In order to generate the
equilibrium ensemble, however, there must be contact with a thermal reservoir.
Energy transfer between the system and the reservoir introduces an external interac-
tion that disrupts the system’s deterministic dynamics.

We will make our task simpler by allowing ourselves to consider a stochastic
Markov chain (Section 1.2) as the dynamics of the system. The Markov chain is de-
scribed by the probability Ps(s′|s ′′) of the system in a state s = s′′ making a transition

    

U =
1

Z
Q(s)e −F (s )/ kT

s

∑

    

Fs( ′ s ) = −kT ln( s , ′ s e −E ({x,p}) /kT

{x ,p}

∑ )
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to the state s = s′. A particular sequence s(t) is generated by starting from one config-
uration and choosing its successors using the transition probabilities.

The general formulation of a Markov chain includes the classical Newtonian dy-
namics and can also incorporate the effects of a thermal reservoir. However, it is gen-
erally convenient and useful to use a Monte Carlo simulation to evaluate averages that
do not depend on the momenta,as in Eq.(1.7.11). There are some drawbacks to this
approach. It limits the properties of the system whose averages can be evaluated.
Systems where interactions between par ticles depend on their momenta cannot be
easily included. Moreover, averages of quantities that depend on both the momentum
and the position of particles cannot be performed. However, if the energy separates
into potential and kinetic energies as follows:

(1.7.13)

then averages over all quantities that just depend on momenta (such as the kinetic en-
ergy) can be evaluated directly without need for numerical computation. These aver-
ages are the same as those of an ideal gas. Monte Carlo simulations can then be used
to perform the average over quantities that depend only upon position {x}, or more
generally, on position-related variables s. Thus,in the remainder of this section we fo-
cus on describing Markov chains for systems described only by position-related vari-
ables s.

As described in Section 1.2 we can think about the Markov dynamics as a dy-
namics of the probability rather than the dynamics of a system. Then the dynamics
are specified by

(1.7.14)

In order for the stochastic dynamics to represent the ensemble, we must have the time
average over the probability distribution Ps(s′,t) equal to the ensemble probability.
This is true for a long enough time average if the probability converges to the ensem-
ble probability distribution, which is a steady-state distribution of the Markov chain:

(1.7.15)

Thermodynamics and stochastic Markov chains meet when we construct the Markov
chain so that the Boltzmann probability, Eq. (1.7.9), is the limiting distribution.

We now make use of the Perron-Frobenius theorem (see Section 1.7.4 below),
which says that a Markov chain governed by a set of transition probabilities Ps(s′|s′′)
converges to a unique limiting probability distribution as long as it is irreducible and
acyclic. Irreducible means that there exist possible paths between each state and all
other possible states of the system. This does not mean that all states of the system are
connected by nonzero transition probabilities. There can be transition probabilities
that are zero. However, it must be impossible to separate the states into two sets for
which there are no transitions from one set to the other. Acyclic means that the sys-
tem is not ballistic—the states are not organized by the transition matrix into a ring

    

Ps( ′ s ) = Ps( ′ s ;∞) = Ps( ′ s | ′ ′ s )Ps( ′ ′ s ;∞)
′ ′ s 

∑

    

Ps( ′ s ;t) = Ps( ′ s | ′ ′ s )Ps( ′ ′ s ;t −1)
′ ′ s 

∑

    

E({x, p}) =V ({x})+ pi
2 /2m

i

∑
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with a deterministic flow around it. There may be currents, but they must not be de-
terministic. It is sufficient for there to be a single state which has a nonzero probabil-
ity of making a transition to itself for this condition to be satisfied,thus it is often as-
sumed and unstated.

We can now summarize the problem of identifying the desired Markov chain.We
must construct a matrix Ps(s′|s′′) that satisfies three properties.First,it must be an al-
lowable transition matrix. This means that it must be nonnegative, Ps(s′′|s′)≥0, and
satisfy the normalization condition (Eq (1.2.4)):

(1.7.16)

Second,it must have the desired probability distribution, Eq.(1.7.9),as a fixed point.
Third, it must not be reducible—it is possible to construct a path between any two
states of the system.

These conditions are sufficient to guarantee that a long enough Markov chain
will be a good approximation to the desired ensemble. There is no guarantee that the
convergence will be rapid.As we have seen in Section 1.4,in the case of the glass tran-
sition,the ergodic theorem may be violated on all practical time scales for systems that
are following a particular dynamics. This applies to realistic or artificial dynamics. In
general such violations of the ergodic theorem, or even just slow convergence of av-
erages, are due to energy barriers or entropy “bottlenecks” that prevent the system
from reaching all possible configurations of the system in any reasonable time. Such
obstacles must be determined for each system that is studied, and are sometimes but
not always apparent. It should be understood that different dynamics will satisfy the
conditions of the ergodic theorem over very different time scales. The equivalence of
results of an average performed using two distinct dynamics is only guaranteed ifthey
are both simulated for long enough so that each satisfies the ergodic theorem.

Our discussion here also gives some additional insights into the conditions un-
der which the ergodic theorem applies to the actual dynamics of physical systems. We
note that any proof of the applicability of the ergodic theorem to a real system re-
quires considering the actual dynamics rather than a model stochastic process. When
the ergodic theorem does not apply to the actual dynamics, then the use of a Monte
Carlo simulation for performing an average must be considered carefully. It will not
give the same results if it satisfies the ergodic theorem while the real system does not.

We are still faced with the task of selecting values for the transition probabilities
Ps(s′|s′′)  that satisfy the three requirements given above. We can simplify our search
for transition probabilities Ps(s′|s′′) for use in Monte Carlo simulations by imposing
the additional constraint of microscopic reversibility, also known as detailed balance:

Ps(s′′|s′)Ps(s′;∞) = Ps(s′|s′′) Ps(s′′;∞) (1.7.17)

This equation implies that the transition currents between two states of the system are
equal and therefore cancel in the steady state,Eq.(1.7.15). It corresponds to true equi-
librium,as would be present in a physical system. Detailed balance implies the steady-
state condition, but is not required by it.Steady state can also include currents that do

    

Ps( ′ ′ s | ′ s )
′ ′ s 

∑ = 1
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not change in time. We can prove that Eq.(1.7.17) implies Eq. (1.7.15) by summing
over s′:

(1.7.18)

We do not yet have an explicit prescription for Ps(s′|s′′). There is still a tremen-
dous flexibility in determining the transition probabilities.One prescription that en-
ables direct implementation, called Metropolis Monte Carlo, is:

(1.7.19)

These expressions specify the transition probability Ps(s′|s′′) in terms of a symmetric
stochastic matrix (s′|s′′). (s′|s′′) is independent of the limiting equilibrium distrib-
ution. The constraint associated with the limiting distribution has been incorporated
explicitly into Eq. (1.7.19). It satisfies detailed balance by direct substitution in
Eq. (1.7.17), since for Ps(s′)≥ Ps(s′′) (similarly for the opposite) we have

(1.7.20)

The sym m etry of the matrix (s′ |s′ ′) is essen tial to the proof of det a i l ed balance . O n e
must of ten be careful in the de s i gn of s pecific algorithms to en su re this property. It is
also important to note that the limiting prob a bi l i ty appe a rs in Eq . (1.7.19) on ly in the
form of a ra tio Ps(s′)/Ps(s′′) wh i ch can be given direct ly by the Boltzmann distri buti on .

To understand Metropolis Monte Carlo, it is helpful to describe a few examples.
We first describe the movement of the system in terms of the underlying stochastic
process specified by (s′|s′′), which is independent of the limiting distribution. This
means that the limiting distribution of the underlying process is uniform over the
whole space of possible states.

A standard way to choose the matrix (s′|s′′) is to set it to be constant for a few
states s′ that are near s′′. For example, the simplest random walk is such a case, since
it allows a probability of 1/2 for the system to move to the right and to the left. If s is
a continuous variable,we could choose a distance r0 and allow the walker to take a step
anywhere within the distance r0 with equal probability. Both the discrete and contin-
uous random walk have d-dimensional analogs or, for a system of interacting parti-
cles, N-dimensional analogs. When there is more than one dimension,we can choose
to move in all dimensions simultaneously. Alternatively, we can choose to move in
only one of the dimensions in each step. For an Ising model (Section 1.6), we could
allow equal probability for any one of the spins to flip.

Once we have specified the underlying stochastic process, we generate the se-
quence of Monte Carlo steps by applying it. However, we must modify the probabili-
ties according to Eq. (1.7.19). This takes the form of choosing a step, but sometimes
rejecting it rather than taking it. When a step is rejected,the system does not change

    

Ps( ′ ′ s | ′ s )Ps ( ′ s ) = ( ′ ′ s | ′ s )Ps( ′ s ) = ( ′ s | ′ ′ s )Ps( ′ s )

= ( ′ s | ′ ′ s )Ps( ′ s )/Ps( ′ ′ s )( )Ps( ′ ′ s ) = Ps( ′ s | ′ ′ s )Ps( ′ ′ s )

    

Ps( ′ s | ′ ′ s ) = ( ′ s | ′ ′ s ) Ps( ′ s )/Ps( ′ ′ s ) ≥1 ′ ′ s ≠ ′ s 

Ps( ′ s | ′ ′ s ) = ( ′ s | ′ ′ s )Ps( ′ s )/ Ps( ′ ′ s ) Ps( ′ s )/Ps( ′ ′ s ) <1 ′ ′ s ≠ ′ s 

Ps( ′ ′ s | ′ ′ s ) = 1−
′ s ≠ ′ ′ s 

∑ Ps ( ′ s | ′ ′ s )

    ′ s 

∑ Ps( ′ ′ s | ′ s )Ps( ′ s ;∞) =
′ s 

∑ Ps( ′ s | ′ ′ s )Ps ( ′ ′ s ; ∞) = Ps( ′ ′ s ;∞)
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its state.This gives rise to the third equation in Eq.(1.7.19) where the system does not
move. Specifically, we can implement the Monte Carlo process according to the fol-
lowing prescription:

1. Pick one of the possible moves allowed by the underlying process. The selection
is random from all of the possible moves. This guarantees that we are selecting it
with the underlying probability (s′|s′′).

2. Calculate the ratio of probabilities between the location we are going to, com-
pared to the location we are coming from

Ps(s′′) / Ps(s′) = e−(E(s′)−E(s′))/kT (1.7.21)

If this ratio of probabilities is greater than one, which means the energy is lower where
we are going, the step is accepted. This gives the probability for the process to occur
as (s′|s′′), which agrees with the first line of Eq.(1.7.19). However, if this ratio is less
than one, we accept it with a probability given by the ratio. For example,if the ratio is
0.6, we accept the move 60% of the time. If the move is rejected,the system stays in its
original location.Thus,if the energy where we are trying to go is higher, we do not ac-
cept it all the time, only some of the time. The likelihood that we accept it decreases
the higher the energy is.

The Metropolis Monte Carlo prescription makes logical sense. It tends to move
the system to regions of lower energy. This must be the case in order for the final dis-
tribution to satisfy the Boltzmann probability. However, it also allows the system to
climb up in energy so that it can reach, with a lower probability, states of higher en-
ergy. The ability to climb in energy also enables the system to get over barriers such as
the one in the two-state system in Section 1.4.

For the Ising model , we can see that the Mon te Ca rlo dynamics that uses all singl e
spin flips as its underlying stoch a s tic process is not the same as the Glauber dy n a m i c s
( Secti on 1.6.7), but is similar. Both begin by sel ecting a particular spin. Af ter sel ecti on
of the spin, the Mon te Ca rlo wi ll set the spin to be the oppo s i te with a prob a bi l i ty:

min(1,e −(E(1)−E(−1)) / kT) (1.7.22)

This means that if the energy is lower for the spin to flip, it is flipped. If it is higher, it
may still flip with the indicated probability. This is different from the Glauber pre-
scription, which sets the selected spin to UP or DOWN according to its equilibrium
probability (Eq. (1.6.61)–Eq. (1.6.63)). The difference between the two schemes can
be shown by plotting the probability of a selected spin being UP as a function of the
energy difference between UP and DOWN, E+ = E(1) – E(–1) (Fig. 1.7.2). The Glauber
dynamics prescription is independent of the starting value of the spin.The Metropolis
Monte Carlo prescription is not. The latter causes more changes, since the spin is
more likely to flip. Unlike the Monte Carlo prescription, the Glauber dynamics ex-
plicitly requires knowledge of the probabilities themselves. For a single spin flip in an
Ising system this is fine, because there are only two possible states and the probabili-
ties depend only on E+. However, this is difficult to generalize when a system has many
more possible states.
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There is a way to generalize further the use of Monte Carlo by recognizing that
we do not even have to use the correct equilibrium probability distribution when gen-
erating the time series. The generalized expression for an arbitrary probability distri-
bution P ′(s) is:

(1.7.23)

The su b s c ri pt P(s) indicates that the avera ge assumes that s has the prob a bi l i ty dis-
tri buti on P(s) ra t h er than P ′(s) . This equ a ti on gen era l i zes Eq . ( 1 . 7 . 5 ) . The prob-
l em with this ex pre s s i on is that it requ i res that we know ex p l i c i t ly the prob a bi l i ti e s
P(s) and P ′(s) . This can be rem ed i ed . We illu s tra te for a specific case, wh ere we use
the Boltzmann distri buti on at one tem pera tu re to eva lu a te the avera ge at another
tem pera tu re :

(1.7.24)

The ratio of partition functions can be directly evaluated as an average:
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Figure 1.7.2 Illustration of the difference between Metropolis Monte Carlo and Glauber dy-
namics for the update of a spin in an Ising model. The plots show the probability Ps(1;t ) of
a spin being UP at time t. The Glauber dynamics probability does not depend on the starting
value of the spin. There are two curves for the Monte Carlo probability, for s(t − 1) = 1 and
s(t − 1) = −1. ❚
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(1.7.25)

Thus we have the expression:

(1.7.26)

This means that we can obtain the average at various temperatures using only a sin-
gle Monte Carlo simulation. However, the whole point of using the ensemble aver-
age is to ensure that the average converges rapidly. This may not happen if the en-
semble temperature T ′ is much different from the temperature T. On the other
hand, there are circumstances where the function f(s) may have an energy depen-
dence that makes it better to perform the average using an ensemble that is not the
equilibrium ensemble.

The approach of Monte Carlo simulations to the study of statistical averages en-
sures that we do not have to be concerned that the dynamics we are using for the sys-
tem is a real dynamics. The result is the same for a broad class of artificial dynamics.
The generality provides a great flexibility; however, this is also a limitation. We can-
not use the Monte Carlo dynamics to study dynamics. We can only use it to perform
statistical averages. Must we be resigned to this limitation? The answer, at least in part,
is no. The reason is rooted in the central limit theorem. For example,the implemen-
tations of Metropolis Monte Carlo and the Glauber dynamics are quite different. We
know that in the limit of long enough times, the distribution of configurations gen-
erated by both is the same. We expect that since each of them flips only one spin,if we
are interested in changes in many spins,the two should give comparable results in the
sense of the central limit theorem. This means that aside from an overall scale factor,
the time evolution of the distribution of probabilities for long times is the same. Since
we already know that the limiting distribution is the same in both cases, we are as-
serting that the approach to this limiting distribution, which is the long time dynam-
ics, is the same.

The claim that for a large number of steps all dynamics is the same is not true
about all possible Monte Carlo dynamics.If we allow all of the spins in an Ising model
to change their values in one step of the underlying dynamics (s′|s′′), then this step
would be equivalent to many steps in a dynamics that allows only one spin to flip at a
time. In order for two different dynamics to give the same results,there are two types
of constraints that are necessary. First, both must have similar kinds of allowed steps.
Specifically, we define steps to the naturally proximate configurations as local moves.
As long as the Monte Carlo allows only local moves, the long time dynamics should
be the same. Such dynamics correspond to a local diffusion in the space of possible
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configurations of the system. More generally, two different dynamics should be the
same if configuration changes that require many steps in one also require many steps
in the other. The second type of constraint is related to symmetries of the problem. A
lack of bias in the random walk was necessary to guarantee that the Gaussian distrib-
ution resulted from a generalized random walk in Section 1.2. For systems with more
than one dimension, we must also ensure that there is no relative bias between mo-
tion in different directions.

We can think about Monte Carlo dynamics as diffusive dynamics of a system that
interacts frequently with a reservoir. There are properties of more realistic dynamics
that are not reproduced by such configuration Monte Carlo simulations. Correlations
between steps are not incorporated because of the assumptions underlying Markov
chains. This rules out ballistic motion,and exact or approximate momentum conser-
vation. Momentum conservation can be included if both position and momentum
are included as system coordinates. The method called Brownian dynamics incorpo-
rates both ballistic and diffusive dynamics in the same simulation. However, if corre-
lations in the dynamics of a system have a shorter range than the motion we are in-
terested in, momentum conservation may not matter to results that are of interest,
and conventional Monte Carlo simulations can be used directly.

In summary, Monte Carlo simulations are designed to reproduce an ensemble
rather than the dynamics of a particular system. As such,they are ideally suited to in-
vestigating the equilibrium properties of thermodynamic systems. However, Monte
Carlo dynamics with local moves often mimic the dynamics of real systems. Thus,
Monte Carlo simulations may be used to investigate the dynamics of systems when
they are appropriately designed. This property will be used in Chapter 5 to simulate
the dynamics of long polymers.

There is a flip side to the design of Monte Carlo dynamics to simulate actual dy-
namics. If our objective is the traditional objective of a Monte Carlo simulation, of
obtaining an ensemble average, then the ability to simulate dynamics may not be an
advantage. In some systems, the real dynamics is slow and we would prefer to speed
up the process. This can often be done by knowingly introducing nonlocal moves that
displace the state of the system by large distances in the space of conformations. Such
nonlocal Monte Carlo dynamics have been designed for various systems. In particu-
lar, both local and nonlocal Monte Carlo dynamics for the problem of polymer dy-
namics will be described in Chapter 5.

Question 1.7.1 In order to perform Monte Carlo simulations, we must
be able to choose steps at random and accept or reject steps with a cer-

tain probability. These operations require the availability of random num-
bers. We might think of the source of these random numbers as a thermal
reservoir. Computers are specifically deigned to be completely deterministic.
This means that inherently there is no randomness in their operation. To ob-
tain random numbers in a computer simulation requires a deterministic al-
gorithm that generates a sequence of numbers that look random but are not
random. Such sequences are called pseudo-random numbers. Random
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numbers should not be correlated to each other. However, using pseudo-
random numbers, if we start a program over again we must get exactly the
same sequence of numbers. The difficulties associated with the generation of
random numbers are central to performing Monte Carlo computer simula-
tions. If we assume that we have random numbers, and they are not really
uncorrelated, then our results may very well be incorrect. Nevertheless,
pseudo-random numbers often give results that are consistent with those ex-
pected from random numbers.

There are a variety of techniques to generate pseudo-random numbers.
Many of these pseudo-random number generators are designed to provide,
with equal “probability,” an integer between 0 and the maximal integer pos-
sible. The maximum integer used by a particular routine on a particular ma-
chine should be checked before using it in a simulation. Some use a standard
short integer which is represented by 16 bits (2 bytes).One bit represents the
unused sign of the integer. This leaves 15 bits for the magnitude of the num-
ber. The pseudo-random number thus ranges up to 215 − 1 = 32767. An ex-
ample of a routine that provides pseudo-random integers is the subroutine
r a n d ( ) in the ANSI C library, which is executed using a line such as:

k = r a n d ( ); (1.7.27)

The following three questions discuss how to use such a pseudo-random
number generator. Assume that it provides a standard short integer.

1. Explain how to use a pseudo-random number generator to choose a
move in a Metropolis Monte Carlo simulation, Eq. (1.7.19).

2. Explain how to use a pseudo-random number generator to accept or re-
ject a move in a Metropolis Monte Carlo simulation, Eq. (1.7.19).

3. Explain how to use a pseudo-random number generator to provide val-
ues of x with a probability P(x) for x in the interval [0,1]. Hint: Use two
pseudo-random numbers every step.

Solution 1.7.1

1. Given the necessity of choosing one out of M possible moves, we crea te
a on e - to - one mapping bet ween the M m oves and the integers {0, . . . ,
M − 1} If M is smaller than 215 we can use the value of k = r a n d ( ) to
determine which move is taken next. If k is larger than M − 1, we don’t
make any move. If M is much smaller than 215 then we can use only
some of the bits of k. This avoids making many unused calls tor a n d ( ).
Fewer bits can be obtained using a modulo operation. For example, if
M = 10 we might use k modulo 16. We could also ignore values above
32759,and use k modulo 10. This also causes each move to occur with
equal frequency. However, a standard word of caution about using only
a few bits is that we shouldn’t use the lowest order bits (i.e., the units,
twos and fours bits), because they tend to be more correlated than the
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higher order bits. Thus it may be best first to divide k by a small num-
ber, like 8 (or equivalently to shift the bits to the right),if it is desired to
use fewer bits. If M is larger than 215 it is necessary to use more than one
call to r a n d ( ) (or a random number generator that provides a 4-byte
integer) so that all possible moves are accounted for.

2. Given the necessity of determining whether to accept a move with the
probability P, we compare 215 P with a number given by k = r a n d ( ).
If the former is bigger we accept the move, and if it is smaller we reject
the move.

3. One way to do this is to gen era te two ra n dom nu m bers r1 and r2.
Dividing both by 32767 (or 21 5) , we use the first ra n dom nu m ber to be
the loc a ti on in the interval x = r1/ 3 2 7 6 7 . However, we use this loc a ti on
on ly if the second ra n dom nu m ber r2 /32767 is small er than P(x) . If t h e
ra n dom nu m ber is not used , we gen era te two more and proceed . Th i s
means that we wi ll use the po s i ti on x with a prob a bi l i ty P(x) as de s i red .
Because it is nece s s a ry to gen era te many ra n dom nu m bers that are re-
j ected , this met h od for gen era ting nu m bers for use in performing the in-
tegral Eq . (1.7.3) is on ly useful if eva lu a ti ons of the functi on f(x) are
mu ch more co s t ly than ra n dom nu m ber gen era ti on . ❚

Question 1.7.2 To compare the errors that arise from conventional nu-
merical integration and Monte Carlo sampling, we return to Eq.(1.7.4)

and Eq. (1.7.5) in this and the following question. We choose two integrals
that can be evaluated analytically and for which the errors can also be eval-
uated analytically.

Evaluate two examples of the integral ∫P(x)f (x)dx over the interval
x ∈[1,1]. For the first example (1) take f(x) = 1, and for the second (2)
f(x) = x. In both cases assume the probability distribution is an exponential

(1.7.28)

where the normalization constant A is given by the expression in square
brackets.

Calculate the two integrals exactly (analytically). Then evaluate approx-
imations to the integrals using sums over N equally spaced points,
Eq.(1.7.4). These sums can also be evaluated analytically. To improve the re-
sult of the sum,you can use Simpson’s rule. This modifies Eq.(1.7.4) only by
subtracting 1/2 of the value of the integrand at the first and last points. The
errors in evaluation of the same integral by Monte Carlo simulation are to
be calculated in Question 1.7.3.

Solution 1.7.2

1. The value of the integral of P(x) is unity as required by normalization.
If we use a sum over equally spaced points we would have:

    

P(x) = Ae− x
=

e − e −

 

 
 

 

 
 e − x
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(1.7.29)

where we used the temporary definition a = e − /M to obtain

(1.7.30)

Expanding the answer in powers of / M gives:

(1.7.31)

The second term can be eliminated by noting that the sum could be
evaluated using Simpson’s rule by subtracting 1/2 of the contribution of
the end points. Then the third term gives an error of 2 / 2M2. This is the
error in the numerical approximation to the average of f (x) = 1.

2. For f(x) = x the exact integral is:

(1.7.32)

while the sum is:

With some assistance from Mathematica,the expansion to second order
in /M is:
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The first two terms are the correct result. The third term can be seen to
be eliminated using Simpson’s rule. The fourth term is the error. ❚

Question 1.7.3 E s ti m a te the errors in performing the same integrals as in
Q u e s ti on 1.7.2 using a Mon te Ca rlo en s em ble sampling with N terms as

in Eq .( 1 . 7 . 5 ) . It is not nece s s a ry to eva lu a te the integrals to eva lu a te the errors .

Solution 1.7.3

1. The errors in performing the integral for f(x) = 1 are zero, since the
Monte Carlo sampling would be given by the expression:

(1.7.35)

One way to think about this result is that Monte Carlo takes advantage
of the normalization of the probability, which the technique of sum-
ming the integrand over equally spaced points cannot do. This knowl-
edge makes this integral trivial, but it is also of use in performing other
integrals.

2. To evaluate the error for the integral over f (x) = x we use an argument
based on the sampling error of different regions of the integral. We
break up the domain [−1,1] into q regions of size ∆x = 2/q. Each region
is assumed to have a significant number of samples. The number of
these samples is approximately given by:

NP(x)∆x (1.7.36)

If this were the ex act nu m ber of samples as q i n c re a s ed ,t h en the integra l
would be ex act . However, s i n ce we are picking the points at ra n dom ,
t h ere wi ll be a devi a ti on in the nu m ber of these from this ideal va lu e . Th e
typical devi a ti on , according to the discussion in Secti on 1.2 of ra n dom
w a l k s , is the squ a re root of this nu m ber. Thus the error in the su m

(1.7.37)

from a particular interval ∆x is

(NP(x)∆x)1/2 f(x) (1.7.38)

Since this error could have either a positive or negative sign, we must
take the square root of the sum of the squares of the error in each region
to give us the total error:

(1.7.39)
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For f(x) = x the integral in the square root is:

(1.7.40)

The approach of Mon te Ca rlo is useful wh en the ex pon en tial is ra p i dly de-
c ayi n g. In this case, > > 1 , and we keep on ly the third term and have an error
that is just of m a gn i tu de 1/√N. Com p a ring with the sum over equ a lly spaced
points from Questi on 1.7.2, we see that the error in Mon te Ca rlo is indepen-
dent of for large , while it grows for the sum over equ a lly spaced poi n t s .
This is the crucial adva n t a ge of the Mon te Ca rlo met h od . However, for a fixed
va lue of we also see that the error is more slowly dec reasing with N than the
sum over equ a lly spaced poi n t s . So wh en a large nu m ber of samples is po s s i-
bl e , the sum over equ a lly spaced points is more ra p i dly conver gen t . ❚

Question 1.7.4 How would the discrete natu re of the integer ra n dom
nu m bers de s c ri bed in Questi on 1.7.1 affect the en s em ble sampling?

An s wer qu a l i t a tively. Is there a limit to the acc u racy of the integral in this case?

Solution 1.7.4 The integer random numbers introduce two additional
sources of error, one due to the sampling interval along the x axis and the
other due to the imperfect approximation of P(x). In the limit of a large
number of samples, each of the possible values along the x axis would be
sampled equally. Thus, the ensemble sum would reduce to a sum of the in-
tegrand over equally spaced points. The number of points is given by the
largest integer used (e.g., 215). This limits the accuracy accordingly. ❚

1.7.3 Perron-Frobenius theorem
The Perron-Frobenius theorem is tied to our understanding of the ergodic theorem
and the use of Monte Carlo simulations for the representation of ensemble averages.
The theorem only applies to a system with a finite space of possible states. It says that
a transition matrix that is irreducible must ultimately lead to a stable limiting proba-
bility distribution. This distribution is unique, and thus depends only on the transi-
tion matrix and not on the initial conditions. The Perron-Frobenius theorem assumes
an irreducible matrix,so that starting from any state,there is some path by which it is
possible to reach every other state of the system. If this is not the case,then the theo-
rem can be applied to each subset of states whose transition matrix is irreducible.

In a more general form than we will discuss,the Perron-Frobenius theorem deals
with the effect of matrix multiplication when all of the elements of a matrix are pos-
itive. We will consider it only for the case of a transition matrix in a Markov chain,
which also satisfies the normalization condition, Eq. (1.7.16). In this case, the proof
of the Perron-Frobenius theorem follows from the statement that there cannot be any
eigenvalues of the transition matrix that are larger than one. Otherwise there would
be a vector that would increase everywhere upon matrix multiplication. This is not

    
Ae− x f (x)2dx∫ = Ae − xx 2dx∫ = A

d 2

d 2

(e − e − )
=

2
2

−
2coth( )

+ 1
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possible, because probability is conserved. Thus if the probability increases in one
place it must decrease someplace else, and tend toward the limiting distribution.

A difficulty in the proof of the theorem arises from dealing with the case in which
there are deterministic currents through the system: e.g., ballistic motion in a circu-
lar path. An example for a two-state system would be 

P(1|1) = 0  P(1| −1) = 1

P(−1|1) = 1 P(−1|−1) = 0
(1.7.41)

In this case, a system in the state s = +1, goes into s = −1, and a system in the state
s = −1 goes into s = +1. The limiting behavior of this Markov chain is of two proba-
bilities that alternate in position without ever settling down into a limiting distribu-
tion. An example with three states would be

P(1|1) = 0  P(1|2) = 1 P(1|3) = 1

P(2|1) = .5 P(2|2) = 0 P(2|3) = 0 (1.7.42)

P(3|1) = .5 P(3|2) = 0 P(3|3) = 0

Half of the systems with s = 1 make transitions to s = 2 and half to s = 3. All systems
with s = 2  and s = 3 make transitions to s = 1. In this case there is also a cyclical be-
havior that does not disappear over time. These examples are special cases, and the
proof shows that they are special. It is sufficient, for example, for there to be a single
state where there is some possibility of staying in the same state. Once this is true,
these examples of cyclic currents do not apply and the system will settle down into a
limiting distribution.

We will prove the Perron-Frobenius theorem in a few steps enumerated below.
The proof is provided for completeness and reference, and can be skipped without
significant loss for the purposes of this book. The proof relies upon properties of the
eigenvectors and eigenvalues of the transition matrix. The eigenvectors need not al-
ways be positive, real or satisfy the normalization condition that is usually applied to
probability distributions, P(s). Thus we use v(s) to indicate complex vectors that have
a value at every possible state of the system.

Given an irreducible real nonnegative matrix (P(s′|s) ≥ 0) satisfying 

(1.7.43)

we have:

1. Applying P(s′|s) cannot increase the value of all elements of a nonnegative vec-
tor, v(s ′) ≥ 0:

(1.7.44)

To avoid infinities, we can assume that the minimization only includes s′ such that
v(s ′) ≠ 0.

      ′ s 
min

1

v( ′ s )
P( ′ s | s)v(s)

s
∑ 

 
 

 
 
 ≤ 1

    

P( ′ s | s)
′ s 

∑ = 1
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Proof : Assume that Eq. (1.7.44) is not true. In this case

(1.7.45)

for all v(s ′) ≠ 0, which implies 

(1.7.46)

Using Eq. (1.7.43), the left is the same as the right and the inequality is impossible.

2. The magnitude of eigenvalues of P(s′|s) is not greater than one.

Proof : Let v(s) be an eigenvector of P(s′|s) with eigenvalue :

(1.7.47)

Then:

(1.7.48)

This inequality follows because each term in the sum on the left has been made pos-
itive. If all terms started with the same phase, then equality holds. Otherwise, in-
equality holds. Comparing Eq. (1.7.48) with Eq. (1.7.44), we see that | | ≤ 1.

If | | = 1,then equality must hold in Eq.(1.7.48), and this implies that |v(s)|, the
vector whose elements are the magnitudes of v(s),is an eigenvector with eigenvalue 1.
Steps 3–5 show that there is one such vector which is strictly positive (greater than
zero) everywhere.

3. P(s′|s) has an eigenvector with eigenvalue = 1. We use the notation v1(s) for this
vector.

Proof : The existence of such an eigenvector follows from the existence of an eigen-
vector of the transpose matrix with eigenvalue = 1. Eq.(1.7.43) implies that the vec-
tor v(s) = 1 (one everywhere) is an eigenvector of the transpose matrix with eigenvalue

= 1. Thus v1(s) exists, and by step 2 we can take it to be real and nonnegative, v1(s)
≥ 0. We can, however, assume more, as the following shows.

4. An eigenvector of P(s′|s) with eigenvalue 1 must be strictly positive, v1(s) > 0.

Proof : Define a new Markov chain given by the transition matrix

Q(s′|s) = (P(s′|s) + s,s′) / 2 (1.7.49)

Applying Q(s′|s) N − 1 times to any vector v1(s) ≥ 0 must yield a vector that is strictly
positive. This follows because P(s′|s) is irreducible. Starting with unit probability at
any one value of s, after N − 1 steps we will move some probability everywhere. Also,
by the construction of Q(s′|s), any s which has a nonzero probability at one time will
continue to have a nonzero probability at all later times. By linear superposition,this
applies to any initial probability distribution. It also applies to any unnormalized vec-
tor v1(s) ≥ 0. Moreover, if v1(s) is an eigenvector of P(s′|s) with eigenvalue one,then it

      

P( ′ s | s)v(s)
s

∑ ≥ v( ′ s )

      

P( ′ s | s)v(s)
s

∑ = v( ′ s )

      ′ s 

∑ P( ′ s |s)v(s)
s

∑ > v( ′ s )
′ s 

∑

      

P( ′ s | s)v(s)
s

∑ > v( ′ s )
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is also an eigenvector of Q(s′|s) with the same eigenvalue. Since applying Q(s′|s) to
v1(s) changes nothing, applying it N − 1 times also changes nothing. We have just
proven that v1(s) must be strictly positive.

5 . Th ere is on ly one linearly indepen dent ei genvector of P(s′ |s) with ei genva lue = 1 .

Proof : Assume there are two such eigenvectors: v1(s) and v2(s). Then we can make a
linear combination c1v1(s) + c2v2(s),so that at least one of the elements is zero and oth-
ers are positive. This linear combination is also an eigenvector of P(s′|s) with eigen-
value = 1, which violates step 4. Thus there is exactly one eigenvector of P(s′|s) with
eigenvalue = 1, v1(s):

(1.7.50)

6. Either P(s′|s) has only one eigenvalue with | | = 1 (in which case = 1), or it can
be written as a cyclical flow.

Proof : Steps 2 and 5 imply that all eigenvectors of P(s′|s) with eigenvalues satisfying
| | = 1 can be written as:

vi(s) = Di(s)v1(s) = ei i(s)v1(s) (1.7.51)

As indicated, Di (s) is a vector with elements of magnitude one, |Di (s)| = 1. We can
write

(1.7.52)

There cannot be any terms in the sum on the left of Eq.(1.7.52) that add terms of dif-
ferent phase. If there were, then we would have a smaller magnitude than adding the
absolute values, which would not agree with Eq.(1.7.50). Thus we can assign all of the
elements of Di(s) into groups that have the same phase. P(s′|s) cannot allow transi-
tions to occur from any two of these groups into the same group. Since P(s′|s) is irre-
ducible, the only remaining possibility is that the different groups are connected in a
ring with the first mapped onto the second, and the second mapped onto the third,
and so on until we return to the first group. In particular, if there are any transitions
between a site and itself this would violate the requirements and we could have no
complex eigenvalues.

7. A Markov chain governed by an irreducible transition matrix, which has only one
eigenvector, v1(s) with | | = 1,has a limiting distribution over long enough times
which is proportional to this eigenvector. Using P t(s′|s) to represent the effect of
applying P(s′|s) t times, we must prove that:

(1.7.53)

for v(s) ≥ 0. The coefficient c depends on the normalization of v(s) and v1(s). If both
are normalized so that the total probability is one, then conservation of probability
implies that c = 1.

      

lim
t→∞

v(s;t) = lim
t →∞

P t( ′ s |s)v(s)
s

∑ = cv1( ′ s )

      

P( ′ s | s)D i (s)v1(s)
s

∑ = iD i ( ′ s )v1( ′ s )

      

P( ′ s | s)v1(s)
s

∑ = v1( ′ s )
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Proof : We write the matrix P(s′|s) in the Jordan normal form using a similarity trans-
formation. In matrix notation:

P = S−1JS (1.7.54)

J consists of a block diagonal matrix.Each of the block matrices along the diagonal is
of the form

(1.7.55)

where is an eigenvalue of P. In this block the only nonzero elements are s on the
diagonal, and 1s just above the diagonal.

Since Pt = S−1JtS, we consider Jt, which consists of diagonal blocks Nt. We prove
that Nt → 0 as t → ∞ for   < 1. This can be shown by evaluating explicitly the ma-
trix elements. The qth element above the diagonal of Nt is:

(1.7.56)

which vanishes as t → ∞.
Since 1 is an eigenvalue with only one eigenvector, there must be one 1 × 1 block

along the diagonal of J for the eigenvalue 1. Then Jt as t → ∞ has only one nonzero el-
ement which is a 1 on the diagonal. Eq.(1.7.53) follows, because applying the matrix
Pt always results in the unique column of S−1 that corresponds to the nonzero diago-
nal element of Jt. By our assumptions,this column must be proportional to v1(s). This
completes our proof and discussion of the Perron-Frobenius theorem.

1.7.4 Minimization
At low temperatures, a thermodynamic system in equilibrium will be found in its
minimum energy configuration. For this and other reasons,it is often useful to iden-
tify the minimum energy configuration of a system without describing the full en-
semble. There are also many other problems that can be formulated as minimization
or optimization problems.

Minimization problems are often described in a d-dimensional space of contin-
uous variables. When there is only a single valley in the parameter space of the prob-
lem,there are a variety of techniques that can be used to obtain this minimum. They
may be classified into direct search and gradient-based techniques. In this section we
focus on the single-valley problem. In Section 1.7.5 we will discuss what happens
when there is more than one valley.

Di rect search tech n i ques invo lve eva lu a ting the en er gy at va rious loc a ti on s
and closing in on the minimum en er gy. In one dimen s i on , s e a rch tech n i ques can
be very ef fective . The key to a search is bracketing the minimum en er gy. Th en
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e ach en er gy eva lu a ti on is used to geom etri c a lly shrink the po s s i ble domain of t h e
m i n i mu m .

We start in one dimension by looking at the energy at two positions s1 and s2 that
are near each other. If the left of the two positions s1 is higher in energy E(s1) > E(s2),
then the minimum must be to its right. This follows from our assumption that there
is only a single valley—the energy rises monotonically away from the minimum and
therefore cannot be lower than E(s2),anywhere to the left of s1. Evaluating the energy
at a third location s3 to the right of s2 further restricts the possible locations of the
minimum. If E(s3) is also greater than the middle energy location E(s3) > E(s2), then
the minimum must lie between s1 and s3. Thus, we have successfully bracketed the
minimum. Otherwise, we have that E(s3) < E(s2), and the minimum must lie to the
right of s2. In this case we look at the energy at a location s4 to the right of s3. This
process is continued until the energy minimum is bracketed. To avoid taking many
steps to the right,the size of the steps to the right can be taken to be an increasing geo-
metric series, or may be based on an extrapolation of the function using the values
that are available.

O n ce the en er gy minimum is bracketed , the segm ent is bi s ected again and
a gain to loc a te the en er gy minimu m . This is an itera tive proce s s . We de s c ri be a
simple vers i on of this process that can be easily implem en ted . An itera ti on begi n s
with three loc a ti ons s1 < s2 < s3. The va lues of the en er gy at these loc a ti ons sati s f y
E(s1) , E(s3) > E(s2) . Thus the minimum is bet ween s1 a n d s3. We ch oose a new lo-
c a ti on s4, wh i ch in even steps is s4 = (s1 + s2) / 2 and in odd steps is s4 = (s2 + s3) / 2 .
Th en we el i m i n a te ei t h er s1 or s3. The one that is el i m i n a ted is the one next to s2 i f
E(s2) > E(s4) , or the one next to s4 i f E(s2) < E(s4) . The remaining three loc a ti on s
a re rel a bl ed to be s1, s2, s3 for the next step. Itera ti ons stop wh en the distance be-
t ween s1 and s3 is small er than an error to l era n ce wh i ch is set in adva n ce . More so-
ph i s ti c a ted vers i ons of this algorithm use improved met h ods for sel ecting s4 t h a t
accel era te the conver gen ce .

In higher-dimension spaces,direct search can be used. However, mapping a mul-
tidimensional energy surface is much more difficult. Moreover, the exact logic that
enables an energy minimum to be bracketed within a particular domain in one di-
mension is not possible in higher-dimension spaces. Thus, techniques that make use
of a gradient of the function are typically used even if the gradient must be numeri-
cally evaluated. The most common gradient-based minimization techniques include
steepest descent, second order and conjugate gradient.

Steepest descent techniques involve taking steps in the direction of the most rapid
descent direction as determined by the gradient of the energy. This is the same as us-
ing a first-order expansion of the energy to determine the direction of motion toward
lower energy. Illustrating first in one dimension,we start from a position s1 and write
the expansion as:

(1.7.57)

    

E(s) = E(s1) +(s −s1)
dE(s)

ds
s 1

+O((s − s1)2)
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We now take a step in the direction of the minimum by setting:

(1.7.58)

From the ex p a n s i on we see that for small en o u gh c,E(s2) must be small er than E(s1) . Th e
probl em is to caref u lly sel ect c so that we do not go too far. If we go too far we may re ach
beyond the en er gy minimum and increase the en er gy. We also do not want to make su ch
a small step that many steps wi ll be needed to re ach the minimu m . We can think of t h e
s equ en ce of con f i g u ra ti ons we pick as a time sequ en ce , and the process we use to pick
the next loc a ti on as an itera tive map. Th en the minimum en er gy con f i g u ra ti on is a fixed
point of the itera tive map given by Eq .( 1 . 7 . 5 8 ) . From a point near to the minimum we
can have all of the beh avi ors de s c ri bed in Secti on 1.1—stable (conver ging) and unsta-
ble (diver gi n g ) , both of these with or wi t h o ut altern a ti on from side to side of the min-
i mu m .O f p a rticular rel eva n ce is the discussion in Questi on 1.1.12 that su ggests how c
m ay be ch o s en to stabi l i ze the itera tive map and obtain rapid conver gen ce .

When s is a multidimensional variable, Eq. (1.7.57) and Eq. (1.7.58) both con-
tinue to apply as long as the derivative is replaced by the gradient:

E(s) = E(s1) + (s − s1). ∇s E(s)|
s1

+ O((s − s1)2) (1.7.59)

s2 = s1 − c∇s E(s)|
s1

(1.7.60)

Si n ce the directi on oppo s i te to the grad i ent is the directi on in wh i ch the en er gy dec re a s e s
most ra p i dly, this is known as a steepest de s cent tech n i qu e .For the mu l ti d i m en s i onal case
it is more difficult to ch oose a con s i s tent va lue of c , s i n ce the beh avi or of the functi on may
not be the same in different directi on s . The va lue of c m ay be ch o s en “on the fly ” by mak-
ing su re that the new en er gy is small er than the old. If the current va lue of c gives a va lu e
E(s2) wh i ch is larger than E(s1) then c is redu ced . We can improve upon this by loo k i n g
a l ong the directi on of the grad i ent and con s i dering the en er gy to be a functi on of c :

E(s1 − c∇s E(s)|
s1

) (1.7.61)

Then c can be chosen by finding the actual minimum in this direction using the search
technique that works well in one dimension.

Grad i ent tech n i ques work well wh en different directi ons in the en er gy have the
same beh avi or in the vi c i n i ty of the minimum en er gy. This means that the second de-
riva tive in different directi ons is approx i m a tely the same. If the second deriva tives are
very different in different directi on s ,t h en the grad i ent tech n i que tends to bo u n ce back
and forth perpendicular to the directi on in wh i ch the second deriva tive is very small ,
wi t h o ut making mu ch progress tow a rd the minimum (Fig. 1 . 7 . 3 ) . Im provem ents of
the grad i ent tech n i que fall into two cl a s s e s . One class of tech n i ques makes direct use of
the second deriva tive s , the other does not. If we expand the en er gy to second order at
the pre s ent best guess for the minimum en er gy loc a ti on s1 we have

(1.7.62)
      
E(s) = E(s1) +(s −s1) ⋅∇s E(s)

s1

+(s −s1)⋅
s 
∇ s

r 
∇ sE(s)

s1

⋅(s − s1) +O((s − s1)3)

    

s2 = s1 − c
dE(s)

ds
s1
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Setting the gradient of this expression to zero gives the next approximation for the
minimum energy location s2 as:

(1.7.63)

This, in effect, gives a better description of the value of c for Eq. 1.7.60, which turns
out to be a matrix inversely related to the second-order derivatives. Steps are large in
directions in which the second derivative is small. If the second derivatives are not eas-
ily available, approximate second derivatives are used that may be improved upon as
the minimization is b eing performed. Because of the need to evaluate the matrix of
second-order derivatives and invert the matrix,this approach is not often convenient.
In addition, the use of second derivatives assumes that the expansion is valid all the
way to the minimum energy. For many minimization problems, this is not valid
enough to be a useful approximation. Fortunately, there is a second approach called
the conjugate gradient technique that often works as well and sometimes better.

Conjugate gradient techniques make use of the gradient but are designed to avoid
the difficulties associated with long narrow wells where the steepest descent tech-
niques result in oscillations. This is done by starting from a steepest descent in the first
step of the minimization. In the second step, the displacement is taken to be along a
direction that does not include the direction taken in the first step. Explicitly, let vi be
the direction taken in the ith step, then the first two directions would be:

(1.7.64)

This ensures that v2 is orthogonal to v1. Subsequent directions are made orthogonal
to some number of previous steps. The use of orthogonal directions avoids much of
the problem of bouncing back and forth in the energy well.

Monte Carlo simulation can also be used to find minimum energy configurations
if the simulations are done at zero temperature. A zero temperature Monte Carlo
means that the steps taken always reduce the energy of the system. This approach
works not only for continuous variables, but also for the discrete variables like in the
Ising model. For the Ising model,the zero temperature Monte Carlo described above

      

v1 = −∇sE(s)
s1

v2 = −∇sE(s)
s 2

+ v1

(v1 ⋅∇s E(s)
s 2

)

v1 ⋅v1

      
s2 = s1 −

1

2

s 
∇ s

r 
∇ s E(s)

s1

 
 
  

 
 

−1

⋅∇s E(s)
s1
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and the zero temperature Glauber dynamics are the same. Every selected spin is placed
in its low energy orientation—aligned with the local effective field.

None of these tech n i ques are su i ted to finding the minimum en er gy con f i g u ra ti on
i ft h ere are mu l tiple en er gy minima, and we do not know if we are loc a ted near the cor-
rect minimum en er gy loc a ti on . One way to ad d ress this probl em is to start from va ri-
ous initial con f i g u ra ti ons and to look for the local minimum nearby. By doing this
m a ny times it might be po s s i ble to iden tify the gl obal minimum en er gy. This work s
wh en there are on ly a few different en er gy minima. Th ere are no tech n i ques that guar-
a n tee finding the gl obal minimum en er gy for an arbi tra ry en er gy functi on E(s) .
However, by using Mon te Ca rlo simu l a ti ons that are not at T = 0 , a sys tem a tic approach
c a ll ed simu l a ted annealing has been devel oped to try to iden tify the gl obal minimu m .

1.7.5 Simulated annealing
Simulated annealing was introduced relatively recently as an approach to finding the
global minimum when the energy or other optimization function contains many lo-
cal minima. The approach is based on the physical process of heating a system and
cooling it down slowly. The minimum energy for many simple materials is a crystal.
If a material is heated to a liquid or vapor phase and cooled rapidly, the material does
not crystallize. It solidifies as a glass or amorphous solid. On the other hand, if it is
cooled slowly, crystals may form. If the material is formed out of several different
kinds of atoms, the cooling may also result in phase separation into particular com-
pounds or atomic solids.The separated compounds are lower in energy than a rapidly
cooled mixture.

Simulated annealing works in much the same way. A Monte Carlo simulation is
started at a high temperature. Then the temperature is lowered according to a cooling
schedule until the temperature is so low that no additional movements are likely. If
the procedure is effective,the final energy should be the lowest energy of the simula-
tion. We could also keep track of the energy during the simulation and take the low-
est value, and the configuration at which the lowest value was reached.

In general, simulated annealing improves upon methods that find only a local
minimum energy, such as steepest descent, discussed in the previous section. For
some problems, the improvement is substantial. Even if the minimum energy that is
found is not the absolute minimum in energy of the system, it may be close. For ex-
ample, in problems where there are many configurations that have roughly the same
low energy, simulated annealing may find one of the low-energy configurations.

However, simulated annealing does not work well for all problems,and for some
problems it fails completely. It is also true that annealing of physical materials does
not always result in the lowest energy conformation. Many materials, even when
cooled slowly, result in polycrystalline materials, disordered solids and mixtures.
When it is important for technological reasons to reach the lowest energy state, spe-
cial techniques are often used. For example, the best crystal we know how to make is
silicon. In order to form a good silicon crystal, it is grown using careful nonuniform
cooling. A single crystal can be gradually pulled from a liquid that solidifies only on
the surfaces of the existing crystal. Another technique for forming crystals is growth
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from the vapor phase, where atoms are deposited on a previously formed crystal that
serves as a template for the continuing growth. The difficulties inherent in obtaining
materials in their lowest energy state are also apparent in simulations.

In Secti on 1.4 we con s i dered the cooling of a two - s t a te sys tem as a model of a gl a s s
tra n s i ti on . We can think abo ut this simu l a ti on to give us clues abo ut why both phys i-
cal and simu l a ted annealing som etimes fail to find low en er gy states of the sys tem . We
s aw that using a constant cooling ra te leaves some sys tems stu ck in the high er en er gy
well . Wh en there are many su ch high en er gy wells then the sys tem wi ll not be su cce s s-
ful in finding a low en er gy state . The probl em becomes more difficult if the hei ght of
the en er gy barri er bet ween the two wells is mu ch larger than the en er gy differen ce be-
t ween the upper and lower well s . In this case, at high er tem pera tu res the sys tem doe s
not care wh i ch well it is in. At low tem pera tu res wh en it would like to be in the lower
en er gy well , it cannot overcome the barri er. How well the annealing works in finding a
l ow en er gy state depends on wh et h er we care abo ut the en er gy scale ch a racteri s tic of
the barri er, or ch a racteri s tic of the en er gy differen ce bet ween the two minima.

There is another characteristic of the energy that can help or hurt the effective-
ness of simulated annealing. Consider a system where there are many local minimum
energy states (Fig. 1.7.4). We can think about the effect of high temperatures as plac-
ing the system in one of the many wells of the energy minima. These wells are called
basins of attraction.A system in a particular basin of attraction will go into the min-
imum energy configuration of the basin if we suddenly cool to zero temperature. We
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Figure 1.7.4 Schematic plot of a system energy E(s) as a function of a system coordinate s.
In simulated annealing, the location of a minimum energy is sought by starting from a high
temperature Monte Carlo and cooling the system to a low temperature. At the high tempera-
ture the system has a high kinetic energy and explores all of the possible configurations. As
the temperature is cooled it descends into one of the wells, called basins of attraction, and
cannot escape. Finally, when the temperature is very low it loses all kinetic energy and sits
in the bottom of the well. Minima with larger basins of attraction are more likely to capture
the system. Simulated annealing works best when the lowest-energy minima have the largest
basins of attraction. ❚
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also can see that the gradual cooling in simulated annealing will result in low energy
states if the size of the basin of attraction increases with the depth of the well. This
means that at high temperatures the system is more likely to be in the basin of attrac-
tion of a lower energy minimum. Thus,simulated annealing works best when energy
varies in the space in such a way that deep energy minima also have large basins of at-
traction. This is sometimes but not always true both in physical systems and in math-
ematical optimization problems.

Another way to improve the performance of simulated annealing is to introduce
nonlocal Monte Carlo steps. If we understand the characteristics of the energy, we can
design steps that take us through energy barriers. The problem with this approach is
that if we don’t know the energy surface well enough, then moving around in the
space by arbitrary nonlocal steps will result in attempts to move to locations where
the energy is high. These steps will be rejected by the Monte Carlo and the nonlocal
moves will not help. An example where nonlocal Monte Carlo moves can help is treat-
ments of low-energy atomic configurations in solids. Nonlocal steps can allow atoms
to move through each other, switching their relative positions, instead of trying to
move gradually around each other.

Finally, for the success of simulated annealing, it is often necessary to design care-
fully the cooling schedule.Generally, the slower the cooling the more likely the simu-
lation will end up in a low energy state. However, given a finite amount of computer
and human time,it is impossible to allow an arbitrarily slow cooling. Often there are
particular temperatures where the cooling rate is crucial. This happens at phase tran-
sitions, such as at the liquid-to-solid phase boundary. If we know of such a transition,
then we can cool rapidly down to the transition, cool very slowly in its vicinity and
then speed up thereafter. The most difficult problems are those where there are bar-
riers of varying heights leading to a need to cool slowly at all temperatures.

For some problems the cooling rate should be slowed as the temperature be-
comes lower. One way to achieve this is to use a logarithmic cooling schedule. For ex-
ample, we set the temperature T(t) at time step t of the Monte Carlo, to be:

T(t) = T0 / ln(t / t0 + 1) (1.7.65)

where t0 and T0 are parameters that must be chosen for the particular problem. In
Question 1.7.5 we show that for the two-state system,if kT0 > (EB − E1),then the sys-
tem will always relax into its ground state.

Question 1.7.5: Show that by using a logarithmic cooling schedule, Eq.
(1.7.65), where kT0 > (EB − E1),the two-state system of Section 1.4 al-

ways relaxes into the ground state. To simplify the problem, consider an in-
cremental time ∆t during which the temperature is fixed.Show that the sys-
tem will still relax to the equilibrium probability over this incremental time,
even at low temperatures.

Solution 1.7.5: We write the solution of the time evolution during the in-
cremental time ∆t from Eq. (1.4.45) as:

P(1;t + ∆t) − P(1;∞) = (P(1;t) − P(1;∞))e−t /τ(t) (1.7.66)
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where P(1;∞) is the equilibrium value of the probability for the temperature
T(t). (t)is the relaxation time for the temperatureT(t). In order for relax-
ation to occur we must have that e−t/τ(t)<<1, equivalently:

t / (t) >> 1 (1.7.67)

We calculate (t) from Eq. (1.4.44):

(1.7.68)

where we have substituted Eq. (1.7.65) and defined = (EB − E1)/kT0. We
make the reasonable assumption that we start our annealing at a high tem-
perature where relaxation is not a problem. Then by the time we get to the
low temperatures that are of interest, t >> t0, so:

1/ (t) > 2ν(t/ t0)− (1.7.69)

and

(1.7.70)

For < 1 the right-hand side increases with time and thus the relaxation im-
proves with time according to Eq. (1.7.67). If relaxation occurs at higher
temperatures, it will continue to occur at all lower temperatures despite the
increasing relaxation time. ❚

Information

Ultimately, our ability to quantify complexity (How complex is it?) requires a quan-
tification of information (How much information does it take to describe it?). In this
section, we discuss information. We will also need computation theory described in
Section 1.9 to discuss complexity in Chapter 8.A quantitative theory of information
was developed by Shannon to describe the problem of communication. Specifically,
how much information can be communicated through a transmission channel (e.g.,
a telephone line) with a specified alphabet of letters and a rate at which letters can be
transmitted. The simplest example is a binary alphabet consisting of two characters
(digits) with a fixed rate of binary digits (bits) per second. However, the theory is gen-
eral enough to describe quite arbitrary alphabets,letters of variable duration such as
are involved in Morse code, or even continuous sound with a specified band-width.
We will not consider many of the additional applications,our objective is to establish
the basic concepts.

1.8.1 The amount of information in a message
We start by considering the information content of a string of digits s = (s1s2...sN).One
might naively expect that information is contained in the state of each digit. However,
when we receive a digit, we not only receive information about what the digit is, but

1.8

    t / (t) > t 0 t 1−

    

1/ (t) = (e −(EB −E1 )/ kT(t ) + e −(EB −E−1)/kT(t ))

> e −(EB −E1)/kT (t ) = (t /t 0 + 1)−
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also what the digit is not.Let us assume that a digit in the string of digits we receive is
the number 1. How much information does this provide? We can contrast two differ-
ent scenarios—binary and hexadecimal digits:

1. There were two possibilities for the number, either 0 or 1.

2. There were sixteen possibilities for the number {0, 1, 2,3,4,5, 6, 7,8, 9, A, B, C,
D, E, F}.

In which of these did the “1”communicate more information? Since the first case pro-
vides us with the information that it is “not 0,” while the second provides us with the
information that it is “not 0,” “not 2,” “not 3,” etc., the second provides more infor-
mation. Thus there is more information in a digit that can have sixteen states than a
digit that can have only two states.We can quantify this difference if we consider a bi-
nary representation of hexadecimal digits {0000,0001,0010,0011,…,1111}. It takes
four binary digits to represent one hexadecimal digit. The hexadecimal number 1 is
represented as 0001 in binary form and uses four binary digits.Thus a hexadecimal 1
contains four times as much information as a binary 1.

We note that the amount of information does not depend on the particular value
that is taken by the digit. For hexadecimal digits, consider the case of a digit that has
the value 5. Is there any difference in the amount of information given by the 5 than
if it were 1? No, either number contains the same amount of information.

This illustrates that information is actually contained in the distinction between
the state of a digit compared to the other possible states the digit may have. In order
to quantify the concept of information, we must specify the number of possible states.
Counting states is precisely what we did when we defined the entropy of a system in
Section 1.3. We will see that it makes sense to define the information content of a
string in the same way as the entropy—the logarithm of the number of possible states
of the string:

I(s) = log2( ) (1.8.1)

By conven ti on , the inform a ti on is def i n ed using the loga rithm base two. Thu s , t h e
i n form a ti on con t a i n ed in a single bi n a ry digit wh i ch has two po s s i ble states is log2(2) = 1 .
More gen era lly, the nu m ber of po s s i ble states in a string of N bi t s , with each bit taking
one of t wo va lues (0 or 1) is 2N. Thus the inform a ti on in a string of N bits is (in wh a t
fo ll ows the functi on log( ) wi ll be assu m ed to be base two ) :

I(s) = log(2N) = N (1.8.2)

Eq.(1.8.2) says that each bit provides one unit of information. This is consistent with
the intuition that the amount of information grows linearly with the length of the
string. The logarithm is essential, because the number of possible states grows expo-
nentially with the length of the string, while the information grows linearly.

It is important to recognize that the definition of information we have given as-
sumes that each of the possible realizations of the string has equal a priori probabil-
ity. We use the phrase a priori to emphasize that this refers to the probability prior to
receipt of the string—once the string has arrived there is only one possibility.
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To think about the role of probability we must discuss further the nature of the
message that is being communicated. We construct a scenario involving a sender and
a receiver of a message. In order to make sure that the recipient of the message could
not have known the message in advance (so there is information to communicate), we
assume that the sender of the information is sending the result of a random occur-
rence, like the flipping of a coin or the throwing of a die. To enable some additional
flexibility, we assume that the random occurrence is the drawing of a ball from a bag.
This enables us to construct messages that have different probabilities. To be specific,
we assume there are ten balls in the bag numbered from 0 to 9. All of them are red ex-
cept the ball marked 0, which is green. The person communicating the message only
reports ifthe ball drawn from the bag is red (using the digit 1) or green (using the digit
0). The recipient of the message is assumed to know about the setup. If the recipient
receives the number 0,he then knows exactly which ball was selected,and all that were
not selected. However, if he receives a 1, this provides less information, because he
only knows that one of nine was selected,not which one. We notice that the digit 1 is
nine times as likely to occur as the digit 0.This suggests that a higher probability digit
contains less information than a lower probability digit.

We generalize the definition of the information content of a string of digits to al-
low for the possibility that different strings have different probabilities. We assume
that the string is one of an ensemble of possible messages, and we define the infor-
mation as:

I(s) = −log(P(s)) (1.8.3)

where P(s) is the probability of the occurrence of the message s in the ensemble. Note
that in the case of equal a priori probability P(s) = 1/ , Eq. (1.8.3) reduces to
Eq. (1.8.1). The use o f probabilities in the definition of information makes sense in
one of two cases:(1) The recipient knows the probabilities that represent the conven-
tions of the transmission, or (2) A large number of independent messages are sent,
and we are considering the information communicated by one of them. Then we can
approximate the probability of a message by its proportion of appearance among the
messages sent. We will discuss these points in greater detail later.

Question 1.8.1 Calculate the information, according to Eq.(1.8.3),that
is provided by a single digit in the example given in the text of drawing

red and green balls from a bag.

Solution 1.8.1 For the case of a 0,the information is the same as that of a
decimal digit:

I(0) = −log(1/10) ≈ 3.32 (1.8.4)

For the case of a 1 the information is

I(0) = −log(9/10) ≈ 0.152 (1.8.5) ❚

We can spec i a l i ze the def i n i ti on of i n form a ti on in Eq . (1.8.3) to a message
s = (s1s2. . .sN) com po s ed of i n d ivi dual ch a racters (bi t s , h ex adecimal ch a racters ,
ASCII ch a racters , dec i m a l s , etc.) that are com p l etely indepen dent of e ach other
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(for example, each corresponding to the result of a separate coin toss). This means
that the total probability of the message is the product of the probability of each
character, P(s) = ∏

i
P(si). Then the information content of the message is given by:

(1.8.6)

If all of the characters have equal probability and there are k possible characters in the
alphabet, then P(si) = 1/k, and the information content is:

I(s) = N log(k) (1.8.7)

For the case of binary digits,this reduces to Eq.(1.8.2). For other cases like the hexa-
decimal case,k = 16,this continues to make sense:the information I = 4N corresponds
to the requirement of representing each hexadecimal digit with four bits. Note that
the previous assumption of equal a priori probability for the whole string is stronger
than the independence of the digits and implies it.

Question 1.8.2 App ly the def i n i ti on of i n form a ti on con tent in Eq .( 1 . 8 . 3 )
to each of the fo ll owing cases. As sume messages consist of a total of N bi t s

su bj ect to the fo ll owing con s traints (aside for the con s traints assume equ a l
prob a bi l i ti e s ) :

1. Every even bit is 1.

2. Every (odd, even) pair of bits is either 11 or 00.

3. Every eighth bit is a parity bit (the sum modulo 2 of the previous seven
bits).

Solution 1.8.2: In each case, we first g ive an intuitive argument, and then
we show that Eq. (1.8.3) or Eq. (1.8.6) give the same result.

1. The only information that is transferred is the state of the odd bits.This
means that only half of the bits contain information. The total infor-
mation is N / 2. To apply Eq.(1.8.6), we see that the even bits, which al-
ways have the value 1, have a probability P(1) = 1 which contributes no
information. Note that we never have to consider the case P(0) = 0 for
these bits, which is good, because by the formula it would give infinite
information. The odd bits with equal probabilities, P(1) = P(0) = 1/2,
give an information of one for either value received.

2. Every pair of bits contains only two possibilities, giving us the equiva-
lent of one bit of information rather than two. This means that total in-
formation is N /2. To apply Eq.(1.8.6), we have to consider every (odd,
even) pair of bits as a single character. These characters can never have
the value 01 or 10, and they have the value 11 or 00 with probability
P(11) = P(00) = 1/2, which gives the expected result. We will see later
that there is another way to think about this example by using condi-
tional probabilities.

3. The number of independent pieces of information is 7N / 8. To see this
from Eq. (1.8.6), we group each set of eight bits together and consider

    

I(s) = −
i

∑ log(P(si ))
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them as a single character (a byte). There are only 27 different possibil-
ities for each byte, and each one has equal probability according to our
constraints and assumptions. This gives the desired result.

Note : Such representations are used to check for noise in transmission.
If there is noise,the redundancy of the eighth bit provides additional in-
formation. The noise-dependent amount of additional information can
also be quantified; however, we will not discuss it here. ❚

Question 1.8.3 Con s i der a tra n s m i s s i on of E n glish ch a racters using
an ASCII repre s en t a ti on . ASCII ch a racters are the conven ti on a l

m et h od for com p uter repre s en t a ti on of E n glish text including small and
capital let ters , nu m erals and punctu a ti on . Discuss (do not eva lu a te for
this qu e s ti on) how you would determine the inform a ti on con tent of a
m e s s a ge . We wi ll eva lu a te the inform a ti on con tent of E n glish in a later
qu e s ti on .

Solution 1.8.3 In ASCII, characters are represented using eight bits. Some
of the possible combinations of bits are not used at all. Some are used very
infrequently. One way to determine the information content of a message is
to assume a model where each of the characters is independent. To calculate
the information content using this assumption, we must find the probabil-
ity of occurrence of each character in a sample text. Using these probabili-
ties,the formula Eq.(1.8.6) could be applied. However, this assumes that the
likelihood of occurrence of a character is independent of the preceding char-
acters, which is not correct. ❚

Question 1.8.4: Assume that you know in advance that the number of
ones in a long binary message is M. The total number of bits is N. What

is the information content of the message? Is it similar to the information
content of a message of N independent binary characters where the proba-
bility that any character is one is P(1) = M /N?

Solution 1.8.4:We count the number of possible messages with M ones and
take the logarithm to obtain the information as

(1.8.8)

We can show that this is almost the same as the information of a message of
the same length with a particular probability of ones, P(1) = M / N, by use of
the first two terms of Sterling’s approximation Eq. (1.2.36). Assuming 1 <<
M << N (A correction to this would grow logarithmically with N and can be
found using the additional terms in (Eq. (1.2.36)):

I ∼N(log(N) − 1) − M(log(M) − 1) − (N − M)(log(N − M) − 1)

= −N[P(1)log(P(1)) + (1 − P(1))log(1 − P(1))]
(1.8.9)

    

I = log(
N

M

 

 
 

 

 
 ) = log(

N !

M !(N − M )!
)
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This is the information from a string of independent characters where
P(1) = M / N. For such a string, the number of ones is approximately NP(1)
and the number of zeros N(1 − P(1)) (see also Question 1.8.7). ❚

1.8.2 Characterizing sources of information
The information content of a particular message is defined in terms of the probabil-
ity that it,out of all possible messages, will be received. This means that we are char-
acterizing not just a message but the source of the message.A direct characterization
of the source is not the information of a particular message, but the average informa-
tion over the ensemble of possible messages. For a set of possible messages with a
given probability distribution P(s) this is:

(1.8.10)

If the messages are composed out of characters s = (s1s2...sN),and each character is de-
termined independently with a probability P(si), then we can write the information
content as:

(1.8.11)

We can move the factor in parenthesis inside the inner sum and interchange the or-
der of the summations.

(1.8.12)

The latter expression results from recognizing that the sum over all possible states is
a sum over all possible values of each of the letters. The sum and product can be
interchanged:

(1.8.13)

giving the result:

(1.8.14)

This shows that the average information content of the whole message is the average
information content of each character summed over the whole character string. If the
characters have the same probability, this is just the average information content of an
individual character times the number of characters. If all letters of the alphabet have
the same probability, this reduces to Eq. (1.8.7).
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The average information content of a binary variable is given by:

< I > = −(P(1)log(P(1)) + P(0)log(P(0))) (1.8.15)

Aside from the use of a logarithm base two, this is the same as the entropy of a spin
(Section 1.6) with two possible states s = ±1 (see Question 1.8.5). The maximum in-
formation content occurs when the probabilities are equal, and the information goes
to zero when one of the two becomes one,and the other zero (see Fig. 1.8.1). The in-
formation reflects the uncertainty in, or the lack o f advance knowledge about, the
value received.

Question 1.8.5 S h ow that the ex pre s s i on for the en tropy S given in
Eq . (1.6.16) of a set of n on i n teracting bi n a ry spins is the same as the

information content defined in Eq.(1.8.15) aside from a normalization con-
stant k ln(2). Consider the binary notation si = 0 to be the same as si = −1 for
the spins.
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Figure 1.8.1 Plots of functions related to the information content of a message with proba-
bility P. −log(P) is the information content of a single message of probability P. −Plog(P) is
the contribution of this message to the average information given by the source. While the
information content of a message diverges as P goes to zero, it appears less frequently so its
contribution to the average information goes to zero. If there are only two possible messages,
or two possible (binary) characters with probability P and 1 − P then the average information
given by the source per message or per character is given by −Plog(P) − (1 − P)log(1 − P). ❚
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Solution 1.8.5 The local magnetization mi is the average value of a partic-
ular spin variable:

mi = Psi
(1) − Psi

(−1) (1.8.16)

Using Psi
(1) + Psi

(−1) = 1 we have:

Psi
(1) = (1 + mi) / 2

Psi
(−1) = (1 − mi) / 2

(1.8.17)

Inserting these expressions into Eq. (1.8.15) and summing over a set of bi-
nary variables leads to the expression:

(1.8.18)
The result is more general than this derivation suggests and will be discussed
further in Chapter 8. ❚

Question 1.8.6 For a given set of possible messages, prove that the en-
semble where all messages have equal probability provides the highest

average information.

Solution 1.8.6 Since the sum over all probabilities is a fixed number (1),we
consider what happens when we transfer some probability from one message
to another. We start with the information given by

(1.8.19)

and after shifting a probability of from one to the other we have:

(1.8.20)

We need to expand the change in information to first nonzero order in . We
simplify the task by using the expression:

<I ′> − <I> = f (P(s ′) + ) − f (P(s ′)) + f (P(s″) − ) − f (P(s″)) (1.8.21)

where

f (x) = −xlog(x) (1.8.22)

Taking a derivative, we have

(1.8.23)

This gives the result:

< I ′> − < I > = −(log(P(s′)) − log(P(s″))) (1.8.24)

    

d

dx
f (x) = −(log(x) +1)

    

< ′ I > = −(P( ′ s ) − )ln(P( ′ s ) − ) −(P( ′ ′ s ) + )ln(P( ′ ′ s ) + ) − P(s)ln(P(s))
s≠ ′ s , ′ ′ s 
∑

    

< I > = −P( ′ s )ln(P( ′ s )) − P( ′ ′ s )ln(P( ′ ′ s ))− P(s)ln(P(s))
s≠ ′ s , ′ ′ s 
∑

    

I = N −
1

2
(1+ mi )log 1+ mi( )+ (1− mi )log 1− mi( )( )

i

∑
 

 
 
 

 

 
 
 

= S /k ln(2)
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Since log(x) is a monotonic increasing function, we see that the average in-
formation increases ((< I ′> − < I >) > 0) when probability > 0 is transferred
from a higher-probability character to a lower-probability character (P(s″)
> P(s ′) ⇒ −(log(P(s ′)) − log(P(s″)) > 0). Thus,any change of the probabil-
ity toward a more uniform probability distribution increases the average in-
formation. ❚

Question 1.8.7 A source produces strings of characters of length N. Each
character that appears in the string is independently selected from an al-

phabet of characters with probabilities P(si). Write an expression for the
probability P(s) of a typical string of characters. Show that this expression
implies that the string gives N times the average information content of an
individual character. Does this mean that every string must give this amount
of information?

Solution 1.8.7 For a long string, each character will appear NP(si) times.
The probability of such a string is:

(1.8.25)

The information content is:

(1.8.26)

which is N times the average information of a single character. This is the in-
formation of a typical string. A particular string might have information sig-
nificantly different from this. However, as the number of characters in the
string increases, by the central limit theorem (Section 1.2), the fraction of
times a particular character appears (i.e., the distance traveled in a random
walk divided by the total number of steps) becomes more narrowly distrib-
uted around the expected probability P(si). This means the proportion of
messages whose information content differs from the typical value decreases
with increasing message length. ❚

1.8.3 Correlations between characters
Thus far we have considered characters that are independent of each other. We can
also consider characters whose values are correlated. We describe the case of two cor-
related characters. Because there are two characters,the notation must be more com-
plete. As discussed in Section 1.2, we use the notation Ps1,s2

(s ′1, s′2) to denote the prob-
ability that in the same string the character s1 takes the value s ′1 and the variable s2 takes
the value s′2. The average information contained in the two characters is given by:

(1.8.27)
    

< I s1 ,s 2
> = − Ps 1 ,s 2

( ′ s 1 , ′ s 2)
′ s 1, ′ s 2

∑ log(Ps1,s2
( ′ s 1 , ′ s 2))

    

I(s) = −log(P(s)) = −N P(si )log(
s i

∑ P(s i ))

    

P(s) = P(s i )
NP(si )

s i

∏
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Note that the notation I(s1,s2) is often used for this expression. We use < Is1,s2
> because

it is not a function of the values of the characters—it is the average information car-
ried by the characters labeled by s1 and s2. We can compare the information content
of the two characters with the information content of each character separately:

(1.8.28)

(1.8.29)

It is possible to show (see Question 1.8.8) the inequalities:

(1.8.30)

The right inequality means that we receive more information from both characters
than from either one separately. The left inequality means that information we receive
from both characters together cannot exceed the sum of the information from each
separately. It can be less if the characters are dependent on each other. In this case,re-
ceiving one character reduces the information given by the second.

The relationship between the information from a character s1 and the informa-
tion from the same character after we know another character s2 can be investigated
by defining a contingent or conditional probability:

(1.8.31)

This is the probability that s1 takes the value s′1 assuming that s2 takes the value s′2. We
used this notation in Section 1.2 to describe the transitions from one value to the next
in a chain of events (random walk). Here we are using it more generally. We could
recover the previous meaning by writing the transition probability as Ps(s ′1|s ′2) =
Ps(t),s(t − 1)(s ′1|s′2). In this section we will be concerned with the more general defini-
tion, Eq. (1.8.31).

We can find the inform a ti on con tent of the ch a racter s1 wh en s2 t a kes the va lue s ′2

(1.8.32)

    

< I s1
>

s 2= ′ s 2
= − Ps 1 ,s 2

( ′ s 1 | ′ s 2)
′ s 1

∑ log Ps 1,s2
( ′ s 1 | ′ s 2)( )

=

−
′ s 1

∑ Ps1 ,s 2
( ′ s 1 , ′ s 2) log(Ps 1 ,s 2

( ′ s 1 , ′ s 2)) − log( Ps1 ,s 2
( ′ ′ ′ s 1 , ′ s 2)

′ ′ ′ s 1

∑ )
 

 
 

 

 
 

Ps1,s2
( ′ ′ s 1, ′ s 2)

′ ′ s 1

∑

    

Ps1 ,s 2
( ′ s 1 | ′ s 2) =

Ps1,s 2
( ′ s 1 , ′ s 2)

Ps 1 ,s 2
( ′ ′ s 1 , ′ s 2)

′ ′ s 1

∑

    < I s 2
> + <I s 1

> ≥ < I s1 ,s 2
> ≥ < I s2

>,< I s1
>

    

< I s 2
> = − Ps1 ,s 2

( ′ s 1, ′ s 2)
′ s 1 , ′ s 2

∑ log( Ps1 ,s 2
( ′ ′ s 1 , ′ s 2)

′ ′ s 1

∑ )

    

< I s1
> = − Ps1 ,s 2

( ′ s 1 , ′ s 2)
′ s 1 , ′ s 2

∑ log( Ps 1 ,s 2
( ′ s 1 , ′ ′ s 2)

′ ′ s 2

∑ )

    

Ps2
( ′ s 2) = Ps1 ,s 2

( ′ s 1, ′ s 2)
′ s 1

∑
    

Ps1
( ′ s 1) = Ps1 ,s 2

( ′ s 1, ′ s 2 )
′ s 2

∑
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This can be averaged over possible values of s2, giving us the average information con-
tent of the character s1 when the character s2 is known.

(1.8.33)

The average we have taken should be carefully understood. The unconventional dou-
ble average notation is used to indicate that the two averages are of a different nature.
One way to think about it is as treating the information content of a dynamic variable
s1 when s2 is a quenched (frozen) random variable. We can rewrite this in terms of the
information content of the two characters,and the information content of the char-
acter s2 by itself as follows:

(1.8.34)

Thus we have:

(1.8.35)

This is the intuitive result that the information content given by both characters is the
same as the information content gained by sequentially obtaining the information
from the characters.Once the first character is known,the second character provides
only the information given by the conditional probabilities. There is no reason to re-
strict the use of Eq.(1.8.27) – Eq.(1.8.35) to the case where s1 is a single character and
s2 is a single character. It applies equally well if s1 is one set of characters,and s2 is an-
other set of characters.

Question 1.8.8 Prove the inequalities in Eq. (1.8.30).

Hints for the left inequality:

1. It is helpful to use Eq. (1.8.35).

2. Use convexity ( f(〈x〉) > 〈 f(x)〉) of the function f (x) = −xlog(x).

Solution 1.8.8 The right inequality in Eq. (1.8.30) follows from the in-
equality:

(1.8.36)
    

Ps1
( ′ ′ s 1) = Ps1 ,s 2

( ′ ′ s 1, ′ s 2 )
′ ′ s 1

∑ > Ps1,s2
( ′ s 1, ′ s 2)

    < I s1 ,s 2
> = < Is 1

> + << I s2|s1
>> = <I s 2

> + << I s1 |s 2
>>

    

<< I s1|s 2
>> = −

′ s 1 , ′ s 2

∑ Ps1,s 2
( ′ s 1, ′ s 2) log(Ps 1,s2

( ′ s 1, ′ s 2))− log( Ps 1,s2
( ′ ′ s 1 , ′ s 2)

′ ′ s 1

∑ )
 

 
 

 

 
 

= < I s 1,s2
> −< I s 2

>

    

<< I s1|s 2
>> ≡ << I s1

> s 2 = ′ s 2
>

= − Ps 2
( ′ s 2)

′ s 2

∑ Ps1 ,s 2
( ′ s 1 | ′ s 2)

′ s 1

∑ log Ps 1 ,s 2
( ′ s 1 | ′ s 2)( )

= − Ps1 ,s 2
( ′ ′ ′ s 1, ′ s 2)

′ ′ ′ s 1

∑
′ s 1

∑
Ps1 ,s 2

( ′ s 1, ′ s 2)

Ps1,s 2
( ′ ′ s 1, ′ s 2)

′ ′ s 1

∑′ s 2

∑ log Ps1 ,s 2
( ′ s 1 | ′ s 2)( )

= −
′ s 1, ′ s 2

∑ Ps1,s2
( ′ s 1 , ′ s 2)log Ps1,s2

( ′ s 1 | ′ s 2)( )
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The logarithm is a monotonic increasing function, so we can take the
logarithm:

(1.8.37)

Changing sign and averaging leads to the desired result:

(1.8.38)

The left inequality in Eq. (1.8.30) may be proven from Eq. (1.8.35) and the
intuitive inequality

(1.8.39)

To prove this inequality we make use of the convexity of the function f(x) =
−xlog(x). Convexity of a function means that its value always lies above line
segments (secants) that begin and end at points along its graph.
Algebraically:

f((ax + by) / (a + b)) > (af(x) + bf(y)) / (a + b) (1.8.40)

More generally, taking a set of values of x and averaging over them gives:

f (〈x〉) > 〈 f (x)〉 (1.8.41)

Convexity of f(x) follows from the observation that

(1.8.42)

for all x > 0, which is where the function f (x) is defined.

We then note the relationship:

(1.8.43)

where, to simplify the following equations, we use a subscript to indicate the
average with respect to s2. The desired result follows from applying convex-
ity as follows:

(1.8.44)
    

< I s1
> = − Ps1

( ′ s 1)
′ s 1

∑ log(Ps1
( ′ s 1)) = f (Ps 1

( ′ s 1)
′ s 1

∑ ) = f (< Ps1,s2
( ′ s 1 | ′ s 2) >s 2

′ s 1

∑ )

> < f (Ps1 ,s 2
( ′ s 1 | ′ s 2)

′ s 1

∑ ) >s 2

= − Ps2
( ′ s 2 )

′ s 2

∑ Ps 1 ,s 2
( ′ s 1 | ′ s 2)

′ s 1

∑ log Ps1,s2
( ′ s 1 | ′ s 2)( ) = << I s1|s2

>>

    

Ps1
( ′ s 1) = Ps2

( ′ s 2)
′ s 2

∑ Ps 1 ,s 2
( ′ s 1 | ′ s 2) = < Ps 1 ,s 2

( ′ s 1 | ′ s 2) >s 2

    

d 2f

dx 2
= −

1

x ln(2)
< 0

    < Is 1
>( ) > << I s1|s 2

>>( )

    

< I s 2
> = − Ps1 ,s 2

( ′ s 1, ′ s 2)
′ s 1 , ′ s 2

∑ log( Ps1 ,s 2
( ′ ′ s 1 , ′ s 2)

′ ′ s 1

∑ )

< − Ps1 ,s 2
( ′ s 1 , ′ s 2)

′ s 1, ′ s 2

∑ log(Ps 1,s2
( ′ s 1, ′ s 2)) = < I s1 ,s 2

>

    

log( Ps1 ,s 2
( ′ ′ s 1, ′ s 2)

′ ′ s 1

∑ ) > log(Ps 1,s2
( ′ s 1 , ′ s 2))
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the final equality following from the definition in Eq. (1.8.33). We can now
make use of Eq. (1.8.35) to obtain the desired result. ❚

1.8.4 Ergodic sources
We consider a source that provides arbitrarily long messages, or simply continues to
give characters at a particular rate. Even though the messages are infinitely long, they
are still considered elements of an ensemble. It is then convenient to measure the av-
erage information per character. The characterization of such an information source
is simplified if each (long) message contains within it a complete sampling of the pos-
sibilities. This means that if we wait long enough, the entire ensemble of possible
character sequences will be represented in any single message. This is the same kind
of property as an ergodic system discussed in Section 1.3.By analogy, such sources are
known as ergodic sources. For an ergodic source,not only the characters appear with
their ensemble probabilities, but also the pairs of characters, the triples of characters,
and so on.

For ergodic sources,the information from an ensemble average over all possible
messages is the same as the information for a particular long string. To write this
down we need a notation that allows variable length messages. We write sN = (s1s2...sN),
where N is the length of the string. The average information content per character
may be written as:

(1.8.45)

The rightmost equality is valid for an ergodic source. An example of an ergodic source
is a source that provides independent characters—i.e., selects each character from an
ensemble. For this case, Eq.(1.8.45) was shown in Question 1.8.7. More generally, for
a source to be ergodic, long enough strings must break up into independent sub-
strings, or substrings that are more and more independent as their length increases.

Assuming that N is large enough, we can use the limit in Eq. (1.8.45) and write:

(1.8.46)

Thus, for large enough N, there are a set of strings that are equally likely to be gener-
ated by the source. The number of these strings is

(1.8.47)

Since any string of characters is possible,in principle,this statement must be formally
understood as saying that the total probability of all other strings becomes arbitrarily
small.

If the string of characters is a Markov chain (Section 1.2),so that the probability
of each character depends only on the previous character, then there are general con-
ditions that can ensure that the source is ergodic. Similar to the discussion of Monte
Carlo simulations in Section 1.7, for the source to be ergodic,the transition probabil-

    2
N <is >

    P(sN ) ≈ 2 −N <is >

    

< is >= lim
N →∞

< Is N
>

N
= − lim

N→∞

1

N
P(sN )

s N

∑ log(P(sN )) = − lim
N →∞

1

N
log(P(sN ))
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ities between characters must be irreducible and acyclic. Irreducibility guarantees that
all characters are accessible from any starting character. The acyclic property guaran-
tees that starting from one substring, all other substrings are accessible. Thus, if we
can reach any particular substring, it will appear with the same frequency in all long
strings.

We can generalize the usual Markov chain by allowing the probability of a char-
acter to depend on several (n) previous characters. A Markov chain may be con-
structed to represent such a chain by defining new characters, where each new char-
acter is formed out of a substring of n characters. Then each new character depends
only on the previous one. The essential behavior of a Markov chain that is important
here is that correlations measured along the chain of characters disappear exponen-
tially. Thus,the statistical behavior of the chain in one place is independent of what it
was in the sufficiently far past. The number of characters over which the correlations
disappear is the correlation length. By allowing sufficiently many correlation lengths
along the string—segments that are statistically independent—the average properties
of one string will be the same as any other such string.

Question 1.8.9 Consider ergodic sources that are Markov chains with
two characters si = ±1 with transition probabilities:

a. P(1|1) = .999, P(−1|1) = .001, P(−1|−1) = 0.5, P(1|−1) = 0.5

b. P(1|1) = .999, P(−1|1) = .001, P(−1|−1) = 0.999, P(1|−1) = 0.001

c. P(1|1) = .999, P(−1|1) = .001, P(−1|−1) = 0.001, P(1|−1) = 0.999

d. P(1|1) = .001, P(−1|1) = .999, P(−1|−1) = 0.5, P(1|−1) = 0.5

e. P(1|1) = .001, P(−1|1) = .999, P(−1|−1) = 0.999, P(1|−1) = 0.001

f. P(1|1) = .001, P(−1|1) = .999, P(−1|−1) = 0.001, P(1|−1) = 0.999

Describe the appearance of the strings generated by each source, and
(roughly) its correlation length.

Solution 1.8.9 (a) has long regions of 1s of typical length 1000. In between
there are short strings of –1s of average length 2 = 1 + 1/2 + 1/4 + ...(there
is a probability of 1/2 that a second character will be –1 and a probability of
1/4 that both the second and third will be –1, etc.). (b) has long regions of
1s and long regions of –1s, both of typical length 1000. (c) is like (a) except
the regions of –1s are of length 1. (d) has no extended regions of 1 or –1 but
has slightly longer regions of –1s. (e) inverts (c). (f ) has regions of alternat-
ing 1 and –1 of length 1000 before switching to the other possibility (odd and
even indices are switched). We see that the characteristic correlation length
is of order 1000 in (a),(b),(c),(e) and (f ) and of order 2 in (d ). ❚

We have considered in detail the problem of determining the information con-
tent of a message, or the average information generated by a source, when the char-
acteristics of the source are well defined. The source was characterized by the ensem-
ble of possible messages and their probabilities. However, we do not usually have a
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well-defined characterization of a source of messages,so a more practical question is
to determine the information content from the message itself.The definitions that we
have provided do not guide us in determining the information of an arbitrary mes-
sage. We must have a model for the source. The model must be constructed out of the
information we have—the string of characters it produces.One possibility is to model
the source as ergodic. An ergodic source can be modeled in two ways, as a source of
independent substrings or as a generalized Markov chain where characters depend on
a certain number of previous characters. In each case we construct not one,but an in-
finite sequence of models. The models are designed so that if the source is ergodic
then the information estimates given by the models converge to give the correct in-
formation content.

There is a natural sequence of independent substring models indexed by the
number of characters in the substrings n. The first model is that of a source produc-
ing independent characters with a probability specified by their frequency of occur-
rence in the message. The second model would be a source producing pairs of corre-
lated characters so that every pair of characters is described by the probability given
by their occurrence (we allow character pairs to overlap in the message). The third
model would be that of a source producing triples of correlated characters,and so on.
We use each of these models to estimate the information. The nth model estimate of
the information per character given by the source is:

(1.8.48)

where we indicate using the subscript 1,n that this is an estimate obtained using the
first type of model (independent substring model) using substrings of length n. We
also make use of an approximate probability for the substring defined as

(1.8.49)

where N(sn) is the number of times sn appears in the string of length N. The informa-
tion of the source might then be estimated as the limit n → ∞ of Eq. (1.8.48):

(1.8.50)

For an ergodic source, we can see that this converges to the information of the mes-
sage. The n limit converges monotonically from above. This is because the additional
information in sn+1 given by sn+1 is less than the information added by each previous
character (see Eq. 1.8.59 below). Thus, the estimate of information per character
based on sn is higher than the estimate based on sn+1. Therefore, for each value of n the
estimate <is >1,n is an upper bound on the information given by the source.

How large does N have to be? Since we must have a reasonable sample of the oc-
currence of substrings in order to estimate their probability, we can only estimate
probabilities of substrings that are much shorter than the length of the string. The
number of possible substrings grows exponentially with n as kn, where k is the num-

    

< is > = lim
n→∞

lim
N →∞

1

n
˜ P N(sn )

sn

∑ log(˜ P N (sn))

    
˜ P N (sn ) = N(sn)/(N − n +1)

    

< is >1,n = lim
N→∞

1

n
˜ P N(sn )

sn

∑ log(˜ P N (sn))
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ber of possible characters. If substrings occur with roughly similar probabilities,
then to estimate the probability of a substring of length n would require at least a
string of length kn characters. Thus,taking the large N limit should be understood to
correspond to N greater than kn. This is a very severe requirement. This means that
to study a model of English character strings of length n = 10 (ignoring upper and
lower case, numbers and punctuation) would require 2610 ~ 1014 characters. This is
roughly the number of characters in all of the books in the Library of Congress (see
Question 1.8.15).

The generalized Markov chain model assumes a particular character is depen-
dent only on n previous characters. Since the first n characters do not provide a sig-
nificant amount of information for a very long chain (N >> n), we can obtain the av-
erage information per character from the incremental information given by a
character. Thus, for the nth generalized Markov chain model we have the estimate:

(1.8.51)

where we define the approximate conditional probability using:

(1.8.52)

Taking the limit n → ∞ we have an estimate of the information of the source per
character:

(1.8.53)

This also converges from above as a function of n for large enough N. For a given n, a
Markov chain model takes into account more correlations than the previous inde-
pendent substring model and thus gives a better estimate of the information
(Question 1.8.10).

Question 1.8.10 Prove that the Markov chain model gives a better esti-
mate of the information for ergodic sources than the independent sub-

string model for a particular n. Assume the limit N → ∞ so that the estimated
probabilities become actual and we can substitute P̃N → P in Eq.(1.8.48) and
Eq. (1.8.51).

Solution 1.8.10 The information in a substring of length n is given by the
sum of the information provided incrementally by each character, where the
previous characters are known. We derive this statement algebraically
(Eq. (1.8.59)) and use it to prove the desired result. Taking the N limit in
Eq. (1.8.48), we define the nth approximation using the independent sub-
string model as:

(1.8.54)
    

< is >1,n =
1

n
P(sn )

sn

∑ log(P(sn ))

    

< is > = lim
n→∞

lim
N →∞

˜ P N (sn−1)
s n−1

∑ ˜ P (sn | sn−1)
s n

∑ log(˜ P (sn |sn−1))

    
˜ P N (sn |sn−1) = N(sn−1sn)/N(sn−1)

    

< is >2,n = < <I sn |s n−1
>> = lim

N→ ∞
˜ P N (sn−1)

s n−1

∑ ˜ P (sn | sn−1)
s n

∑ log(˜ P (sn | sn−1))
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and for the nth generalized Markov chain model we take the same limit in
Eq. (1.8.51):

(1.8.55)

To rel a te these ex pre s s i ons to each other, fo ll ow the deriva ti on of Eq .( 1 . 8 . 3 4 ) ,
or use it with the su b s ti tuti ons s1 → sn−1 and s2 → sn, to obt a i n

(1.8.56)

Using the identities

(1.8.57)

this can be rewritten as:

< is >2, n = n< is >1, n −(n − 1)< is >1, n−1 (1.8.58)

This result can be summed over n from 1 to n (the n = 1 case is
<is >2,1 = <is>1,1) to obtain:

(1.8.59)

since < is >2,n is monotonic decreasing and < is >1,n is seen from this expres-
sion to be an average over < is >2,n with lower values of n, we must have that

< is >2,n ≤ < is >1,n (1.8.60)

as desired. ❚

Question 1.8.11 We have shown that the two models—the independent
substring models and the generalized Markov chain model—are upper

bounds to the information in a string. How good is the upper bound? Think
up an example that shows that it can be terrible for both, but better for the
Markov chain.

Solution 1.8.11 Consider the example of a long string formed out of a re-
peating substring, for example (000000010000000100000001…). The aver-
age information content per character of this string is zero. This is because
once the repeat structure has become established,there is no more informa-
tion. Any model that gives a nonzero estimate of the information content per

    ′ n =1

n

∑ < i s >2, ′ n = n < is >1,n

    

P(sn−1sn) = P(sn )

P(sn−1) = P(sn−1sn )
sn

∑

    

< is >2,n = −
s n −1,sn

∑ P(sn−1sn) log(P(sn−1sn ))− log( P(sn−1sn )
sn

∑ )
 

 
  

 

 
  

    

< is >2,n = P(sn−1)
s n−1

∑ P(sn | sn−1)
s n

∑ log(P(sn |sn−1))
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character will make a great error in its estimate of the information content
of the string, which is N times as much as the information per character.

For the independent substring model,the estimate is never zero. For the
Markov chain model it is nonzero until n reaches the repeat distance. A
Markov model with n the same size or larger than the repeat length will give
the correct answer of zero information per character. This means that even
for the Markov chain model, the information estimate does not work very
well for n less than the repeat distance. ❚

Question 1.8.12 Write a computer program to estimate the information
in English and find the estimate. For simple,easy-to-compute estimates,

use single-character probabilities,two-character probabilities,and a Markov
chain model for individual characters. These correspond to the above defin-
itions of < is >2,1= < is >1,1, < is >1,2, and < is >2,2 respectively.

Solution 1.8.12 A program that evaluates the information content using
single-character probabilities applied to the text (excluding equations) of
Section 1.8 of this book gives an estimate of information content of 4.4
bits/character. Two-character probabilities gives 3.8 bits/character, and the
one-character Markov chain model gives 3.3 bits/character. A chapter of a
book by Mark Twain gives similar results. These estimates are decreasing in
magnitude, consistent with the discussion in the text. They are also still quite
high as estimates of the information in English per character.

The best estimates are based upon human guessing of the next charac-
ter in a written text. Such experiments with human subjects give estimates of
the lower and upper bounds of information content per character of English
text. These are 0.6 and 1.2 bits/character. This range is significantly below the
estimates we obtained using simple models. Remarkably, these estimates
suggest that it is enough to give only one in four to one in eight characters of
English in order for text to be decipherable. ❚

Question 1.8.13 Construct an example illustrating how correlations can
arise between characters over longer than,say, ten characters. These cor-

relations would not be represented by any reasonable character-based
Markov chain model. Is there an example of this type relevant to the English
language?

Solution 1.8.13 Example 1: If we have information that is read from a ma-
trix row by row, where the matrix entries have correlations between rows,
then there will be correlations that are longer than the length of the matrix
rows.

Example 2: We can think about successive English sentences as rows of
a matrix. We would expect to find correlations between rows (i.e., between
words found in adjacent sentences) rather than just between letters. ❚
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Question 1.8.14 Estimate the amount of information in a typical book
(order of magnitude is sufficient). Use the best estimate of information

content per character of English text of about 1 bit per character.

Solution 1.8.14 A rough estimate can be made using as follows: A 200
page novel with 60 characters per line and 30 lines per page has 4 × 105

characters. Textbooks can have several times this many characters.A dictio-
nary, which is significantly longer than a typical book, might have 2 × 107

characters. Thus we might use an order of magnitude value of 106 bits per
book. ❚

Question 1.8.15 Obtain an estimate of the number of characters (and
thus the number of bits of information) in the Library of Congress.

Assume an average of 106 characters per book.

Solution 1.8.15 According to information provided by the Library of
Congress,there are presently (in 1996) 16 million books classified according
to the Library of Congress classification system, 13 million other books at
the Library of Congress, and approximately 80 million other items such as
newspapers, maps and films. Thus with 107–108 book equivalents, we esti-
mate the number of characters as 1013–1014. ❚

Inherent in the notion of quantifying information content is the understanding
that the same information can be communicated in different ways, as long as the
amount of information that can be transmitted is sufficient. Thus we can use binary,
decimal, hexadecimal or typed letters to communicate both numbers and letters.
Information can be communicated using any set of (two or more) characters. The
presumption is that there is a way of translating from one to another. Translation op-
erations are called codes; the act of translation is encoding or decoding. Among pos-
sible codes are those that are invertible.Encoding a message cannot add information,
it might,however, lose information (Question 1.8.16). Invertible codes must preserve
the amount of information.

Once we have determined the information content, we can compare different
ways of writing the same information. Assume that one source generates a message of
length N characters with information I. Then a different source may transmit the
same information using fewer characters. Even if characters are generated at the same
rate,the information may be more rapidly transmitted by one source than another. In
particular, regardless of the value of N, by definition of information content, we could
have communicated the same information using a binary string of length I. It is,how-
ever, impossible to use fewer than I bits because the maximum information a binary
message can contain is equal to its length. This amount of information occurs for a
source with equal a priori probability.

Encoding the information in a shorter form is equivalent to data compression.
Thus a completely compressed binary data string would have an amount of informa-
tion g iven by its length. The source of such a message would be characterized as a
source of messages with equal a priori probability—a random source. We see that ran-
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domness and information are related. Without a translation (decoding) function it
would be impossible to distinguish the completely compressed information from ran-
dom numbers. Moreover, a random string could not be compressed.

Question 1.8.16 Prove that an encoding operation that takes a message
as input and converts it into another well-defined message (i.e., for a

particular input message, the same output message is always given) cannot
add information but may reduce it. Describe the necessary conditions for it
to keep the same amount of information.

Solution 1.8.16 Our definition of information relies upon the specifica-
tion of the ensemble of possible messages. Consider this ensemble and as-
sume that each message appears in the ensemble a number of times in pro-
portion to its probability, like the bag with red and green balls. The effect of
a coding operation is to label each ball with the new message (code) that will
be delivered after the coding operation. The amount of information depends
not on the nature of the label, but rather on the number of balls with the
same label. The requirement that a particular message is encoded in a well-
defined way means that two balls that start with the same message cannot be
labeled with different codes. However, it is possible for balls with different
original messages to be labeled the same. The average information is not
changed if and only if all distinct messages are labeled with distinct codes. If
any distinct messages become identified by the same label, the information
is reduced.

We can prove this conclusion algebraically using the result of
Question 1.8.8, which showed that transferring probability from a less likely
to a more likely case reduced the information content. Here we are,in effect,
transferring all of the probability from the less likely to the more likely case.
The change in information upon labeling two distinct messages with the
same code is given by (f (x) = −xlog(x), as in Question 1.8.8):

∆I = f (P(s1) + P(s2)) − (f(P(s1)) + f (P(s2)))

= (f (P(s1) + P(s2)) + f (0)) − (f (P(s1)) + f (P(s2))) < 0
(1.8.61)

where the inequality follows because f (x) is convex in the range 0 < x < 1. ❚

1.8.5 Human communication
The theory of information, like other theories, relies upon idealized constructs that
are useful in establishing the essential concepts, but do not capture all features of real
systems. In particular, the definition and discussion of information relies upon
sources that transmit the result of random occurrences, which, by definition, cannot
be known by the recipient. The sources are also completely described by specifying the
nature of the random process. This model for the nature of the source and the recip-
ient does not adequately capture the attributes of communication between human
beings. The theory of information can be applied directly to address questions about
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information channels and the characterization of communication in general. It can
also be used to develop an understanding of the complexity of systems. In this section,
however, we will consider some additional issues that should be kept in mind when
applying the theory to the communication between human beings. These issues will
arise again in Chapter 8.

The definition of information content relies heavily on the concepts of probabil-
ity, ensembles, and processes that generate arbitrarily many characters. These con-
cepts are fraught with practical and philosophical difficulties—when there is only one
transmitted message,how can we say there were many that were possible? A book may
be considered as a single communication.A book has finite length and, for a particu-
lar author and a particular reader, is a unique communication. In order to understand
both the strengths and the limitations of applying the theory of information,it is nec-
essary to recognize that the information content of a message depends on the infor-
mation that the recipient of the message already has. In particular, information that
the recipient has about the source. In the discussion above,a clear distinction has been
made. The only information that characterizes the source is in the ensemble proba-
bilities P(s). The information transmitted by a single message is distinct from the en-
semble probabilities and is quantified by I(s). It is assumed that the characterization
of the source is completely known to the recipient. The content of the message is com-
pletely unknown (and unknowable in advance) to the recipient.

A slightly more difficult example to consider is that of a recipient who does not
know the characterization of the source. However, such a characterization in terms of
an ensemble P(s) does exist. Under these circumstances, the amount of information
transferred by a message would be more than the amount of information given by
I(s). However, the maximum amount of information that could be transferred would
be the sum of the information in the message,and the information necessary to char-
acterize the source by specifying the probabilities P(s). This upper bound on the in-
formation that can be transferred is only useful if the amount of information neces-
sary to characterize the source is small compared to the information in the message.

The difficulty with discussing human communication is that the amount of in-
formation necessary to ful ly characterize the source (one human being) is generally
much larger than the information transmitted by a particular message. Similarly, the
amount of information possessed by the recipient (another human being) is much
larger than the information contained in a par ticular message. Thus it is reasonable
to assume that the recipient does not have a full characterization of the source. It is
also reasonable to assume that the model that the recipient has about the source is
more sophisticated than a typical Markov chain model, even though it is a simplified
model of a human being. The information contained in a message is, in a sense, the
additional information not contained in the original model possessed by the recipi-
ent. This is consistent with the above discussion, but it also recognizes that specifying
the probabilities of the ensemble may require a significant amount of information. It
may also be convenient to summarize this information by a different type of model
than a Markov chain model.
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Once the specific model and information that the recipient has about the source
enters into an evaluation of the information transfer, there is a certain and quite rea-
sonable degree of relativity in the amount of information transferred. An extreme ex-
ample would be if the recipient has already received a long message and knows the
same message is being repeated,then no new information is being transmitted.A per-
son who has memorized the Gettysburg Address will receive very little new informa-
tion upon hearing or reading it again. The prior knowledge is part of the model pos-
sessed by the recipient about the source.

Can we incorporate this in our definition of information? In every case where we
have measured the information of a message, we have made use of a model of the
source of the information. The underlying assumption is that this model is possessed
by the recipient. It should now be recognized that there is a certain amount of infor-
mation necessary to describe this model. As long as the amount of information in the
model is small compared to the amount of information in the message, we can say
that we have an absolute estimate of the information content of the message. As soon
as the information content of the model approaches that of the message itself, then
the amount of information transferred is sensitive to exactly what information is
known. It might be possible to develop a theory of information that incorporates the
information in the model,and thus to arrive at a more absolute measure of informa-
tion. Alternatively, it might be necessary to develop a theory that considers the recip-
ient and source more completely, since in actual communication between human be-
ings, both are nonergodic systems possessed of a large amount of information. There
is significant overlap of the information possessed by the recipient and the source.
Moreover, this common information is essential to the communication itself.

One effort to arrive at a universal definition of information content of a message
has been made by formally quantifying the information contained in models. The re-
sulting information measure, Kolmogorov complexity, is based on computation the-
ory discussed in the next section. While there is some success with this approach,two
difficulties remain. In order for a universal definition of information to be agreed
upon,models must still have an information content which is less than the message—
knowledge possessed must be smaller than that received. Also, to calculate the infor-
mation contained in a particular message is essentially impossible, since it requires
computational effort that grows exponentially with the length of the message. In any
practical case,the amount of information contained in a message must be estimated
using a limited set of models of the source. The utilization of a limited set of models
means that any estimate of the information in a message is an upper bound.

Computation

The theory of com p ut a ti on de s c ri bes the opera ti ons that we perform on nu m bers ,
i n cluding ad d i ti on , su btracti on , mu l ti p l i c a ti on and divi s i on . More gen era lly, a com-
p ut a ti on is a sequ en ce of opera ti ons each of wh i ch has a def i n i te / u n i qu e / well - def i n ed
re su l t . The fundamental stu dy of su ch opera ti ons is the theory of l ogi c . Logical

1.9
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operations do not necessarily act upon numbers, but rather upon abstract objects
called statements. Statements can be combined together using operators such as
AND and OR, and acted upon by the negation operation NOT. The theory of logic
and the theory of computation are at root the same. All computations that have
been conceived of can be constructed out of logical operations. We will discuss this
equivalence in some detail.

We also discuss a further equivalence, generally less well appreciated, between
computation and deterministic time evolution. The theory of computation strives to
describe the class of all possible discrete deterministic or causal systems.
Computations are essentially causal relationships. Computation theory is designed to
capture all such possible relationships. It is thus essential to our understanding not
just of the behavior of computers, or of human logic, but also to the understanding
of causal relationships in all physical systems. A counterpoint to this association of
computation and causality is the recognition that certain classes of deterministic dy-
namical systems are capable of the property known as universal computation.

One of the central findings of the theory of computation is that many apparently
different formulations of computation turn out to be equivalent. The sense in which
they are equivalent is that each one can simulate the other. In the early years of com-
putation theory, there was an effort to describe sets of operations that would be more
powerful than others. When all of them were shown to be equivalent it became gen-
erally accepted (the Church-Turing hypothesis) that there is a well-defined set of pos-
sible computations realized by any of several conceptual formulations. This has be-
come known as the theory of universal computation.

1.9.1 Propositional logic
Logic is the study of reasoning, inference and deduction. Propositional logic describes
the manipulation of statements that are either true or false. It assumes that there ex-
ists a set of statements that are either true or false at a par ticular time, but not both.
Logic then provides the possibility of using an assumed set of relationships between
the statements to determine the truth or falsehood of other statements.

For example,the statements Q1 = “I am standing” and Q2 = “I am sitting” may be
related by the assumption: Q1 is true implies that Q2 is not true. Using this assump-
tion,it is understood that a statement “Q1 AND Q2” must be false. The falsehood de-
pends only on the relationship between the two sentences and not on the particular
meaning of the sentences. This suggests that an abstract construction that describes
mechanisms of inference can be developed. This abstract construction is proposi-
tional logic.

Propositional logic is formed out of statements (propositions) that may be true
(T) or false (F), and operations. The operations are described by their actions upon
statements. Since the only concern of logic is the truth or falsehood of statements, we
can describe the operations through tables of truth values (truth tables) as follows.
NOT (^) is an operator that acts on a single statement (a unary operator) to form a
new statement. If Q is a statement then ^Q (read “not Q”) is the symbolic represen-
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tation of “It is not true that Q.” The truth of ^Q is directly (causally) related to the
truth of Q by the relationship in the table:

Q ^Q

T F (1.9.1)
F T

The value of the truth or falsehood of Q is shown in the left column and the corre-
sponding value of the truth or falsehood of ^Q is given in the right column.

Similarly, we can write the truth tables for the operations AND (&) and OR (|):

Q1 Q2 Q1&Q2

T T T
T F F (1.9.2)
F T F
F F F

Q1 Q2 Q1|Q2

T T T
T F T (1.9.3)
F T T
F F F

As the tables show, Q1&Q2 is only true if both Q1 is true and Q2 is true. Q1|Q2 is only
false if both Q1 is false and Q2 is false.

Propositional logic includes logical theorems as statements. For example, the
statement Q1 is true if and only if Q2 is true can also be written as a binary operation
Q1 ≡ Q2 with the truth table:

Q1 Q2 Q1 ≡ Q2

T T T
T F F (1.9.4)
F T F
F F T

Another binary operation is the statement Q1 implies Q2, Q1 ⇒ Q2. When this
statement is translated into propositional logic,there is a difficulty that is usually by-
passed by the following convention:

Q1 Q2 Q1 ⇒ Q2

T T T
T F F (1.9.5)
F T T
F F T

The difficulty is that the last two lines suggest that when the antecedent Q1 is false,the
implication is true, whether or not the consequent Q2 is true. For example, the
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statement “If I had wings then I could fly”is as true a statement as “If I had wings then
I couldn’t fly,” or the statement “If I had wings then potatoes would be flat.” The prob-
lem originates in the necessity of assuming that the result is true or false in a unique
way based upon the truth values of Q1 and Q2. Other information is not admissible,
and a third choice of “nonsense” or “incomplete information provided”is not allowed
within propositional logic. Another way to think about this problem is to say that
there are many operators that can be formed with definite outcomes. Regardless of
how we relate these operators to our own logical processes, we can study the system
of operators that can be formed in this way. This is a model, but not a complete one,
for human logic.Or, if we choose to define logic as described by this system,then hu-
man thought (as reflected by the meaning of the word “implies”) is not fully charac-
terized by logic (as reflected by the meaning of the operation “⇒”).

In addition to unary and binary operations that can act upon statements to form
other statements,it is necessary to have parentheses that differentiate the order of op-
erations to be performed. For example a statement ((Q1 ≡ Q2)&(^Q3)|Q1) is a series
of operations on primitive statements that starts from the innermost parenthesis and
progresses outward.As in this example,there may be more than one innermost paren-
thesis. To be definite, we could insist that the order of performing these operations is
from left to right. However, this order does not affect any result.

Within the context of propositional logic, it is possible to describe a systematic
mechanism for proving statements that are composed of primitive statements. There
are several conclusions that can be arrived at regarding a particular statement.A tau-
tology is a statement that is always true regardless of the truth or falsehood of its com-
ponent statements. Tautologies are also called theorems. A contradiction is a state-
ment that is always false. Examples are given in Question 1.9.1.

Question 1.9.1 Evaluate the truth table of:

a. (Q1 ⇒ Q2)|((^Q2)&Q1)

b. (^(Q1 ⇒ Q2))≡((^Q1)|Q2)

Identify which is a tautology and which is a contradiction.

Solution 1.9.1 Build up the truth table piece by piece:
a. Tautology:

Q1 Q2 Q1 ⇒ Q2 (^Q2)&Q1 (Q1 ⇒ Q2)|((^Q2)&Q1)

T T T F T
T F F T T
F T T F T
F F T F T

(1.9.6)
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b. Contradiction:

Q1 Q2 ^(Q1 ⇒ Q2) (^Q1)|Q2 (^(Q1 ⇒ Q2)) ≡ ((^Q1)|Q2)

T T F T F
T F T F F
F T F T F
F F F T F

(1.9.7) ❚

Question 1.9.2: Construct a theorem (tautology) from a contradiction.

Solution 1.9.2: By negation. ❚

1.9.2 Boolean algebra
Propositional logic is a particular example of a more general symbolic system known
as a Boolean algebra. Set theory, with the operators complement,union and intersec-
tion, is another example of a Boolean algebra. The formulation of a Boolean algebra
is convenient because within this more general framework a number of important
theorems can be proven. They then hold for propositional logic,set theory and other
Boolean algebras.

A Boolean algebra is a set of elements B={Q1,Q2, …}, a unary operator (^), and
two binary operators, for which we adopt the notation (+,•),that satisfy the follo wing
properties for all Q1, Q2, Q3 in B:

1. Closure: ^Q1, Q1+Q2, and Q1•Q2 are in B

2. Commutative law: Q1+Q2=Q2+Q1, and Q1•Q2=Q2•Q1

3. Distributive law: Q1•(Q2+Q3)=(Q1•Q2)+(Q1•Q3) and
Q1+(Q2•Q3)=(Q1+Q2)•(Q1+Q3)

4. Existence of identity elements, 0 and 1: Q1+0=Q1, and Q1•1=Q1

5. Complementarity law: Q1+(^Q1)=1 and Q1•(^Q1)=0

The statements of properties 2 through 5 consist of equalities. These equalities indi-
cate that the element of the set that results from operations on the left is the same as
the element resulting from operations on the right. Note particularly the second part
of the distributive law and the complementarity law that would not be valid if we in-
terpreted + as addition and • as multiplication.

Assumptions 1 to 5 allow the proof of additional properties as follows:

6. Associative property: Q1+(Q2+Q3)=(Q1+Q2)+Q3 and Q1•(Q2•Q3)=(Q1•Q2)•Q3

7. Idempotent property: Q1+Q1=Q1 and Q1•Q1=Q1

8. Identity elements are nulls: Q1+1=1 and Q1•0=0

9. Involution property: ^(^Q1)=Q1
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10. Absorption property: Q1+(Q1•Q2)=Q1 and Q1•(Q1+Q2)=Q1

11. DeMorgan’s Laws: ^(Q1+Q2)=(^Q1)•(^Q2) and ^(Q1•Q2)=(^Q1)+(^Q2)

To identify propositional logic as a Boolean algebra we use the set B={T,F} and
map the operations of propositional logic to Boolean operations as follows:(^ to ^),
(| to +) and (& to •). The identity elements are mapped:(1 to T) and (0 to F). The proof
of the Boolean properties for propositional logic is given as Question 1.9.3.

Question 1.9.3: Prove that the identification of propositional logic as a
Boolean algebra is correct.

Solution 1.9.3: (1) is trivial; (2) is the invariance of the truth tables of
Q1&Q2, Q1|Q2 to interchange of values of Q1 and Q2; (3) requires compari-
son of the t ruth tables of Q1|(Q2&Q3) and (Q1|Q2)&(Q1|Q3) (see below).
Comparison of the truth tables of Q1&(Q2|Q3) and (Q1&Q2)|(Q1&Q3) is
done similarly.

Q1 Q2 Q3 Q2&Q3 Q1|(Q2&Q3) Q1|Q2 Q1|Q3 (Q1|Q2)&(Q1|Q3)

T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F

(1.9.8)

(4) requires verifying Q1&T=T, and Q1|F=F (see the truth tables for & and |
above);(5) requires constructing a truth table for Q|^Q and verifying that it
is always T (see below). Similarly, the truth table for Q&^Q shows that it is
always F.

Q ^Q Q|^Q

T F T (1.9.9) ❚
F T T

1.9.3 Completeness
Our obj ective is to show that an arbi tra ry truth tabl e , an arbi tra ry logical statem en t ,
can be con s tru cted out of on ly a few logical opera ti on s . Truth tables are also equ iva-
l ent to nu m erical functi on s — s pec i f i c a lly, f u n cti ons of bi n a ry va ri a bles that have bi-
n a ry re sults (bi n a ry functi ons of bi n a ry va ri a bl e s ) . This can be seen using the
Boolean repre s en t a ti on of T and F as {1,0} that is more familiar as a bi n a ry notati on
for nu m erical functi on s . For ex a m p l e , we can wri te the A N D and O R opera ti on s
( f u n cti ons) also as:
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Q1 Q2 Q1•Q2 Q1 Q2

1 1 1 1
1 0 0 1 (1.9.10)
0 1 0 1
0 0 0 0

Similarly for all truth tables,a logical operation is a binary function of a set of binary
variables. Thus,the ability to form an arbitrary truth table from a few logical opera-
tors is the same as the ability to form an arbitrary binary function of binary variables
from these same logical operators.

To prove this ability, we use the properties of the Boolean algebra to systemati-
cally discuss truth tables. We first construct an alternative Boolean expression for
Q1+Q2 by a procedure that can be generalized to arbitrary truth tables.The procedure
is to look at each line in the truth table that contains an outcome of 1 and write an ex-
pression that provides unity for that line only. Then we combine the lines to achieve
the desired table. Q1•Q2 is only unity for the first line,as can be seen from its column.
Similarly, Q1•(^Q2) is unity for the second line and (^Q1)•Q2 is unity for the third
line. Using the properties of + we can then combine the terms together in the form:

Q1•Q2+Q1•(^Q2)+(^Q1)•Q2 (1.9.11)

Using associative and identity properties, this gives the same result as Q1+Q2.
We have replaced a simple expression with a much more complicated expression

in Eq.(1.9.11). The motivation for doing this is that the same procedure can be used
to represent any truth table. The general form we have constructed is called the dis-
junctive normal form. We can construct a disjunc tive normal representation for an
arbitrary binary function of binary variables. For example, given a specific binary
function of binary variables, f (Q1,Q2,Q3), we construct its truth table, e.g.,

Q1 Q2 Q3 f (Q1,Q2,Q3)

1 1 1 1
1 0 1 0
0 1 1 1
0 0 1 0 (1.9.12)
1 1 0 0
1 0 0 1
0 1 0 0
0 0 0 0

The disjunctive normal form is given by:

f (Q1,Q2,Q3)=Q1•Q2•Q3+(^Q1)•Q2•Q3+Q1•(^Q2)•(^Q3) (1.9.13)

as can be verified by inspection. An analogous construction can represent any binary
function.

We have demonstrated that an arbitrary truth table can be constructed out of the
three operations (^,+, •). We say that these form a complete set of operations. Since
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there are 2n lines in a truth table formed out of n binary variables, there are 22 n
pos-

sible functions of these n binary variables. Each is specified by a particular choice of
the 2n possible outcomes. We have achieved a dramatic simplification by recognizing
that all of them can be written in terms of only three operators. We also know that at
most (1/2)n2n (^) operations, (n − 1) 2n (•) operations and 2n − 1  (+) operations are
necessary. This is the number of operations needed to represent the identity function
1 in disjunctive normal form.

It is possible to further simplify the set of operations required. We can eliminate
either the + or the • operations and still have a complete set. To prove this we need only
display an expression for either of them in terms of the remaining operations:

Q1•Q2=^((^Q1)+(^Q2))
(1.9.14)

Q1+Q2=^((^Q1)•(^Q2))

Question 1.9.4: Verify Eq. (1.9.14).

Solution 1.9.4: They may be verified using DeMorgan’s Laws and the invo-
lution property, or by construction of the truth tables, e.g.:

Q1 Q2 ^Q1 ^Q2 Q1•Q2 (^Q1) (^Q2)

1 1 0 0 1 0
1 0 0 1 0 1
0 1 1 0 0 1
0 0 1 1 0 1

(1.9.15) ❚

It is possible to go one step further and identify binary operations that can rep-
resent all possible functions of binary variables. Two possibilities are the NAND (&̂)
and NOR (|̂) operations defined by:

Q1 &̂ Q2=^(Q1&Q2) → ^(Q1•Q2)
(1.9.16)

Q1 |̂ Q2=^(Q1|Q2) → ^(Q1+Q2)

Both the logical and Boolean forms are written above. The truth tables of these oper-
ators are:

Q1 Q2 ^(Q1•Q2) ^(Q1 Q2)

1 1 0 0
1 0 1 0 (1.9.17)
0 1 1 0
0 0 1 1

We can prove that each is complete by itself (capable of representing all binary func-
tions of binary variables) by showing that they are capable of representing one of the
earlier complete sets.We prove the case for the NAND operation and leave the NOR op-
eration to Question 1.9.5.
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^Q1=^(Q1•Q1)=Q1 &̂ Q1
(1.9.18)

(Q1•Q2)=^(^(Q1•Q2))=^(Q1 &̂ Q2)=(Q1 &̂ Q2)  &̂ (Q1 &̂ Q2)

Question 1.9.5: Verify completeness of the NOR operation.

Solution 1.9.5: We can use the same formulas as in the proof of the com-
pleteness of NAND by replacing • with + and  &̂ with |̂ everywhere. ❚

1.9.4 Turing machines
We have found that logical operators can represent any binary function of binary vari-
ables. This means that all well-defined mathematical operations on integers can be
represented in this way. One of the implications is that we might make machines out
of physical elements, each of which is capable of performing a Boolean operation.
Such a machine would calculate a mathematical function and spare us a tedious task.
We can graphically display the operations of a machine performing a series of
Boolean operations as shown in Fig. 1.9.1. This is a simplified symbolic form similar
to forms used in the design of computer logic circuits.

By looking carefully at Fig. 1.9.1 we see that there are several additional kinds of
actions that are necessary in addition to the elementary Boolean operation. These ac-
tions are indicated by the lines that might be thought of as wires. One action is to
transfer information from the location where it is input into the system, to the place
where it is used. The second is to duplicate the information. Duplication is repre-
sented in the figure by a branching of the lines. The branching enables the same
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Figure 1.9.1 Graphical representation of Boolean operations. The top figure shows a graph-
ical element representing the NOR operation Q1

^
|Q2 = ^(Q1|Q2). In the bottom figure we com-

bine several operations together with lines (wires) indicating input, output, data duplication
and transfer to form the AND operation, (Q1

^
|Q1)

^
|(Q2

^
|Q2) = (^Q1)

^
|(^Q2) = Q1&Q2. This equation

may be used to prove completeness of the NOR operation. ❚
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information to be used in more than one place. Additional implicit actions involve
timing, because the representation makes an assumption that time causes the infor-
mation to be moved and acted upon in a sequence from left to right. It is also neces-
sary to have mechanisms for input and output.

The kind of mathematical machine we just described is limited to performing
one prespecified function of its inputs. The process of making machines is time con-
suming. To physically rearrange components to make a new function would be in-
convenient. Thus it is useful to ask whether we might design a machine such that part
of its input could include a specification of the mathematical operation to be per-
formed. Both information describing the mathematical function,and the numbers on
which it is to be performed, would be encoded in the input which could be described
as a string of binary characters.

This discussion suggests that we should systematically consider the properties/
qualities of machines able to perform computations. The theory of computation is a
self-consistent discussion of abstract machines that perform a sequence of prespeci-
fied well-defined operations. It extends the concept of universality that was discussed
for logical operations. While the theory of logic determined that all Boolean functions
could be represented using elementary logic operations, the theory of computation
endeavors to establish what is possible to compute using a sequence of more general
elementary operations. For this discussion many of the practical matters of computer
design are not essential. The key question is to establish a relationship between ma-
chines that might be constructed and mathematical functions that may be computed.
Part of the problem is to define what a computation is.

There are several alternative models of computation that have been shown to be
equivalent in a formal sense since each one of them can simulate any other. Turing in-
troduced a class of machines that represent a particular model of computation.
Rather than maintaining information in wires, Turing machines (Fig. 1.9.2) use a
storage device that can be read and written to. The storage is represented as an infi-
nite one-dimensional tape marked into squares. On the tape can be written charac-
ters, one to a square. The total number of possible characters, the alphabet, is finite.
These characters are often taken to be digits plus a set of markers (delimiters). In ad-
dition to the characters,the tape squares can also be blank. All of the tape is blank ex-
cept for a finite number of nonblank places. Operations on the tape are performed by
a roving read-write head that has a sp ecified (finite) number of internal storage ele-
ments and a simple kind of program encoded in it.We can treat the program as a table
similar to the tables discussed in the context of logic. The table operation acts upon
the value of the tape at the current location of the head,and the value of storage ele-
ments within the read head. The result of an operation is not just a single binary value.
Instead it corresponds to a change in the state of the tape at the current location
(write),a change in the internal memory of the head,and a shift of the location of the
head by one square either to the left or to the right.

We can also think about a Turing machine (TM) as a dynamic system. The inter-
nal table does not change in time. The internal state s(t),the current location l(t),the
current character a(t) and the tape c(t) are all functions of time. The table consists of
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a set of instructions or rules of the form { ,s′,a′,s,a} corresponding to a deterministic
transition matrix. s and a are the current internal state and current tape character re-
spectively. s′ and a′ are the new internal state and character. is the move to be made,
either right or left (R or L).

Using either conceptual model, the TM starts from an initial state and location
and a specified tape. In each time interval the TM head performs the following oper-
ations:

1. Read the current tape character

2. Find the instruction that corresponds to the existing combination of (s,a)

3. Change the internal memory to the corresponding s′
4. Write the tape with the corresponding character a′
5. Move the head to the left or right as specified by 

When the TM head reaches a special internal state known as the halt state, then the
outcome of the computation may be read from the tape. For simplicity, in what fol-
lows we will indicate entering the halt state by a move = H which is to halt.

The best way to understand the operation of a TM is to construct particular
tables that perform particular actions (Question 1.9.6). In addition to logical
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R   s2 1 , s1 1

L   s1 1 , s1 0

R   s1 1 , s2 0

H   s2 1 , s2 1

0 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0

s

Figure 1.9.2 Turing’s model of computation — the Turing machine (TM) — consists of a tape
divided into squares with characters of a finite alphabet written on it. A roving “head” indi-
cated by the triangle has a finite number of internal states and acts by reading and writing
the tape according to a prespecified table of rules. Each rule consists of a command to read
the tape, write the tape, change the internal state of the TM head and move either to the left
or right. A simplified table is shown consisting of several rules of the form { , s′, a′, s, a}
where a and a′ are possible tape characters, s and s′ are possible states of the head and is
a movement of the head right (R), left (L) or halt (H). Each update the TM starts by finding
the rule { , s′, a′, s, a} in the table such that a is the character on the tape at the current lo-
cation of the head, and s is its current state. The tape is written with the corresponding a′
and the state of the TM head is changed to s′. Then the TM head moves according to the cor-
responding right or left. The illustration simplifies the characters to binary digits 0 and 1
and the states of the TM head to s1 and s2. ❚
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operations, the possible actions include moving and copying characters.
Constructing particular actions using a TM is tedious, in large part because the
movements of the head are limited to a single displacement right or left. Actual
computers use direct addressing that enables access to a particular storage location
in its memory using a number (address) specifying its location. TMs do not gener-
ally use this because the tape is arbitrarily long, so that an address is an arbitrarily
large number, requiring an arbitrarily large storage in the internal state of the head.
Infinite storage in the head is not part of the computational model.

Question 1.9.6 The following TM table is designed to move a string of
binary characters (0 and 1) that are located to the left of a special marker

M to blank squares on the tape to the right of the M and then to stop on the
M. Blank squares are indicated by B. The internal states of the head are indi-
cated by s1, s2 . . . These are not italicized, since they are values rather than
variables. The movements of the head right and left are indicated by R and
L. As mentioned above, we indicate entering the halt state by a movement H.
Each line has the form { , s′, a′, s, a}.

Read over the program and convince yourself that it does what it is sup-
posed to. Describe how it works. The TM must start from state s1 and must
be located at the leftmost nonblank character. The line numbering is only for
convenience in describing the TM, and has no role in its operation.

1. R s2 B s1 0
2. R s3 B s1 1
3. R s2 0 s2 0
4. R s2 1 s2 1
5. R s2 M s2 M
6. R s3 0 s3 0
7. R s3 1 s3 1
8. R s3 M s3 M (1.9.19)
9. L s4 0 s2 B

10. L s4 1 s3 B
11. L s4 0 s4 0
12. L s4 1 s4 1
13. L s4 M s4 M
14. R s1 B s4 B
15. H s1 M s1 M

Solution 1.9.6 This TM works by (lines 1 or 2) reading a nonblank char-
acter (0 or 1) into the internal state of the head; 0 is represented by s2 and 1
is represented by s3. The character that is read is set to a blank B. Then the
TM moves to the right, ignoring all of the tape characters 0, 1 or M (lines 3
through 8) until it reaches a blank B. It writes the stored character (lines 9 or
10), changing its state to s4. This state specifies moving to the left,ignoring
all characters 0,1 or M (lines 11 through 13) until it reaches a blank B. Then
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(line 14) it moves one step right and resets its state to s1. This starts the pro-
cedure from the beginning. If it encounters the marker M in the state s1 in-
stead of a character to be copied, then it halts (line 15). ❚

Since each character can also be represented by a set of other characters (i.e.,2 in
binary is 10), we can allow the TM head to read and write not one but a finite pre-
specified number of characters without making a fundamental change. The following
TM, which acts upon pairs of characters and moves on the tape by two characters at
a time, is the same as the one given in Question 1.9.6.

1. 01 01 00 00 01
2. 01 11 00 00 11
3. 01 01 01 01 01
4. 01 01 11 01 11
5. 01 01 10 01 10
6. 01 11 01 11 01
7. 01 11 11 11 11
8. 01 11 10 11 10 (1.9.20)
9. 10 10 01 01 00

10. 10 10 11 11 00
11. 10 10 01 10 01
12. 10 10 11 10 11
13. 10 10 10 10 10
14. 01 00 00 10 00
15. 00 00 10 00 10

The particular choice of the mapping from characters and internal states onto the
binary representation is not unique. This choice is characterized by using the left and
right bits to represent different aspects. In columns 3 or 5, which represent the tape
characters, the right bit represents the type of element (marker or digit), and the left
represents which element or marker it is: 00 represents the blank B, 10 represents M,
01 represents the digit 0,and 11 represents the digit 1. In columns 2 or 4, which rep-
resent the state of the head,the states s1 and s4 are represented by 00 and 10, s2 and s3

are represented by 01 and 11 respectively. In column 1, moving right is 01, left is 10,
and halt is 00.

The architecture of a TM is very general and allows for a large variety of actions
using complex tables. However, all TMs can be simulated by transferring all of the re-
sponsibility for the table and data to the tape.A TM that can simulate all TMs is called
a universal Turing machine (UTM). As with other TMs,the responsibility of arrang-
ing the information lies with the “programmer.” The UTM works by representing the
table,current state,and current letter on the UTM tape. We will describe the essential
concepts in building a UTM but will not explicitly build one.

The UTM acts on its own set of characters with its own set of internal states. In
order to use it to simulate an arbitrary TM, we have to represent the TM on the tape
of the UTM in the characters that the UTM can operate on. On the UTM tape, we
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must be able to represent four types of entities: a TM character, the state of the TM
head, the movement to be taken by the TM head, and markers that indicate to the
UTM what is where on the tape. The markers are special to the UTM and must be
carefully distinguished from the other three. For later reference, we will build a par-
ticular type of UTM where the tape can be completely represented in binary.

The UTM tape has three parts,the part that represents the table of the TM,a work
area,and the part that represents the tape of the TM (Fig. 1.9.3). To represent the tape
and table of a particular but arbitrary TM, we start with a binary representation of its
alphabet and of its internal states

a1 → 00000, a2 → 00001, a3 → 00010, …
(1.9.21)

s1 → 000, s2 → 001, …

where we keep the left zeros, as needed for the number of bits in the longest binary
number. We then make a doubled binary representation like that used in the previous
example, where each bit becomes two bits with the low order bit a 1. The doubled bi-
nary notation will enable us to distinguish between UTM markers and all other enti-
ties on the tape. Thus we have:

a1 → 01 01 01 01 01, a2 → 01 01 01 01 11, a3 → 01 01 01 11 01, …
(1.9.22)

s1 → 01 01 01, s2 → 01 01 11, …

These labels of characters and states are in a sense arbitrary, since the transition table
is what gives them meaning.

We also encode the movement commands. The movement commands are not ar-
bitrary, since the UTM must know how to interpret them.We have allowed the TM to
displace more than one character, so we must encode a set of movements such as R1,
L1, R2, L2, and H. These correspond respectively to moving one character right, one
character left, two characters right, two characters left, and entering the halt state.
Because the UTM must understand the move that is to be made, we must agree once
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Figure 1.9.3 The universal Turing machine (UTM) is a special TM that can simulate the com-
putation performed by any other TM. The UTM does this by executing the rules of the TM that
are encoded on the tape of the UTM. There are three parts to the UTM tape, the part where
the TM table is encoded (on the left), the part where the tape of the TM is encoded (on the
right) and a workspace (in the middle) where information representing the current state of
the TM head, the current character of the TM tape, and the movement command, are encoded.
See the text for a description of the operation of the UTM based on its own rule table. ❚

M4

TM table TM TapeWorkspace

Universal Turing Machine

Current characterInternal stateMove

M2 M1 M5
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and for all on a coding of these movements. We use the lowest order bit as a direction
bit (1 Right, 0 Left) and the rest of the bits as the number of displacements in binary

R1 → 011, R2 → 101, …,

L1 → 010, L2 → 100, …, (1.9.23)

H → 000 or 001

The doubled binary representation is as before:each bit becomes two bits with the low
order bit a 1,

R1 → 01 11 11 , R2 → 11 01 11 , …,

L1 → 01 11 01 , L2 → 11 01 01 , …, (1.9.24)

H → 01 01 01 or 01 01 11

Care is necessary in the UTM design because we do not know in advance how many
types of TM moves are possible.We also don’t know how many characters or internal
states the TM has. This means that we don’t know the length of their binary repre-
sentations.

We need a number of markers that indicate to the UTM the beginning and end
of encoded characters, states and movements described above. We also need markers
to distinguish different regions of the tape. A sufficient set of markers are:

M1—the beginning of a TM character,

M2—the beginning of a TM internal state,

M3—the beginning of a TM table entry, which is also the beginning of a move-
ment command,

M4—a separator between the TM table and the workspace,

M5—a separator between the workspace and the TM tape,

M6—the beginning of the current TM character (the location of the TM head),

M7—the identified TM table entry to be used in the current step, and

B—the blank, which we include among the markers.

Depending on the design of the UTM, these markers need not all be distinct. In any
case, we encode them also in binary

B → 000, M1 → 001, M2 → 010, … (1.9.25)

and then doubled binary form where the second character is now zero:

B → 00 00 00, M1 → 00 00 10, M2 → 00 10 00, … (1.9.26)

We are now in a position to encode both the tape and table of the TM on the tape
of the UTM. The representation of the table consists of a sequence of representations
of the lines of the table, L1L2..., where each line is represented by the doubled binary
representation of

M3 M2 s′ M1 a′ M2 s M1a (1.9.27)
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The markers are definite but the characters and states and movements correspond to
those in a particular line in the table.The UTM representation of the tape of the TM,
a1a2 . . ., is a doubled binary representation of

M1 a1 M1 a2 M1 a3 . . . (1.9.28)

The workspace starts with the character M4 and ends with the character M5. There is
room enough for the representation of the current TM machine state,the current tape
character and the movement command to be executed. At a particular time in execu-
tion it appears as:

M4 M2 s M1 a M5 (1.9.29)

We describe in general terms the operation of the UTM using this representation
of a TM. Before execution we must indicate the starting location of the TM head and
its initial state. This is done by changing the corresponding marker M1 to M6 (at the
UTM tape location to the left of the character corresponding to the initial location of
the TM), and the initial state of the TM is encoded in the workspace after M2.

The UTM starts from the leftmost nonblank character of its tape. It moves to the
right until it encounters M6. It then copies the character after M6 into the work area
after M1. It compares the values of (s,a) in the work area with all of the possible (s,a)
pairs in the transition table pairs until it finds the same pair. It marks this table entry
with M7. The corresponding s′ from the table is copied into the work area after M2.
The corresponding a′ is copied to the tape after M6. The corresponding movement
command is copied to the work area after M4. If the movement command is H the
TM halts. Otherwise, the marker M6 is moved according to the value of . It is moved
one step at a time (i.e.,the marker M6 is switched with the adjacent M1) while decre-
menting the value of the digits of (except the rightmost bit) and in the direction
specified by the rightmost bit.When the movement command is decremented to zero,
the TM begins the cycle again by copying the character after M6 into the work area.

There is one detail we have overlooked: the TM can write to the left o f its non-
blank characters. This would cause problems for the UTM we have designed,since to
the left of the TM tape representation is the workspace and TM table. There are vari-
ous ways to overcome this difficulty. One is to represent the TM tape by folding it
upon itself and interleaving the characters.Starting from an arbitrary location on the
TM tape we write all characters on the UTM tape to the right of M5 , so that odd char-
acters are the TM tape to the right, and even ones are the TM tape to the left.
Movements of the M6 marker are doubled, and it is reflected (bounces) when it en-
counters M5.

A TM is a dynamic system. We can reformulate Turing’s model of computation
in the form of a cellular automaton (Section 1.5) in a way that will shed some light on
the dynamics that are being discussed. The most direct way to do this is to make an
automaton with two adjacent tapes. The only information in the second strip is a sin-
gle nonblank character at the location of the head that represents its internal state.
The TM update is entirely contained within the update rule of the automaton. This
update rule may be constructed so that it acts at every point in the space, but is en-
abled by the nonblank character in the adjacent square on the second tape. When the
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dynamics reaches a steady state (it is enough that two successive states of the au-
tomaton are the same),the computation is completed. If desired we could reduce this
CA to one tape by placing each pair of squares in the two tapes adjacent to each other,
interleaving the two tapes. While a TM can be represented as a CA,any CA with only
a finite number of active cells can be updated by a Turing machine program (it is com-
putable). There are many other CA that can be programmed by their initial state to
perform computations. These can be much simpler than using the TM model as a
starting point. One example is Conway’s Game of Life, discussed in Section 1.5.Like
a UTM, this CA is a universal computer—any computation can be performed by
starting from some initial state and looking at the final steady state for the result.

When we consider the relationship of computation theory to dynamic systems,
there are some intentional restrictions in the theory that should be recognized. The
conventional theory of computation describes a single computational unit operating
on a character string formed from a finite alphabet of characters. Thus, computation
theory does not describe a continuum in space,an infinite array of processors, or real
numbers. Computer operations only mimic approximately the formal definition of
real numbers. Since an arbitrary real number requires infinitely many digits to spec-
ify, computations upon them in finite time are impossible. The rejection by compu-
tation theory of operations upon real numbers is not a trivial one. It is rooted in fun-
damental results of computation theory regarding limits to what is inherently
possible in any computation.

This model of computation as dynamics can be summarized by saying that a
computation is the steady-state result of a deterministic CA with a finite alphabet (fi-
nite number of characters at each site) and finite domain update rule.One of the char-
acters (the blank or vacuum) must be such that it is unchanged when the system is
filled with these characters. The space is infinite but the conditions are such that all
space except for a finite region must be filled with the blank character.

1.9.5 Computability and the halting problem
The construction of a UTM guarantees that if we know how to perform a particular
operation on numbers, we can program a UTM to perform this computation.
However, if someone gives you such a program––can you determine what it will com-
pute? This seemingly simple question turns out to be at the core of a central problem
of logic theory. It turns out that it is not only difficult to determine what it will com-
pute,it is,in a formal sense that will be described below, impossible to figure out if it
will compute anything at all. The requirement that it will compute something is that
eventually it will halt. By halting, it declares its computation completed and the an-
swer given. Instead of halting, it might loop forever or it might continue to write on
ever larger regions of tape. To say that we can determine whether it will compute
something is equivalent to saying that it will eventually halt. This is called the halting
problem. How could we determine if it would halt? We have seen above how to rep-
resent an arbitrary TM on the tape of a particular TM. Consistent with computation
theory, the halting problem is to construct a special TM, TH, whose input is a de-
scription of a TM and whose output is a single bit that specifies whether or not the
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TM will halt. In order for this to make sense,the program TH must itself halt. We can
prove by contradiction that this is not possible in general, and therefore we say that
the halting problem is not computable. The proof is based on constructing a para-
doxical logical statement of the form “This statement is false.”

A proof starts by assuming we have a TM called TH that accepts as input a tape
representing a TM Y and its tape y. The output, which can be represented in func-
tional form as TH (Y, y), is always well-defined and is either 1 or 0 representing the
statement that the TM Y halts on y or doesn’t halt on y respectively. We now construct
a logical contradiction by constructing an additional TM based on TH. First we con-
sider TH (Y,Y), which asks whether Y halts when acting on a tape representing itself.
We design a new TM TH 1 that takes only Y as input,copies it and then acts in the same
way as TH. So we have

TH1(Y) = TH (Y,Y) (1.9.30)

We now define a TM TH2 that is based on TH1 but whenever TH1 gives the answer
0 it gives the answer 1,and whenever TH1 gives the answer 1 it enters a loop and com-
putes forever. A moment’s meditation shows that this is possible if we have TH1.
Applying TH 2 to itself then gives us the contradiction, since TH2(TH2) gives 1 if

TH1(TH2) = TH(TH2,TH2) = 0 (1.9.31)

By definition of TH this means that TH 2(TH 2) does not halt, which is a contradiction.
Alternatively, TH2(TH 2) computes forever if

TH1(TH2) = TH(TH2,TH2) = 1

by definition of TH this means that TH2(TH 2)  halts, which is a contradiction.
The noncomputability of the halting problem is similar to Gödel’s theorem and

other results denying the completeness of logic, in the sense that we can ask a ques-
tion about a logical construction that cannot be answered by it.Gödel’s theorem may
be paraphrased as: In any axiomatic formulation of number theory (i.e.,integers),it
is possible to write a statement that cannot be proven T or F. There has been a lot of
discussion about the philosophical significance of these theorems.A basic conclusion
that may be reached is that they describe something about the relationship of the fi-
nite and infinite. Turing machines can be represented,as we have seen, by a finite set
of characters. This means that we can enumerate them, and they correspond one-to-
one to the integers. Like the integers, there are (countably) infinitely many of them.
Gödel’s theorem is part of our understanding of how an infinite set of numbers must
be described. It tells us that we cannot describe their properties using a finite set of
statements. This is appealing from the point of view of information theory since an
arbitrary integer contains an arbitrarily large amount of information. The noncom-
putability of the halting problem tells us more specifically that we can ask a question
about a system that is described by a finite amount of information whose answer (in
the sense of computation) is not contained within it.We have thus made a vague con-
nection between computation and information theory. We take this connection one
step further in the following section.
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1.9.6 Computation and information in brief
One of our objectives will be to relate computation and information. We therefore
ask, Can a calculation produce information? Let us think about the results of a TM
calculation which is a string of characters—the nonblank characters on the output
tape. How much information is necessary to describe it? We could describe it directly,
or use a Markov model as in Section 1.8. However, we could also give the input of the
TM and the TM description, and this would be enough information to enable us to
obtain the output by computation. This description might contain more or fewer
characters than the direct description of the output. We now return to the problem of
defining the information content of a string of characters. Utilizing the full power of
computation, we can define this as the length of the shortest possible input tape for a
UTM that gives the desired character string as its output. This is called the algorith-
mic (or Kolmogorov) complexity of a character string. We have to be careful with the
definition, since there are many different possible UTM. We will discuss this in
greater detail in Chapter 8. However, this discussion does imply that a calculation
cannot produce information. The information present at the beginning is sufficient
to obtain the result of the computation. It should be understood, however, that the
information that seems to us to be present in a result may be larger than the original
information unless we are able to reconstruct the starting point and the TM used for
the computation.

1.9.7 Logic, computation and human thought
Both logic and computation theory are designed to capture aspects of human
thought. A fundamental question is whether they capture enough of this process—
are human beings equivalent to glorified Turing machines? We will ask this question
in several ways throughout the text and arrive at various conclusions,some of which
support this identification and some that oppose it.One way to understand the ques-
tion is as one of progressive approximation. Logic was originally designed to model
human thought. Computation theory, which generalizes logic, includes additional
features not represented in logic. Computers as we have defined them are instruments
of computation. They are given input (information) specifying both program and
data and provide well-defined output an indefinite time later. One of the features that
is missing from this kind of machine is the continuous input-output interaction with
the world characteristic of a sensory-motor system. An appropriate generalization of
the Turing machine would be a robot. As it is conceived and sometimes realized,a ro-
bot has both sensory and motor capabilities and an embedded computer. Thus it has
more of the features characteristic of a human being. Is this sufficient, or have we
missed additional features?

Logic and computation are often contrasted with the concept of creativity. One
of the central questions about computers is whether they are able to simulate creativ-
ity. In Chapter 3 we will produce a model of creativity that appears to be possible to
simulate on a computer. Hidden in this model, however, is a need to use random
numbers. This might seem to be a minor problem, since we often use computers to

C o m p u t a t i o n 253

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 253
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:17 AM  Page 253



generate random numbers. However, computers do not actually generate random-
ness,they generate pseudo-random numbers. If we recall that randomness is the same
as information, by the discussion in the previous section,a computer cannot gener-
ate true randomness.A Turing machine cannot generate a result that has more infor-
mation than it is given in its initial data. Thus creativity appears to be tied at least in
part to randomness, which has often been suggested, and this may be a problem for
conventional computers. Conceptually, this problem can be readily resolved by
adding to the description of the Turing machine an infinite random tape in addition
to the infinite blank tape. This new system appears quite similar to the original TM
specification.A reasonable question would ask whether it is really inherently differ-
ent. The main difference that we can ascertain at this time is that the new system
would be capable of generating results with arbitrarily large information content,
while the original TM could not. This is not an unreasonable distinction to make be-
tween a creative and a logical system. There are still key problems with understanding
the practical implications of this distinction.

The subtle ty of this discussion increases when we consider that one branch of
theoretical computer science is based on the commonly believed assumption that
there exist functions that are inherently difficult to invert—they can only be inverted
in a time that grows exponentially with the length of the nonblank part of the tape.
For all practical purposes, they cannot be inverted, because the estimated lifetime of
the universe is insufficient to invert such functions. While their existence is not
proven, it has been proven that if they do exist, then such a function can be used to
generate a string of characters that, while not random, cannot be distinguished from
a random string in less than exponential time. This would suggest that there can be
no practical difference between a TM with a random tape,and one without. Thus,the
possibility of the existence of noninvertible functions is intimately tied to questions
about the relationship between TM, randomness and human thought.

1.9.8 Using computation and information to describe the
real world

In this section we review the fundamental relevance of the theories of computation
and information in the real world. This relevance ultimately arises from the proper-
ties of observations and measurements.

In our ob s erva ti ons of the worl d , we find that qu a n ti ties we measu re va ry. In deed ,
wi t h o ut va ri a ti on there would be no su ch thing as an ob s erva ti on . Th ere are va ri a ti on s
over time as well as over space . Our intell ectual ef fort is ded i c a ted to cl a s s i f ying or un-
derstanding this va ri a ti on . To con c reti ze the discussion , we con s i der ob s erva ti ons of a
va ri a ble s wh i ch could be as a functi on of time s(t) or of s p ace s(x) . Even though x or
t m ay appear con ti nu o u s , our ob s erva ti ons may of ten be de s c ri bed as a finite discrete
s et {si} . One of the cen tral (met a ) ob s erva ti ons abo ut the va ri a ti on in va lue of {si} is that
s om etimes the va lue of the va ri a ble si can be inferred from , is correl a ted wi t h , or is not
i n depen dent from its va lue or va lues at some other time or po s i ti on sj .

These concepts have to do with the relatedness of si to sj . Why is this important?
The reason is that we would like to know the value of si without having to observe it.
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We can understand this as a problem in prediction—to anticipate events that will oc-
cur. We would also like to know what is located at unobserved positions in space;e.g.,
around the corner. And even if we have observed something, we do not want to have
to remember all observations we make. We could argue more fundamentally that
knowledge/information is important only ifprediction is possible. There would be no
reason to remember past observations if they were uncorrelated with anything in the
future. If correlations enable prediction,then it is helpful to store information about
the past. We want to store as little as possible in order to make the prediction. Why?
Because storage is limited, or because accessing the right information requires a
search that takes time. If a search takes more time than we have till the event we want
to predict, then the information is not useful. As a corollary (from a simplified utili-
tarian point of view), we would like to retain only information that gives us the best,
most rapid prediction, under the most circumstances, for the least storage.

Inference is the process of logic or computation. To be able to infer the state of a
variable si means that we have a definite formula f(sj) that will g ive us the value o f si

with complete certainty from a knowledge of sj . The theory of computation describes
what functions f are possible. If the index i corresponds to a later time than j we say
that we can predict its value. In addition to the value of sj we need to know the func-
tion f in order to predict the value of si. This relationship need not be from a single
value sj to a single value si. We might need to know a collection of values {sj } in order
to obtain the value of si from f ({sj }).

As part of our experience of the world, we have learned that observations at a par-
ticular time are more closely related to observations at a previous time than observa-
tions at different nearby locations. This has been summarized by the principle of
causality. Causality is the ability to determine what happens at one time from what
happened at a previous time. This is more explicitly stated as microcausality—what
happens at a particular time and place is related to what happened at a previous time
in its immediate vicinity. Causality is the principle behind the notion of determinism,
which suggests that what occurs is determined by prior conditions. One of the ways
that we express the relationship between system observations over time is by conser-
vation laws. Conservation laws are the simplest form of a causal relationship.

Correlation is a looser relationship than inference. The statement that values si

and sj are correlated implies that even if we cannot tell exactly what the value si is from
a knowledge of sj , we can describe it at least partially. This partial knowledge may also
be inherently statistical in the context of an ensemble of values as discussed below.
Correlation often describes a condition where the values si and sj are similar. If they
are opposite, we might say they are anticorrelated. However, we sometimes use the
term “correlated”more generally. In this case,to say that si and sj are correlated would
mean that we can construct a function f (sj) which is close to the value of si but not ex-
actly the same. The degree of correlation would tell us how close we expect them to
be. While correlations in time appear to be more central than correlations in space,
systems with interactions have correlations in both space and time.

Concepts of relatedness are inherently of an ensemble nature. This means that
they do not refer to a particular value si or a pair of values (si, sj) but rather to a
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collection of such values or pairs. The ensemble nature of relationships is often more
explicit for correlations, but it also applies to inference. This ensemble nature is hid-
den by func tional terminology that describes a relationship between particular val-
ues. For example, when we say that the temperature at 1:00 P.M. is correlated with the
temperature at 12:00 P.M., we are describing a relationship between two temperature
values. Implicitly, we are describing the collection of all pairs of temperatures on dif-
ferent days or at different locations. The set of such pairs are analogs. The concept of
inference also generally makes sense only in reference to an ensemble. Let us assume
for the moment that we are discussing only a single value si . The statement of infer-
ence would imply that we can obtain si as the value f(sj). For a single value,the easiest
way (requiring the smallest amount of information) to specify f (sj)  would be to spec-
ify si. We do not gain by using inference for this single case. However, we can gain if
we know that, for example,the velocity of an object will remain the same if there are
no forces upon it. This describes the velocity v(t) in terms of v(t ′) of any one object
out of an ensemble of objects. We can also gain from inference if the function f (sj)
gives a string of more than one si.

The notion of independence is the opposite of inference or correlation. Two val-
ues si and sj are independent if there is no way that we can infer the value of one from
the other, and if they are not correlated. Randomness is similar to independence. The
word “independent” is used when there is no correlation between two observations.
The word “random” is stronger, since it means that there is no correlation between an
observed value and anything else. A random process,like a sequence of coin tosses,is
a sequence where each value is independent of the others. We have seen in Section 1.8
that randomness is intimately related with information. Random processes are un-
predictable,therefore it makes no sense for us to try to accumulate information that
will help predict it. In this sense, a random process is simple to describe. However,
once a random process has occurred,other events may depend upon it. For example,
someone who wins a lottery will be significantly affected by an event presumed to be
random. Thus we may want to remember the results of the random process after it
occurs. In this case we must remember each value. We might ask, Once the random
process has occurred, can we summarize it in some way? The answer is that we can-
not. Indeed, this property has been used to define randomness.

We can abstract the problem of prediction and description of observations to the
problem of data compression. Assume there are a set of observations {si} for which we
would like to obtain the shortest possible description from which we can reconstruct
the complete set of observations. If we can infer one value from another, then the set
might be compressed by eliminating the inferable values. However, we must make
sure that the added information necessary to describe how the inference is to be done
is less than the information in the eliminated values. Correlations also enable com-
pression. For example,let us assume that the values are biased ON with a probability
P(1) = .999 and OFF with a probability P (−1) = 0.001. This means that one in a thou-
sand values is OFF and the others are ON. In this case we can remember which ones
are OFF rather than keeping a list of all of the values.We would say they are ON except
for numbers 3, 2000,2403,5428, etc. This is one way of coding the information. This

256 I n t r oduc t i on  a n d  P re l i m i n a r i e s

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 256
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:17 AM  Page 256



method of encoding has a problem in that the numbers representing the locations of
the OFF values may become large. They will be correlated because the first few digits
of successive locations will be the same (…,431236,432112,434329,…). We can fur-
ther reduce the list if we are willing to do some more processing, by giving the inter-
vals between successive OFF values rather than the absolute numbers of their location.

Ultimately, when we have reached the limits of our ability to infer one observa-
tion from another, the rest is information that we need. For example, differential
equations are based on the presumption that boundary conditions (initial conditions
in time,and boundary conditions in space) are sufficient to predict the behavior of a
system. The values of the initial conditions and the boundary conditions are the in-
formation we need. This simple model of a system, where information is clearly and
simply separated from the problem of computation, is not always applicable.

Let us assume that we have made extensive observations and have separated from
these observations a minimal set that then can be used to infer all the rest.A minimal
set of information would have the property that no one piece of information in it
could be obtained from other pieces of information. Thus,as far as the set itself is con-
cerned, the information appears to be random. Of course we would not be satisfied
with any random set; it would have to be this one in particular, because we want to
use this information to tell us about all of the actual observations.

One of the difficulties with random numbers is that it is inherently difficult to
prove that numbers are random. We may simply not have thought of the right func-
tion f that can predict the value of the next number in a sequence from the previous
numbers. We could argue that this is one of the reasons that gambling is so attractive
to people because of the use of “lucky numbers” that are expected by the individual
to have a better-than-random chance of success. Indeed,it is the success of science to
have shown that apparently uncorrelated events may be related. For example, the
falling of a ball and the motion of the planets. At the same time, science provides a
framework in which noncausal correlations, otherwise called superstitions, are
rejected.

We have argued that the purpose of knowledge is to succinctly summarize infor-
mation that can be used for prediction. Thus,in its most abstract form, the problem
of deduction or prediction is a problem in data compression. It can thus be argued
that science is an exercise in data compression. This is the essence of the principle of
Occam’s razor and the importance of simplicity and universality in science.The more
universal and the more general a law is,and the simpler it is,then the more data com-
pression has been achieved. Often this is considered to relate to how valuable is the
contribution of the law to science. Of course, even if the equations are general and
simple,if we cannot solve them then they are not particularly useful from a practical
point of view. The concept of simplicity has always been poorly defined. While science
seeks to discover correlations and simplifications in observations of the universe
around us,ultimately the minimum description of a system (i.e.,the universe) is given
by the number of independent pieces of information required to describe it.

Our understanding of information and computation enters also into a discussion
of our models of systems discussed in previous sections. In many of these models, we
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assumed the existence of random variables, or random processes. This randomness
represents either unknown or complex phenomena. It is important to recognize that
this represents an assumption about the nature of correlations between different as-
pects of the problem that we are modeling. It assumes that the random process is in-
dependent of (uncorrelated with) the aspects of the system we are explicitly studying.
When we model the random process on a computer by a pseudo-random number
generator, we are assuming that the computations in the pseudo-random number
generator are also uncorrelated with the system we are studying. These assumptions
may or may not be valid, and tests of them are not generally easy to perform.

Fractals, Scaling and Renormalization

The physics of Newton and the related concepts of calculus, which have dominated
scientific thinking for three hundred years,are based upon the understanding that at
smaller and smaller scales—both in space and in time—physical systems become sim-
ple,smooth and without detail.A more careful articulation of these ideas would note
that the fine scale structure of planets, materials and atoms is not without detail.
However, for many problems, such detail becomes irrelevant at the larger scale. Since
the details are irrelevant, formulating theories in a way that assumes that the detail
does not exist yields the same results as a more exact description.

In the treatment of complex systems, including various physical and biological
systems,there has been a recognition that the concept of progressive smoothness on
finer scales is not always a useful mathematical starting point. This recognition is an
important fundamental change in perspective whose consequences are still being
explored.

We have already discussed in Section 1.1 the subject of chaos in iterative maps. In
chaotic maps, the smoothness of dynamic behavior is violated. It is violated because
fine scale details matter. In this section we describe fractals,mathematical models of
the spatial structure of systems that have increasing detail on finer scales.Geometric
fractals have a self-similar structure, so that the structure on the coarsest scale is re-
peated on finer length scales. A more general framework in which we can articulate
questions about systems with behavior on all scales is that of scaling theory intro-
duced in Section 1.10.3.One of the most powerful analytic tools for studying systems
that have scaling properties is the renormalization group. We apply it to the Ising
model in Section 1.10.4, and then return full cycle by applying the renormalization
group to chaos in Section 1.10.5.A computational technique,the multigrid method,
that enables the description o f problems on multiple scales is discussed in Section
1.10.6. Finally, we discuss briefly the relevance of these concepts to the study of com-
plex systems in Section 1.10.7.

1.10.1 Fractals
Traditional geometry is the study of the properties of spaces or objects that have in-
tegral dimensions. This can be generalized to allow effective fractional dimensions of
objects, called fractals, that are embedded in an integral dimension space. In recent

1.10
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years the recognition that fractals can play an important role in modeling natural phe-
nomena has fueled a whole area of research investigating the occurrence and proper-
ties of fractal objects in physical and biological systems.

Fractals are of ten def i n ed as geom etric obj ects whose spatial stru ctu re is sel f -
s i m i l a r. This means that by magn i f ying one part of the obj ect , we find the same stru c-
tu re as of the ori ginal obj ect . The obj ect is ch a racteri s ti c a lly form ed out of a co ll ec-
ti on of el em en t s : poi n t s , line segm en t s , planar secti ons or vo lume el em en t s . Th e s e
el em ents exist in a space of the same or high er dimen s i on to the el em ents them s elve s .
For ex a m p l e , line segm ents are on e - d i m en s i onal obj ects that can be found on a line,
p l a n e , vo lume or high er dimen s i onal space . We might begin to de s c ri be a fractal by
the obj ects of wh i ch it is form ed . However, geom etric fractals are of ten de s c ri bed by
a procedu re (algorithm) that cre a tes them in an ex p l i c i t ly self-similar manner.

One of the simplest examples of a fractal object is the Cantor set (Fig. 1.10.1).
This set is formed by a procedure that starts from a single line segment. We remove
the middle third from the segment. There are then two line segments left.We then re-
move the middle third from both of these segments, leaving four line segments.
Continuing iteratively, at the kth iteration there are 2k segments. The Cantor set,
which is the limiting set of points obtained from this process,has no line segments in
it. It is self-similar by direct construction,since the left and right third of the original
line segment can be expanded by a factor of three to appear as the original set.

An analog of the Cantor set in two dimensions is the Sierpinski gasket
(Fig. 1.10.2). It is constructed from an equilateral triangle by removing an internal tri-
angle which is half of the size of the original triangle. This procedure is then iterated
for all of the smaller triangles that result. We can see that there are no areas that are
left in this shape. It is self-similar, since each of the three corner triangles can be ex-
panded by a factor of two to appear as the original set.

For self-similar objects, we can obtain the effective fractal dimension directly by
considering their composition from parts. We do this by analogy with conventional
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Figure 1.10.1 Illustration of the construction of the Cantor set, one of the best-known frac-
tals. The Cantor set is formed by iteratively removing the middle third from a line segment,
then the middle third from the two remaining line segments, and so on. Four iterations of the
procedure are shown starting from the complete line segment at the top. ❚
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geometric objects which are also self-similar. For example,a line segment,a square, or
a cube can be formed from smaller objects of the same type. In general, for a d-di-
mensional cube, we can form the cube out of smaller cubes. If the size of the smaller
cubes is reduced from that of the large cube by a factor of , where is inversely pro-
portional to their diameter, ∝ 1/R, then the number of smaller cubes necessary to
form the original is N = d. Thus we could obtain the dimension as:

d = ln(N) / ln( ) (1.10.1)

For self-similar fractals we can do the same, where N is the number of parts that make
up the whole.Each of the parts is assumed to have the same shape, but reduced in size
by a factor of from the original object.

We can gen era l i ze the def i n i ti on of f ractal dimen s i on so that we can use it to
ch a racteri ze geom etric obj ects that are not stri ct ly sel f - s i m i l a r. Th ere is more than
one way to gen era l i ze the def i n i ti on . We wi ll adopt an intu i tive def i n i ti on of f ract a l
d i m en s i on wh i ch is cl o s ely rel a ted to Eq . ( 1 . 1 0 . 1 ) . If the obj ect is em bed ded in d- d i-
m en s i on s , we cover the obj ect with d- d i m en s i onal disks. This is illu s tra ted in Fig.
1.10.3 for a line segm ent and a rect a n gle in a two - d i m en s i onal space . If we cover the
obj ect with two - d i m en s i onal disks of a fixed rad iu s , R, using the minimal nu m ber of
disks po s s i bl e , the nu m ber of these disks ch a n ges with the rad ius of the disks ac-
cording to the power law:

N(R) ∝ R−d (1.10.2)

where d is defined as the fractal dimension. We note that the use of disks is only illus-
trative. We could use squares and the result can be proven to be equivalent.
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F i g u re 1.10.2 T he Sie r p i nski gasket is fo r med in a similar ma n ner to the Cantor set. Starting
f rom an equilateral tria ng l e, a similar tria ngle one half the size is re moved from the middle leav-
i ng three tria ngles at the corne r s. The pro c e du re is then iteratively applied to the re ma i n i ng tri-
a ng l e s. The fig u re shows the set that results after four itera t io ns of the pro c e du re. ❚
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We can use either Eq. (1.10.1) or Eq. (1.10.2) to calculate the dimension of the
Cantor set and the Sierpinski gasket. We illustrate the use of Eq. (1.10.2). For the
Cantor set, by construction, 2k disks (or line segments) of radius 1/3k will cover the
set. Thus we can write:

N(R / 3k) = 2k N(R) (1.10.3)

F ra c t a l s ,  s ca l i n g  a nd  re n o r m a l i z a t i o n 261

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 261
Title: Dynamics Complex Systems Short / Normal / Long

(b)

(a)

(c)

F i g u re 1.10.3 In order to de f i ne the dime ns ion of a fractal object, we cons ider the problem of
c o v e r i ng a set with a minimal number of disks of radius R. (a) shows a line segme nt with thre e
d i f f e re nt coverings superimposed. (b) and (c) show a re c t a ngle with two differe nt coverings re-
s p e c t i v e l y. As the size of the disks de c reases the number of disks necessary to cover the shape
g rows as R−d. This behavior becomes exact only in the limit R → 0. The fractal dime ns ion de-
f i ned in this way is some t i mes called the box - c o u nt i ng dime ns ion, because d- d i me ns io nal boxe s
a re often used ra t her than disks. ❚
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Using Eq. (1.10.2) this is:

(R / 3k)−d = 2k R−d (1.10.4)

or:

3d = 2 (1.10.5)

which is:

d = ln(2) / ln(3) ≅ 0.631 (1.10.6)

We would arrive at the same result more directly from Eq. (1.10.1).
For the Sierpinski gasket, we similarly recognize that the set can be covered by

three disks of radius 1/2, nine disks of radius 1/4,and more generally 3k disks of ra-
dius 1/2k. This gives a dimension of:

d = ln(3) / ln(2) ≅ 1.585 (1.10.7)

For these fractals there is a deterministic algorithm that is used to generate them.
We can also consider a kind of stochastic fractal generated in a similar way, however,
at each level the algorithm involves choices made from a probability distribution. The
simplest modification of the sets is to assume that at each level a choice is made with
equal probability from several possibilities.For example,in the Cantor set, rather than
removing the middle third from each of the line segments, we could choose at ran-
dom which of the three thirds to remove. Similarly for the Sierpinski gasket, we could
choose which of the four triangles to remove at each stage. These would be stochastic
fractals,since they are not described by a deterministic self-similarity but by a statis-
tical self-similarity. Nevertheless, they would have the same fractal dimension as the
deterministic fractals.

Question 1.10.1 How does the dimension of a fractal,as defined by Eq.
(1.10.2), depend on the dimension of the space in which it is embedded?

Solution 1.10.1 The dimen s i on of a fractal is indepen dent of the di-
m en s i on of the space in wh i ch it is em bed ded . For ex a m p l e , we migh t
s t a rt with a d- d i m en s i onal space and increase the dimen s i on of the space
to d + 1 dimen s i on s . To show that Eq . (1.10.2) is not ch a n ged , we form a
covering of the fractal by d + 1 dimen s i onal sph eres whose inters ecti on
with the d- d i m en s i onal space is the same as the covering we used for the
a n a lysis in d d i m en s i on s . ❚

Question 1.10.2 Prove that the fractal dimension does not change if we
use squares or circles for covering an object.

Solution 1.10.2 Assume that we have minimal coverings of a shape using
N1(R) = c1R−d1 squares, and minimal coverings by N2(R) = c2R−d2 circles,
with d1 ≠ d2. The squares are characterized using R as the length of their side,
while the circles are characterized using R as their radius. If d1 is less than d2,
then for smaller and smaller R the number of disks becomes arbitrarily
smaller than the number of squares. However, we can cover the same shape
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using squares that circumscribe the disks. The number of these squares is
N ′1(R) = c1(R / 2)−d1. This is impossible, because for small enough R, N ′1(R)
will be smaller than N 1(R), which violates the assumption that the latter is a
minimal covering. Similarly, if d is greater than d ′, we use disks circum-
scribed around the squares to arrive at a contradiction. ❚

Question 1.10.3 Calculate the fractal dimension of the Koch curve given
in Fig. 1.10.4.

Solution 1.10.3 The Koch curve is composed out of four Koch curves re-
duced in size from the original by a factor of 3. Thus, the fractal dimension
is d = ln(4) / ln(3) ≈ 1.2619. ❚

Question 1.10.4 Show that the length of the Koch curve is infinite.

Solution 1.10.4 The Koch curve can be con s tru cted by taking out the mid-
dle third of a line segm ent and inserting two segm ents equ iva l ent to the on e
that was rem oved . Th ey are inserted so as to make an equ i l a teral tri a n gle wi t h
the rem oved segm en t . Thu s , at every itera ti on of the con s tru cti on procedu re ,
the length of the peri m eter is mu l ti p l i ed by 4/3 , wh i ch means that it diver ge s
to infinity. It can be proven more gen era lly that any fractal of d i m en s i on 2 >
d > 1 must have an infinite length and zero are a ,s i n ce these measu res of s i ze
a re for on e - d i m en s i onal and two - d i m en s i onal obj ects re s pectively. ❚

Eq. (1.10.2) neglects the jumps in N(R) that arise as we vary the radius R. Since
N(R) can only have integral values,as we lower R and add additional disks there are
discrete jumps in its value. It is conventional to define the fractal dimension by taking
the limit of Eq.(1.10.2) as R → 0, where this problem disappears. This approach,how-
ever, is linked philosophically to the assumption that systems simplify in the limit of
small length scales. The assumption here is not that the system becomes smooth and
featureless, but rather that the fractal properties will continue to all finer scales and
remain ideal. In a physical system,the fractal dimension cannot be taken in this limit.
Thus, we should allow the definition to be applied over a limited domain of length
scales as is appropriate for the problem. As long as the domain of length scales is large,
we can use this definition. We then solve the problem of discrete jumps by treating the
leading behavior of the function N(R) over this domain.

The problem of treating distinct dimensions at different length scales is only one
of the difficulties that we face in discussing fractal systems. Another problem is inho-
mogeneity. In the following section we discuss objects that are inherently inhomoge-
neous but for which an alternate natural definition of dimension can be devised to
describe their structure on all scales.

1.10.2 Trees
Itera tive procedu res like those used to make fractals can also be used to make geo-
m etric obj ects call ed tree s . An example of a geom etric tree , wh i ch be a rs va g u e
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re s em bl a n ce to physical tree s , is shown in Fig. 1 . 1 0 . 5 . The tree is form ed by starti n g
with a single obj ect (a line segm en t ) , scaling it by a factor of 1/2 , du p l i c a ting it two
times and attaching the parts to the ori ginal obj ect at its bo u n d a ry. This process is
t h en itera ted for each of the re su l ting part s . The itera ti ons cre a te stru ctu re on finer
and finer scales.
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Figure 1.10.4 Illustration of the starting line segment and four successive stages in the for-
mation of the Koch curve. For further discussion see Questions 1.10.3 and 1.10.4. ❚

01adBARYAM_29412  3/10/02 10:17 AM  Page 264



We can generalize the definition of a tree to be a set formed by iteratively adding
to an object copies of itself. At iteration t, the added objects are reduced in size by a
factor t and duplicated N t times, the duplicated versions being rotated and then
shifted by vectors whose lengths converge to zero as a function of t. A tree is different
from a fractal because the smaller versions of the original object, are not contained
within the original object.

The fractal dimen s i on of trees is not as stra i gh tforw a rd as it is for sel f - s i m i l a r
f ract a l s . The ef fective fractal dimen s i on can be calculated ; h owever, it gives re su l t s
that are not intu i tively rel a ted to the tree stru ctu re . We can see why this is a probl em
in Fig. 1 . 1 0 . 6 . The dimen s i on of the regi on of the tree wh i ch is above the size R is that
of the em bed ded en ti ty (line segm en t s ) , while the fractal dimen s i on of the regi on
wh i ch is less than the size R is determ i n ed by the spatial stru ctu re of the tree . Bec a u s e
of the ch a n ging va lue of R in the scaling rel a ti on , an interm ed i a te va lue for the frac-
tal dimen s i on would typ i c a lly be found by a direct calculati on (Questi on 1.10.5).

It is reasonable to avoid this problem by classifying trees in a different category
than fractals. We can define the tree dimension by considering the self-similarity of
the tree structure using the same formula as Eq. (1.10.1), but now applying the defi-
nition to the number N and scaling of the displaced parts of the generating struc-
ture, rather than the embedded parts as in the fractal. In Section 1.10.7 we will en-
counter a treelike structure; however, it will be more useful to describe it rather than
to give a dimension that might characterize it.

Question 1.10.5 A simple version of a tree can be constructed as a set of
points {1/k } where k takes all positive integer values.The tree dimension
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Figure 1.10.5 A geometric tree
formed by an iterative algorithm
similar to those used in forming
fractals. This tree can be formed
starting from a single line seg-
ment. Two copies of it are then re-
duced by a factor of 2, rotated by
45˚ left and right and attached at
one end. The procedure is repeated
for each of the resulting line seg-
ments. Unlike a fractal, a tree is
not solely composed out of parts
that are self-similar. It is formed
out of self-similar parts, along
with the original shape — its
trunk. ❚
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of this set is zero because it can be formed from a point which is duplicated
and then displaced by progressively smaller vectors. Calculate the fractal di-
mension of this set.

Solution 1.10.5 We construct a covering of scale R from line segments of
this length. The covering that we construct will be formed out of two parts.
One part is constructed from segments placed side by side. This part starts
from zero and covers infinitely many points of the set. The other part is con-
structed from segments that are placed on individual points. The crossing
point between the two sets can be calculated as the value of k where the dif-
ference between successive points is R. For k below this value,it is not possi-
ble to include more than one point in one line segment. For k above this
value, there are two or more points per line segment. The critical value of k
is found by setting:

(1.10.8)

or kc = R−1/2. This means that the number of segments needed to cover indi-
vidual points is given by this value. Also, the number of segments that are
placed side by side must be enough to go up to this point, which has the value
1/kc . This number of segments is given by

(1.10.9)
    

1 kc

R
= R−1/2 ≈ kc

    

1

kc

−
1

kc +1
=

1

kc (kc +1)
≈

1

kc
2

= R
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F i g u re 1 . 1 0 . 6 I l l u s t ra t io n
of the covering of a geomet-
ric tree by disks. The cover-
ing shows that the larger-
scale structures of the tree
(the trunk and first branches
in this case) have an effec-
tive dimension given by the
dimension of their com-
p o ne nt s. The smaller scale
s t r uc t u res have a dime n-
s ion that is de t e r m i ned by
t he algorithm used to ma ke
t he t re e. This inho mo ge ne-
ity implies that the fra c t a l
d i me ns ion is not always the
na t u ral way to describe the
t re e. ❚
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Thus we must cover the line segment up to the point R1/2 with R−1/2 line seg-
ments, and use an additional R−1/2 line segments to cover the rest of the
points. This gives a total number of line segments in a covering of 2R−1/2. The
fractal dimension is thus d = 1/2.

We could have used fewer line segments in the covering by covering
pairs of points and triples of points rather than covering the whole line seg-
ment below 1/kc . However, each partial covering of the set that is concerned
with pairs, triples and so on consists of a number of segments that grows as
R−1/2. Thus our conclusion remains unchanged by this correction. ❚

Trees il lustrate only one example of how system properties may exist on many
scales, but are not readily described as fractals in the conventional sense. In order to
generalize our concepts to enable the discussion of such properties, we will introduce
the concept of scaling.

1.10.3 Scaling
Geometric fractals suggest that systems may have a self-similar structure on all length
scales. This is in contrast with the more typical approach of science, where there is a
specific scale at which a phenomenon appears. We can think about the problem of de-
scribing the behavior of a system on multiple length scales in an abstract manner. A
phenomenon (e.g., a measurable quantity) may be described by some function of
scale, f (x). Here x represents the characteristic scale rather than the position. When
there is a well-defined length scale at which a particular effect occurs, for longer length
scales the function would typically decay exponentially:

f(x) ∼ e−x /λ (1.10.10)

This functional dependence implies that the characteristic scale at which this prop-
erty disappears is given by .

In order for a system property to be relevant over a large range of length scales,it
must vary more gradually than exponentially. In such cases, typically, the leading be-
havior is a power law:

f (x) ∼ x (1.10.11)

A function that follows such power-law behavior can also be characterized by the scal-
ing rule:

f (ax) = a f (x) (1.10.12)

This means that if we ch a racteri ze the sys tem on one scale, t h en on a scale that is larger
by the factor a it has a similar appe a ra n ce , but scaled by the factor a . is call ed the scal-
ing ex pon en t . In con trast to the beh avi or of an ex pon en ti a l , for a power law there is no
p a rticular length at wh i ch the property disappe a rs . Thu s , it may ex tend over a wi de
ra n ge of l ength scales. Wh en the scaling ex pon ent is not an integer, the functi on f (x) is
n on a n a lyti c . Non - a n a lyti c i ty is of ten indicative of a property that cannot be tre a ted by
a s suming that it becomes smooth on small or large scales. However, f racti onal scaling
ex pon ents are not nece s s a ry in order for power- l aw scaling to be app l i c a bl e .
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Even when a system property follows power-law scaling, the same behavior can-
not continue over arbitrarily many length scales. The disappearance of a certain
power law may occur because of the appearance of a new behavior on a longer scale.
This change is characterized by a crossover in the scaling properties of f (x). An ex-
ample of crossover occurs when we have a quantity whose scaling behavior is

(1.10.13)

If A1 > A2 and 1 < 2 then the first term will dominate at smaller length scales, and
the second at larger length scales. Alternatively, the power-law behavior may eventu-
ally succumb to exponential decay at some length scale.

There are three related approaches to applying the concept of scaling in model or
physical systems. The first approach is to consider the scale x to be the physical size of
the system, or the amount of matter it contains. The quantity f (x) is then a property
of the system measured as the size of the system changes. The second approach is to
keep the system the same, but vary the scale o f our observation. We assume that our
ability to observe the system has a limited degree of discernment of fine details—a
finest scale of observation. Finer details are to be averaged over or disregarded. By
moving toward or away from the system, we change the physical scale at which our
observation can no longer discern details. x then represents the smallest scale at which
we can observe variation in the system st ructure. Finally, in the third approach we
consider the relationship between a property measured at one location in the system
and the same property measured at another location separated by the distance x. The
function f (x) is a correlation of the system measurements as a function of the distance
between regions that are being considered.

Examples of quantities that follow scaling relations as a function of system size
are the extensive properties of thermodynamic systems (Section 1.3) such as the en-
ergy, entropy, free energy, volume, number of particles and magnetization:

U(ax) = adU(x) (1.10.14)

These properties measure quantities of the whole system as a function of system size.
All have the same scaling exponent—the dimension of space. Intrinsic thermody-
namic quantities are independent of system size and therefore also follow a scaling be-
havior where the scaling exponent is zero.

An o t h er example of scaling can be found in the ra n dom walk (Secti on 1.2). We
can gen era l i ze the discussion in Secti on 1.2 to all ow a walk in d d i m en s i ons by ch oo s-
ing steps wh i ch are ±1 in each dimen s i on indepen den t ly. A ra n dom walk of N s teps in
t h ree dimen s i ons can be thought of as a simple model of a molecule form ed as a ch a i n
of m o l ecular units—a po lym er. If we measu re the avera ge distance bet ween the en d s
of the chain as a functi on of the nu m ber of s teps R(N) , we have the scaling rel a ti on :

R(aN) = a1/2 R(N) (1.10.15)

This scaling of distance traveled in a random walk with the number of steps taken is
independent of dimension. We will consider random walks and other models of poly-
mers in Chapter 5.

    f (x) ~ A1x
1 + A2x 2
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Often our interest is in knowing how different parts of the system affect each
other. Direct interactions do not always reflect the degree of influence. In complex sys-
tems, in which many elements are interacting with each other, there are indirect
means of interacting that transfer influence between one part of a system and another.
The simplest example is the Ising model, where even short-range interactions can lead
to longer-range correlations in the magnetization. The correlation function int ro-
duced in Section 1.6.5 measures the correlations between different locations. These
correlations show the degree to which the interactions couple the behavior of differ-
ent parts of the system. Correlations of behavior occur in both space and time. As we
mentioned in Section 1.3.4, near a second-order phase transition, there are correla-
tions between different places and times on every length and time scale, because they
follow a power-law behavior. This example will be discussed in greater detail in the
following section.

Our discussion of scaling also finds application in the theory of computation
(Section 1.9) and the practical aspects of simulation (Section 1.7). In addition to the
question of computability discussed in Section 1.9, we can also ask how hard it is to
compute something. Such questions are generally formulated by describing a class of
problems that can be ordered by a parameter N that describes the size of the problem.
The objective of the theory of computational complexity is to determine how the
number of operations necessary to solve a problem grows with N. A scaling analysis
can also be used to compare different algorithms that may solve the same problem.
We are often primarily concerned with the scaling behavior (exponential, power law
and the value of the scaling exponent) rather than the coefficients of the scaling be-
havior, because in the comparison of the difficulty of solving different problems or
different methodologies this is often, though not always, the most important issue.

1.10.4 Renormalization group

G e n e ral method The ren orm a l i z a ti on group is a formalism for stu dying the scal-
ing properties of a sys tem . It starts by assuming a set of equ a ti ons that de s c ri be the
beh avi or of a sys tem . We then ch a n ge the length scale at wh i ch we are de s c ri bing the
s ys tem . In ef fect , we assume that we have a finite abi l i ty to see det a i l s . By movi n g
aw ay from a sys tem , we lose some of the det a i l . At the new scale we assume that the
same set of equ a ti ons can be app l i ed , but po s s i bly with different coef f i c i en t s . Th e
obj ective is to rel a te the set of equ a ti ons at one scale to the set of equ a ti ons at the
o t h er scale. O n ce this is ach i eved , the scale-depen dent properties of the sys tem can
be inferred .

Applications of the renormalization group method have been largely to the study
of equilibrium systems,particularly near second-order phase transitions where mean
field approaches break down (Section 1.6).The premise of the renormalization group
is that exactly at a second-order phase transition,the equations describing the system
are independent of scale. In recent years, dynamic renormalization theory has been
developed to describe systems that evolve in time. In this section we will describe the
more conventional renormalization group for thermodynamic systems.
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We il lustrate the concepts of renormalization using the Ising model. The Ising
model,discussed in Section 1.6, describes the interactions of spins on a lattice. It is a
first model of any system that exhibits simple cooperative behavior, such as a magnet.

In order to apprec i a te the con cept of ren orm a l i z a ti on , it is useful to recogn i ze that
the Ising model is not a true micro s copic theory of the beh avi or of a magn et . It migh t
s eem that there is a well - def i n ed way to iden tify an indivi dual spin with a single el ectron
at the atomic level .However, this is far from app a rent wh en equ a ti ons that de s c ri be qu a n-
tum mechanics at the atomic level are con s i dered . Si n ce the rel a ti onship bet ween the mi-
c ro s copic sys tem and the spin model is not manife s t , it is clear that our de s c ri pti on of t h e
m a gn et using the Ising model relies upon the mac ro s copic properties of the model ra t h er
than its micro s copic natu re . S t a ti s tical mechanics does not gen era lly attem pt to derive
m ac ro s copic properties direct ly from micro s copic re a l i ty. In s te ad , it attem pts to de s c ri be
the mac ro s copic ph en om ena from simple model s . We might not give up hope of i den ti-
f ying a specific micro s copic rel a ti onship bet ween a particular material and the Is i n g
m odel ,h owever, the use of the model does not rely upon this iden ti f i c a ti on .

Essential to this approach is that many of the details of the atomic regime are
somehow irrelevant at longer length scales. We will return later to discuss the rele-
vance or irrelevance of microscopic details. However, our first question is: What is a
single spin variable? A spin variable represents the effective magnetic behavior of a re-
gion of the material. There is no particular reason that we should imagine an indi-
vidual spin variable as representing a small or a large region of the material.
Sometimes it might be possible to consider the whole magnet as a single spin in an
external field. Identifying the spin with a region of the material of a particular size is
an assignment of the length scale at which the model is being applied.

What is the difference between an Ising model describing the system at one
length scale and the Ising model describing it on another? The essential point is that
the interactions between spins will be different depending on the length scale at which
we choose to model the system. The renormalization group takes this discussion one
step further by explicitly relating the models at different scales.

In Fig. 1.10.7 we illustrate an Ising model in two dimensions. There is a second
Ising model that is used to describe this same system but on a length scale that is twice
as big. The first Ising model is described by the energy function (Hamiltonian):

(1.10.16)

For conven i en ce , in what fo ll ows we have inclu ded a constant en er gy term −c N =−c Σ1 .
This term does not affect the beh avi or of the sys tem ,h owever, its va ri a ti on from scale
to scale should be inclu ded . The second Ising model is de s c ri bed by the Ha m i l ton i a n

(1.10.17)

where both the variables and the coefficients have primes. While the first model has
N spins, the second model has N ′ spins. Our objective is to relate these two models.
The general process is called renormalization. When we go from the fine scale to the
coarse scale by eliminating spins, the process is called decimation.
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Figure 1.10.7 Schematic illustration of two Ising models in two dimensions. The spins are
indicated by arrows that can be UP or DOWN. These Ising models illustrate the modeling of a
system with different levels of detail. In the upper model there are one-fourth as many spins
as in the lower model. In a renormalization group treatment the parameters of the lower
model are related to the parameters of the upper model so that the same system can be de-
scribed by both. Each of the spins in the upper model, in effect, represents four spins in the
lower model. The interactions between adjacent spins in the upper model represent the net
effect of the interactions between groups of four spins in the lower model. ❚
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There are a variety of methods used for relating models at different scales. Each
of them provides a distinct conceptual and practical approach. While in principle they
should provide the same answer, they are typically approximated at some stage of the
calculation and therefore the answers need not be the same. All the approaches we de-
scribe rely upon the partition function to enable direct connection from the micro-
scopic statistical treatment to the macroscopic thermodynamic quantities. For a par-
ticular system, the par tition function can be written so that it has the same value,
independent of which representation is used:

(1.10.18)

It is conven ti onal and conven i ent wh en performing ren orm a l i z a ti on tra n s form a-
ti ons to set = 1 /k T = 1 . Si n ce mu l tiplies each of the para m eters of the en er gy
f u n cti on , it is a redundant para m eter. It can be rei n s erted at the end of the calcu-
l a ti on s .

The different approaches to renormalization are useful for various models that
can be studied. We will describe three of them in the following paragraphs because of
the importance of the different conceptual treatments. The three approaches are (1)
summing over values of a subset of the spins, (2) averaging over a local combination
of the spins, and (3) summing over the short wavelength degrees of freedom in a
Fourier space representation.

1. Summing over values of a subset of the spins. In the first approach we consider
the spins on the larger scale to be a subset of the spins on the finer scale. To find
the energy of interaction between the spins on the larger scale we need to elimi-
nate (decimate) some of the spins and replace them by new interactions between
the spins that are left. Specifically, we identify the larger scale spins as corre-
sponding to a subset {si}A of the smaller scale spins. The rest of the spins {si}B

must be eliminated from the fine scale model to obtain the coarse scale model.
We can implement this directly by using the partition function:

(1.10.19)

In this equation we have identified the spins on the larger scale as a subset of the
finer scale spins and have summed over the finer scale spins to obtain the effec-
tive energy for the larger scale spins.

2. Averaging over a local combination of the spins. We need not identify a particu-
lar spin of the finer scale with a particular spin of the coarser scale.We can choose
to identify some function of the finer scale spins with the coarse scale spin. For
example, we can identify the majority rule of a certain number of fine scale spins
with the coarse scale spins:

(1.10.20)
    

e −E[{ ′ s i }] =
i ∈A
∏ ′ s i ,sign( s i∑ )

{s i }

∑ e −E[{s i }]

    

e − ′ E [{ ′ s i }] =
{si }B

∑ e −E[{ ′ s i }A ,{s i }B ] = e −E[{s i }]

{s i }

∑ ′ s i ,s i

i∈A
∏

    

Z =
{s i}

∑ e − E[{s i}] =
{ ′ s i }

∑ e − ′ E [{ ′ s i}]
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This is easier to think abo ut wh en an odd nu m ber of spins are being ren orm a l i zed
to become a single spin. No te that this is qu i te similar to the con cept of defining a
co ll ective coord i n a te that we used in Secti on 1.4 in discussing the two - s t a te sys tem .
The differen ce here is that we are defining a co ll ective coord i n a te out of on ly a few
ori ginal coord i n a te s , so that the redu cti on in the nu m ber of degrees of f reedom is
com p a ra tively small . No te also that by conven ti on we con ti nue to use the term
“en er gy,” ra t h er than “f ree en er gy,” for the co ll ective coord i n a te s .

3. Summing over the short wavelength degrees of freedom in a Fourier space rep-
resentation. Rather than performing the elimination of spins dir ectly, we may
recognize that our procedure is having the effect of removing the fine scale vari-
ation in the problem. It is natural then to consider a Fourier space representation
where we can remove the rapid changes in the spin values by eliminating the
higher Fourier components. To do this we need to represent the energy function
in terms of the Fourier transform of the spin variables:

(1.10.21)

Writing the Hamiltonian in terms of the Fourier transformed variables, we then
sum over the values of the high frequency terms:

(1.10.22)

The remaining coordinates sk have k > k0.

All of the approaches described above typically require some approximation in
order to perform the analysis. In general there is a conservation of effort in that the
same difficulties tend to arise in each approach, but with different manifestation.Part
of the reason for the difficulties is that the Hamiltonian we use for the Ising model is
not really complete. This means that there can be other parameters that should be in-
cluded to describe the behavior of the system. We will see this by direct application in
the following examples.

Ising model in one dimension We illu s tra te the basic con cepts by app lying the
ren orm a l i z a ti on group to a on e - d i m en s i onal Ising model wh ere the procedu re can
be done ex act ly. It is conven i ent to use the first approach (nu m ber 1 above) of
i den ti f ying a su b s et of the fine scale spins with the larger scale model . We start wi t h
the case wh ere there is an interacti on bet ween nei gh boring spins, but no magn eti c
f i el d :

(1.10.23)

We sum the partition function over the odd spins to obtain

(1.10.24)
    

Z =
{s i }even

∑
{s i }odd

∑ e
c 1

i
∑ +J

i
∑ s i s i+1

=
i even
∏ 2cosh(J(s i + s i+2))

{si }even

∑ e 2c

    

E[{s i }]= −c 1
i

∑ − J s i s j

<ij>
∑

    

e −E[{s k }] =
{sk }k<k0

∑ e −E[{s k}]

  

sk = e ikx i

i

∑ si
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We equate this to the energy for the even spins by themselves, but with primed
quantities:

(1.10.25)

This gives:

(1.10.26)

or

c ′ + J ′sisi + 2 = ln(2cosh(J(si + si + 2))) + 2c (1.10.27)

Inserting the two distinct combinations of values of si and si+2 (si = si+2 and si = −si+2),
we have:

c ′ + J ′ = ln(2cosh(2J )) + 2c
(1.10.28)

c ′ − J ′ = ln(2cosh(0)) + 2c = ln(2) + 2c

Solving these equations gives the primed quantities for the larger scale model as:

J ′ = (1/2)ln(cosh(2,J ))
(1.10.29)

c ′ = 2c + (1/2)ln(4cosh(2J ))

This is the renormalization group relationship that we have been looking for. It relates
the values of the parameters in the two different energy functions at the different
scales.

While it may not be obvious by inspection, this iterative map always causes J to
decrease. We can see this more easily if we transform the relationship of J to J ′ to the
equivalent form:

tanh(J ′) = tanh(J)2 (1.10.30)

This means that on longer and longer scales the effective interaction between neigh-
boring spins becomes smaller and smaller. Eventually the system on long scales be-
haves as a string of decoupled spins.

The analysis of the one-dimensional Ising model can be extended to include a
magnetic field. The decimation step becomes:

(1.10.31)

We equate this to the coarse scale partition function:

(1.10.32)

which requires that:

    

Z =
{s i }odd

∑ e
′ c + ′ h 

i

∑ ′ s i + ′ J 
i

∑ ′ s i ′ s i +1

=
i odd
∏ 2cosh(h + J(s i + si +2))e 2c

{s i }odd

∑

    

Z =
{s i }even

∑
{s i }odd

∑ e
c 1

i

∑ +h
i

∑ si +J
i

∑ s is i +1

=
i odd
∏ 2cosh(h + J(s i + si +2))

{si }even

∑ e 2c

    e
′ c + ′ J si s i+2 = 2cosh(J(s i + si +2))e 2c

    

Z =
{s i }even

∑ e
′ c +

i

∑ ′ J 
i

∑ s i si+ 2

=
i even
∏ 2cosh(J(si +s i +2))

{s i }even

∑ e 2c
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c ′ + h ′ + J ′ = h + ln(2cosh(h + 2J)) + 2c

c ′ − J ′ = ln(2cosh(h)) + 2c (1.10.33)

c ′ − h ′ + J ′ = −h + ln(2cosh(h − 2J)) + 2c

We solve these equations to obtain:

c ′ = 2c + (1/4)ln(16cosh(h + 2J)cosh(h − 2J)cosh(h)2)

J ′ = (1/4)ln(cosh(h + 2J)cosh(h − 2J)/cosh(h)2) (1.10.34)

h′ = h + (1/2)ln(cosh(h + 2J)/cosh(h − 2J))

which is the desired renormalization group transformation. The renormalization
transformation is an iterative map in the parameter space (c, h, J).

We can show what happens in this iterative map using a plot of changes in the
values of J and h at a particular value of these parameters. Such a diagram of flows in
the parameter space is illustrated in Fig. 1.10.8. We can see from the figure or from Eq.
(1.10.34) that there is a line of fixed points of the iterative map at J = 0 with arbitrary
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Figure 1.10.8 The renormalization transformation for the one-dimensional Ising model is il-
lustrated as an iterative flow diagram in the two-dimensional (h,J ) parameter space. Each of
the arrows represents the effect of decimating half of the spins. We see that after a few iter-
ations the value of J becomes very small. This indicates that the spins become decoupled from
each other on a larger scale. The absence of any interaction on this scale means that there is
no phase transition in the one-dimensional Ising model. ❚
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value of h. This simply means that the spins are decoupled. For J = 0 on any scale,the
behavior of the spins is determined by the value of the external field.

The line of f i xed points at J = 0 is a stable (attracting) set of f i xed poi n t s . Th e
f l ow lines of the itera tive map take us to these fixed points on the attractor line. In
ad d i ti on , t h ere is an unstable fixed point at J = ∞. This would corre s pond to a
s tron gly co u p l ed line of s p i n s , but since this fixed point is unstable it does not de-
s c ri be the large scale beh avi or of the model . For any finite va lue of J, ch a n ging the
scale ra p i dly causes the va lue of J to become small . This means that the large scale
beh avi or is alw ays that of a sys tem with J = 0 .

Ising model in two dimensions In the one-dimensional case treated in the pre-
vious section, the renormalization group works perfectly and is also, from the point
of view of studying phase transitions,uninteresting. We will now look at two dimen-
sions, where the renormalization group must be approximated and where there is also
a phase transition.

We can simplify our task in two dimensions by eliminating half of the spins (Fig.
1.10.9) instead of three out of four spins as illustrated previously in Fig. 1.10.7.
Eliminating half of the spins causes the square cell to be rotated by 45˚,but this should
not cause any problems. Labeling the spins as in Fig. 1.10.9 we write the decimation
step for a Hamiltonian with h = 0:

(1.10.35)

In the last expression we take into consideration that each bond of the form s1s2 ap-
pears in two squares and each spin appears in four squares.

In order to solve Eq . (1.10.35) for the va lues of c ′and J ′ we must insert all po s-
s i ble va lues of the spins (s1,s2,s3,s4) . However, this leads to a serious probl em .
Th ere are four disti n ct equ a ti ons that arise from the different va lues of the spins.
This is redu ced from 24 = 8 bec a u s e , by sym m etry, i nverting all of the spins give s
the same answer. The probl em is that while there are four equ a ti on s , t h ere are
on ly two unknowns to solve for, c ′ and J ′. The probl em can be illu s tra ted by rec-
ognizing that there are two disti n ct ways to have two spins U P and two spins
DOW N. One way is to have the spins that are the same be ad jacent to each other,
and the other way is to have them be oppo s i te each other ac ross a diagon a l . Th e
t wo ways give the same re sult for the va lue of (s1 + s2 + s3 + s4) but different re su l t s
for (s1s2 + s2s3 + s3s4 + s4s1) .

    

Z =
{s i }A

∑
{s i }B

∑ e
c 1+J

i
∑

i
∑ s0 (s 1+s 2+s 3 +s 4)

=
{s i }A

∑
i∈B
∏ 2cosh(J(s1 +s2 + s3 + s4 ))e c

=
{s i }A

∑
i∈B
∏ e c′+(J ′/2)(s1s 2+s2 s 3+s3 s 4+s 4 s1)
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In order to solve this problem, we must introduce additional parameters which
correspond to other interactions in the Hamiltonian. To be explicit, we would make a
table of symmetry-related combinations of the four spins as follows:

(s1,s2,s3,s4) (1,1,1,1) (1,1,1,−1) (1,1,−1,−1) (1,−1,1,−1)
1 1 1 1 1

(s1 + s2 + s3 + s4) 4 2 0 0
(s1s2 + s2s3 + s3s4 + s4s1) 4 0 0 −4 (1.10.36)

(s1s3 + s2s4) 2 0 −2 2
s1s2s3s4 1 −1 1 1

In order to make use of these to resolve the problems with Eq.(1.10.35), we must in-
troduce new interactions in the Hamiltonian and new parameters that multiply them.
This leads to second-neighbor interactions (across a cell diagonal),and four spin in-
teractions around a square:

(1.10.37)

where the notation << ij >> indicates second-neighbor spins across a square diagonal,
and < ijkl > indicates spins around a square. This might seem to solve our problem.
However, we started out from a Hamiltonian with only two parameters,and now we
are switching to a Hamiltonian with four parameters. To be self-consistent, we should
start from the same set of parameters we end up with. When we start with the addi-
tional parameters K and L this will,however, lead to still further terms that should be
included.

    

E[{s i }]= − ′ c 1
i

∑ – ′ J s is j

<ij>
∑ − ′ K si s j

<<ij >>
∑ − ′ L si s j

<ijkl>
∑ sksl
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F i g u re 1.10.9 In a re no r ma l-
i z a t ion tre a t me nt of the two-
d i me ns io nal Is i ng mo del it is
possible to de c i mate one out
of two spins as illustrated in
this fig u re. The black do t s
re p re s e nt spins that re main in
t he larger-scale mo del, and
t he white dots re p re s e nt spins
that are de c i ma t e d. The ne a r-
e s t - ne ighbor int e ra c t io ns in
t he larger-scale mo del are
s hown by da s hed line s. As dis-
cussed in the text, the pro c e s s
of de c i ma t ion int ro duces ne w
i nt e ra c t io ns between spins
a c ross the dia go nal, and fo u r
spin int e ra c t io ns between
s p i ns aro u nd a squa re. ❚
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Relevant and irrelevant parameters In general,as we eliminate spins by renormal-
ization, we introduce interactions between spins that might not have been included
in the original model. We will have interactions between second or third neighbors or
between more than two spins at a time. In principle, by using a complete set of para-
meters that describe the system we can perform the renormalization transformation
and obtain the flows in the parameter space. These flows tell us about the scale-de-
pendent properties of the system.

We can characterize the flows by focusing on the fixed points of the iterative map.
These fixed points may be stable or unstable. When a fixed point is unstable, renor-
malization takes us away from the fixed point so that on a larger scale the properties
of the system are found to be different from the values at the unstable fixed point.
Significantly, it is the unstable fixed points that represent the second-order phase
transitions. This is because deviating from the fixed point in one direction causes the
parameters to flow in one direction, while deviating from the fixed point in another
direction causes the parameters to flow in a different direction. Thus,the macroscopic
properties of the system depend on the direction microscopic parameters deviate
from the fixed point—a succinct characterization of the nature of a phase transition.

Using this characterization of fixed points, we can now distinguish between dif-
ferent types of parameters in the model. This includes all of the additional parame-
ters that might be introduced in order to achieve a self-consistent renormalization
transformation. There are two major categories of parameters: relevant or irrelevant.
Starting near a particular fixed point, changes in a relevant parameter grow under
renormalization. Changes in an irrelevant parameter shrink.Because renormalization
indicates the values of system parameters on a larger scale,this tells us which micro-
scopic parameters are important to the macroscopic scale. When observed on the
macroscopic scale, relevant parameters change at the phase transition, while irrele-
vant parameters do not.A relevant parameter should be included in the Hamiltonian
because its value affects the macroscopic behavior. An irrelevant parameter may often
be included in the model in a more approximate way. Marginal parameters are the
borderline cases that neither grow nor shrink at the fixed point.

Even when we are not solely interested in the behavior of a system at a phase tran-
sition, but rather are concerned with its macroscopic properties in general,the defin-
ition of “relevant” and “irrelevant” continues to make sense. If we start from a partic-
ular microscopic description of the system, we can ask which parameters are relevant
for the macroscopic behavior. The relevant parameters are the ones that can affect the
macroscopic behavior of the system. Thus, a change in a relevant microscopic para-
meter changes the macroscopic behavior. In terms of renormalization, changes in rel-
evant parameters do not disappear as a result of renormalization.

We see that the use of a ny model , su ch as the Ising model , to model a physical sys-
tem assumes that all of the para m eters that are essen tial in de s c ri bing the sys tem have
been inclu ded . Wh en this is tru e , the re sults are universal in the sense that all micro-
s copic Ha m i l tonians wi ll give rise to the same beh avi or. Ad d i ti onal terms in the
Ha m i l tonian cannot affect the mac ro s copic beh avi or. We know that the micro s cop i c
beh avi or of the physical sys tem is not re a lly de s c ri bed by the Ising model or any other
simple model . Thu s , in cre a ting models we alw ays rely upon the con cept , i f not the
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proce s s , of ren orm a l i z a ti on to make many of the micro s copic details disappe a r, en-
a bling our simple models to de s c ri be the mac ro s copic beh avi or of the physical sys tem .

In the Ising model, in addition to longer range and multiple spin interactions,
there is another set of parameters that may be relevant. These parameters are related
to the use of binary variables to describe the magnetization of a region of the mater-
ial. It makes sense that the process of renormalization should cause the model to have
additional spin values that are intermediate between fully magnetized UP and fully
magnetized DOWN. In order to accommodate this, we might introduce a continuum
of possible magnetizations.Once we do this,the amplitude of the magnetization has
a probability distribution that will be controlled by additional parameters in the
Hamiltonian. These parameters may also be relevant or irrelevant. When they are ir-
relevant,the Ising model can be used without them. However, when they are relevant,
a more complete model should be used.

The parameters that are relevant generally depend on the dimensionality of
space. From our analysis of the behavior of the one-dimensional Ising model,the pa-
rameter J is irrelevant. It is clearly irrelevant because not only variations in J but J it-
self disappears as the scale increases. However, in two dimensions this is not true.

For our purposes we will be satisfied by simplifying the renormalization treat-
ment of the two-dimensional Ising model so that no additional parameters are intro-
duced. This can be done by a fourth renormalization group technique which has some
conceptual as well as practical advantages over the others. However, it does hide the
importance of determining the relevant parameters.

Bond shifting We simplify our analysis of the two-dimensional Ising model by mak-
ing use of the Migdal-Kadanoff transformation. This renormalization group tech-
nique is based on the recognition that the correlation between adjacent spins can en-
able us to, in effect, substitute the role of one spin for another. As far as the coarser
scale model is concerned, the function of the finer scale spins is to mediate the inter-
action between the coarser scale spins. Because one spin is correlated to the behavior
of its neighbor, we can shift the responsibility for this interaction to a neighbor, and
use this shift to simplify elimination of the spins.

To apply these ideas to the two-dimensional Ising model, we move some of the
interactions (bonds) between spins, as shown in Fig. 1.10.10. We note that the dis-
tance over which the bonds act is preserved. The net result of the bond shifting is that
we form short linear chains that can be renormalized just like a one-dimensional
chain. The renormalization group transformation is thus done in two steps.First we
shift the bonds, then we decimate. Once the bonds are mo ved, we write the renor-
malization of the partition function as:

(1.10.38)

    

Z =
{s i }A

∑
{s i }B

∑
{si }C

∑ e
c 1

i
∑ +2J

i
∑ s 0(s1+s 2)

=
i ∈A
∏ 2cosh(2J(s1 +s2))e 4c

{s i }

∑
=

i ∈A
∏ e ′ c + ′ J (s 1s 2 )

{s i}

∑
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The spin labels s0, s1, s2 are assigned along each doubled bond, as indicated in
Fig. 1.10.10. The three types of spin A, B and C correspond to the white, black and
gray dots in the figure. The resulting equation is the same as the one we found when
performing the one-dimensional renormalization group transformation with the ex-
ception of factors of two. It gives the result:
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F i g u re 1 . 1 0 . 1 0 I l l u s-
tration of the Migdal-
Kadanoff renormaliza-
tion transformation that
enables us to bypass
the formation of addi-
tional interactions. In
this approach some of
the interactions be-
tween spins are moved
to other spins. If all the
spins are aligned (at low
temperature or high J),
then shifting bonds
doesn’t affect the spin
alignment. At high tem-
perature, when the spins
are uncorrelated, the in-
teractions are not im-
portant anyway. Near
the phase transition,
when the spins are
highly correlated, shift-
ing bonds still makes
sense. A pattern of bond
movement is illustrated
in (a) that gives rise to
the pattern of doubled
bonds in (b). Note that
we are illustrating only
part of a periodic lattice,
so that bonds are moved
into and out of the re-
gion illustrated. Using
the exact renormaliza-
tion of o ne - d i me ns io na l
c h a i ns, the gray spins
a nd the black spins can
be de c i mated to leave
only the white spins. ❚
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J ′ = (1/2)ln(cosh(4J ))
(1.10.39)

c ′ = 4c + (1/2)ln(4cosh(4J ))

The ren orm a l i z a ti on of J in the two - d i m en s i onal Ising model tu rns out to beh ave
qu a l i t a tively different from the on e - d i m en s i onal case. Its beh avi or is plotted in
F i g. 1.10.11 using a flow diagra m . Th ere is an unstable fixed point of the itera tive
map at J ≈ . 3 0 5 . This non zero and non i n f i n i te fixed point indicates that we have a
phase tra n s i ti on . Rei n s erting the tem pera tu re , we see that the phase tra n s i ti on occ u rs
at J = .305 which is significantly larger than the mean field result zJ = 1 or J = .25
found in Section 1.6. The exact value for the phase transition for this lattice, J ≈ .441,
which can be obtained analytically by other techniques, is even larger.

It turns out that there is a trick that can give us the exact transition point using a
similar renormalization transformation. This trick begins by recognizing that we
could have moved bonds in a larger square. For a square with b cells on a side, we
would end up with each bond on the perimeter being replaced by a bond of strength
b. Using Eq.(1.10.30) we can infer that a chain of b bonds of strength bJ gives rise to
an effective interaction whose strength is

J ′(b) = tanh−1(tanh(bJ )b) (1.10.40)
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Figure 1.10.11 The two-dimensional Ising model renormalization group transformation ob-
tained from the Migdal-Kadanoff transformation is illustrated as a flow diagram in the one-
dimensional parameter space (J). The arrows show the effect of successive iterations start-
ing from the black dots. The white dot indicates the position of the unstable fixed point, J c,
which is the phase transition in this model. Starting from values of J slightly below J c, iter-
ation results in the model on a large scale becoming decoupled with no interactions between
spins (J → 0). This is the high-temperature phase of the material. However, starting from
values of J slightly above J c iteration results in the model on the large scale becoming
strongly coupled (J → ∞) and spins are aligned. (a) shows only the range of values from 0
to 1, though the value of J can be arbitrarily large. (b) shows an enlargement of the region
around the fixed point. ❚
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The trick is to take the limit b → 1, because in this limit we are left with the original
Ising model. Extending b to nonintegral values by analytic continuation may seem a
little strange, but it does make a kind of sense. We want to look at the incremental
change in J as a result of renormalization, with b incrementally different from 1. This
can be most easily found by taking the hyperbolic tangent of both sides of Eq.
(1.10.40), and then taking the derivative with respect to b. The result is:

(1.10.41)

Setting this equal to zero to find the fixed point of the transformation actually gives
the exact result for the phase transition.

The renormalization group gives us more information than just the location of
the phase transition. Fig. 1.10.11 shows changes that occur in the parameters as the
length scale is varied. We can use this picture to understand the behavior of the Ising
model in some detail. It shows what happens on longer length scales by the direction
of the arrows. If the flow goes toward a particular point,then we can tell that on the
longest (thermodynamic) length scale the behavior will be characterized by the be-
havior of the model at that point. By knowing how close we are to the original phase
transition, we can also learn from the renormalization group what is the length scale
at which the behavior characteristic of the phase transition will disappear. This is the
length scale at which the iterative map leaves the region of the repelling fixed point
and moves to the attracting one.

We can also ch a racteri ze the rel a ti onship bet ween sys tems at different va lu e s
of the para m eters : tem pera tu res or magn etic fiel d s . Ren orm a l i z a ti on takes us
f rom a sys tem at one va lue of J to another. Thu s , we can rel a te the beh avi or of a
s ys tem at one tem pera tu re to another by performing the ren orm a l i z a ti on for bo t h
s ys tems and stopping both at a particular va lue of J. At this point we can direct ly
rel a te properties of the two sys tem s , su ch as their free en er gi e s . Di f ferent nu m bers
of ren orm a l i z a ti on steps in the two cases mean that we are rel a ting the two sys-
tems at different scales. Su ch de s c ri pti ons of rel a ti onships of the properties of on e
s ys tem at one scale with another sys tem at a different scale are known as scaling
f u n cti ons because they de s c ri be how the properties of the sys tem ch a n ge wi t h
s c a l e .

The renormalization group was developed as an analytic tool for studying the
scaling properties of systems with spatially arrayed interacting parts.We will study an-
other use of renormalization in Section 1.10.5. Then in Section 1.10.6 we will intro-
duce a computational approach—the multigrid method.

Question 1.10.6 In this section we displayed our iterative maps graphi-
cally as flow diagrams, because in renormalization group transforma-

tions we are often interested in maps that involve more than one variable.
Make a diagram like Fig. 1.1.1 for the single variable J showing the iterative
renormalization group transformation for the two-dimensional Ising model
as given in Eq. (1.10.39).

    

d ′ J (b)

db
b=1

= J + sinh(J)cosh(J )ln(tanh(J ))

282 I n t r oduc t i on  a n d  P re l i m i n a r i e s

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 282
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:17 AM  Page 282



Solution 1.10.6 See Fig. 1.10.12. The fixed point and the iterative behavior
are readily apparent. ❚

1.10.5 Renormalization and chaos
Our final example of renormalization brings us back to Section 1.1, where we studied
the properties of iterative maps and the bifurcation route to chaos. According to our
discussion, cycles of length 2k, k = 0,1,2,..., appeared as the parameter a was varied
from 0 to ac = 3.56994567, at which point chaotic behavior appeared.Fig. 1.1.3 sum-
marizes the bifurcation route to chaos.A schematic of the bifurcation part of this di-
agram is reproduced in Fig . 1.10.13. A brief review of Section 1.1 may be useful for
the following discussion.

The process of bifurcation appears to be a self-similar process in the sense that
the appearance of a 2-cycle for f (s) is repeated in the appearance of a 2-cycle for f 2(s),
but over a smaller range of a. The idea of self-similarity seems manifest in
Fig. 1.10.13, where we would only have to change the scale of magnification in the s
and a directions in order to map one bifurcation point onto the next one. While this
mapping might not work perfectly for smaller cycles, it becomes a better and better
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Figure 1.10.12 The iterative map shown as a flow diagram in Fig. 1.10.11 is shown here in
the same manner as the iterative maps in Section 1.1. On the left are shown the successive
values of J as iteration proceeds. Each iteration should be understood as a loss of detail in
the model and hence an observation of the system on a larger scale. Since in general our ob-
servations of the system are macroscopic, we typically observe the limiting behavior as the
iterations go to ∞. This is similar to considering the limiting behavior of a standard iterative
map. On the right is the graphical method of determining the iterations as discussed in
Section 1.1. The fixed points are visible as intersections of the iterating function with the di-
agonal line. ❚
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Figure 1.10.13 Schematic reproduction of Fig. 1.1.4, which shows the bifurcation route to
chaos. Successive branchings are approximately self-similar. The bottom figure shows the de-
finition of the scaling factors that relate the successive branchings. The horizontal rescaling
of the branches, δ, is given by the ratio of ∆ak to ∆ak+1. The vertical rescaling of the
branches, α, is given by the ratio of ∆sk to ∆sk+1. The top figure shows the values from which
we can obtain a first approximation to the values of and δ, by taking the ratios from the
zeroth, first and second bifurcations. The zeroth bifurcation point is actually the point a = 1.
The first bifurcation point occurs at a = 3. the second occurs at a = 1 + √6. The values of s
at the bifurcation points were obtained in Section 1.1, and formulas are indicated on the fig-
ure. When the scaling behavior of the tree is analyzed using a renormalization group treat-
ment, we focus on the tree branches that cross s = 1/2. These are indicated by bold lines in
the top figure. ❚
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approximation as the number of cycles increases. The bifurcation diagram is thus a
treelike object. This means that the sequence of bifurcation points forms a geometri-
cally converging sequence, and the width of the branches is also geometrically con-
verging. However, the distances in the s and a directions are scaled by different fac-
tors. The factors that govern the tree rescaling at each level are and , as shown in
Fig. 1.10.13 (b):

(1.10.42)

By this convention,the magnitude of both and is greater than one. is defined to
be negative because the longer branch flips up to down at every branching. The val-
ues are to be obtained by taking the limit as k → ∞ where these scale factors have well-
defined limits.

We can find a first approximation to these scaling factors by using the values at
the first and second bifurcations that we calculated in Section 1.1. These values, given
in Fig. 1.10.13, yield:

≈ (3 − 1)/(1 + √6 − 3) = 4.449 (1.10.43)

(1.10.44)

Numerically, the asymptotic value of for large k is found to be 4.6692016. This dif-
fers from our first estimate by only 5%. The numerical value for is 2.50290787,
which differs from our first estimate by a larger margin of 30%.

We can determine these constants with greater accuracy by studying directly the
properties of the functions f, f 2, . . . f 2k

. . . that are involved in the formation of 2k cy-
cles. In order to do this we modify our notation to explicitly include the dependence
of the function on the parameter a. f (s,a), f 2(s,a), etc. Note that iteration of the func-
tion f only applies to the first argument.

The tree is formed out of curves s2k (a) that are obtained by solving the fixed point
equation:

(1.10.45)

We are interested in mapping a segment of this curve between the values of s where

(1.10.46)

and

(1.10.47)
    

df 2 k

(s ,a)

ds
= −1

    

df 2 k

(s ,a)

ds
= 1

    s2k (a) = f 2
k

(s2k (a),a)

    

≈
2s1

a=3

s2
+ −s2

− 
 

 
 a=1+ 6

=
4

3

a

(a +1)(a − 3)
a=1+ 6

= 3.252

    
= lim

k →∞

∆sk

∆sk+1

    
= lim

k →∞

∆a k

∆ak +1
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onto the next function, where k is replaced everywhere by k + 1. This mapping is a
kind of renormalization process similar to that we discussed in the previous section.
In order to do this it makes sense to expand this function in a power series around an
intermediate point, which is the point where these derivatives are zero. This is known
as the superstable point of the iterative map. The superstable point is very convenient
for study, because for any value of k there is a superstable point at s = 1/2. This follows
because f(s,a) has its maximum at s = 1/2, and so its derivative is zero. By the chain
rule,the derivative of f 2k

(s ,a),is also zero. As illustrated in Fig. 1.10.13,the line at s =
1/2 intersects the bifurcation tree at every level of the hierarchy at an intermediate
point between bifurcation points. These intersection points must be superstable.

It is convenient to displace the origin of s to be at s = 1/2,and the origin of a to
be at the convergence point of the bifurcations.We thus define a function g which rep-
resents the structure of the tree. It is approximately given by:

g(s ,a) ≈ f(s + 1/2,a + ac) − 1/2 (1.10.48)

However, we would like to represent the idealized tree rather than the real tree. The
idealized tree would satisfy the scaling relation exactly at all values of a. Thus g should
be the analog of the function f which would give us an ideal tree. To find this function
we need to expand the region near a = ac by the appropriate scaling factors.
Specifically we define:

(1.10.49)

The easiest way to think about the function g (s,a) is that it is quite similar to the qua-
dratic function f(s,a) but it has the form necessary to cause the bifurcation tree to have
the ideal scaling behavior at every branching. We note that g (s,a) depends on the be-
havior of f (s,a) only very near to the point s = 1/2. This is apparent in Eq. (1.10.49)
since the region near s = 1/2 is expanded by a factor of k.

We note that g (s,a) has its maximum at s = 0. This is a consequence of the shift
in origin that we chose to make in defining it.

Our objective is to find the form of g(s,a) and,with this form,the values of and
. The trick is to recognize that what we need to know can be obtained directly from

its scaling properties. To write the scaling properties we look at the relationship be-
tween successive iterations of the map and write:

g(s,a) = g 2(s/ ,a / ) (1.10.50)

This follows either from our discussion and definition of the scaling parameters and
or directly from Eq. (1.10.49).

For convenience, we analyze Eq. (1.10.50) first in the limit a → 0. This corre-
sponds to looking at the function g (s,a) as a function of s at the limit of the bifurca-
tion sequence. This function (Fig. 1.10.14) still looks quite similar to our original
function f(s), but its specific form is different. It satisfies the relationship:

g(s,0) = g(s) = g 2(s / ) (1.10.51)

    
g(s,a) = lim

k→∞

k f 2
k

(s / k +1/2,a / k + ac) −1/2
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We approximate this function by a quadratic with no linear term because g(s) has its
maximum at s = 0:

g(s) ≈ g0 + cs2 (1.10.52)

Inserting into Eq. (1.10.51) we obtain:

g0 + cs2 ≈ (g 0 + c (g0 + c(s / )2)2) (1.10.53)

Equating separately the coefficients of the first and second terms in the expansion
gives the solution:

= 1 / (1 + cg0)

= 2cg0

(1.10.54)

We see that c and g0 only appear in the combination cg0, which means that there is one
parameter that is not determined by the scaling relationship. However, this does not
prevent us from determining . Eq. (1.10.54) can be solved to obtain:
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Figure 1.10.14 Three functions are plotted that are successive approximations to g(s) = g(s,
0). This function is essentially the limiting behavior of the quadratic iterative map f(s) at the
end of the bifurcation tree ac. The functions plotted are the first three k values inserted in
Eq. (1.10.49): f(s + 1/2, a + ac) − 1/2, af 2(s/ + 1/2, ac) − 1/2 and a2f 4(s/ 2 + 1/2, ac) −
1/2. The latter two are almost indistinguishable, indicating that the sequence of functions
converges rapidly. ❚
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cg0 = (−1 ± √3)/2 = −1.3660254

= (−1 ± √3) = −2.73205081
(1.10.55)

We have chosen the negative solutions because the value of and the value of cg0 must
be negative.

We return to consider the dependence of g(s,a,) on a to obtain a new estimate for
. Using a first-order linear dependence on a we have:

g(s,a,) ≈ g0 + cs2 + ba (1.10.56)

Inserting into Eq. (1.10.50) we have:

g0 + cs2 + ba ≈ (g0 + c(g0 + c(s / )2 + ba / )2 + ba / ) (1.10.57)

Taking only the first order term from this equation in a we have:

= 2 cg0 + = 4.73205 (1.10.58)

Eq. (1.10.55) and Eq.(1.10.58) are a significant improvement over Eq.(1.10.44) and
Eq.(1.10.43). The new value of is less than 10% from the exact value. The new value
of is less than 1.5% from the exact value. To improve the accuracy of the results, we
need only add additional terms to the expansion of g(s,a) in s. The first-order term in
a is always sufficient to obtain the corresponding value of .

It is important, and actually central to the argument in this section, that the ex-
plicit form of f (s,a) never entered into our discussion. The only assumption was that
the functional behavior near the maximum is quadratic. The rest of the argument fol-
lows independent of the form of f (s,a) because we are looking at its properties after
many iterations. These properties depend only on the region right in the vicinity of
the maximum of the function. Thus only the first-order term in the expansion of the
original function f (s,a) matters. This illustrates the notion of universality so essential
to the concept of renormalization—the behavior is controlled by very few parame-
ters. All other parameters are irrelevant—changing their values in the original itera-
tive map is irrelevant to the behavior after many iterations (many renormalizations)
of the iterative map. This is similar to the study of renormalization in models like the
Ising model, where most of the details of the behavior at small scales no longer mat-
ter on the largest scales.

1.10.6 Multigrid
The multigrid technique is designed for the solution of computational problems that
benefit from a description on multiple scales. Unlike renormalization, which is largely
an analytic tool,the multigrid method is designed specifically as a computational tool.
It works well when a problem can be approximated using a description on a coarse
lattice, but becomes more and more accurate as the finer-scale details on finer-scale
lattices are included. The idea of the method is not just to solve an equation on finer
and finer levels of description, but also to correct the coarser-scale equations based on
the finer-scale results. In this way the methodology creates an improved description
of the problem on the coarser-scale.
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The multigrid approach relies upon iterative refinement of the solution.
Solutions on coarser scales are used to approximate the solutions on finer scales. The
finer-scale solutions are then iteratively refined. However, by correcting the coarser-
scale equations,it is possible to perform most of the iterative refinement of the fine-
scale solution on the coarser scales. Thus the iterative refinement of the solution is
based both upon correction of the solution and correction of the equation. The idea
of correcting the equation is similar in many ways to the renormalization group ap-
proach. However, in this case it is a particular solution, which may be spatially de-
pendent, rather than an ensemble averaging process, which provides the correction.

We explain the multigrid approach using a conventional problem, which is the
solution of a differential equation. To solve the differential equation we will find an
approximate solution on a grid of points.Our ultimate objective is to find a solution
on a fine enough grid so that the solution is within a prespecified accuracy of the ex-
act answer. However, we will start with a much coarser grid solution and progressively
refine it to obtain more accurate results. Typically the multigrid method is applied in
two or three dimensions, where it has greater advantages than in one dimension.
However, we will describe the concepts in one dimension and leave out many of the
subtleties.

For concreteness we will assume a differential equation which is:

(1.10.59)

where g(x) is specified. The domain of the equation is specified, and boundary con-
ditions are provided for f (x) and its derivative.On a grid of equally spaced points we
might represent this equation as:

(1.10.60)

This can be written as a matrix equation:

(1.10.61)

The matrix equation can be solved for the values of f (i) by matrix inversion (using
matrix diagonalization). However, diagonalization is very costly when the matrix is
large, i.e., when there are many points in the grid.

A multigrid approach to solving this equation starts by defining a set of lattices
(grids), Lj, j ∈ {0,. . .,q}, where each successive lattice has twice as many points as the
previous one (Fig. 1.10.15). To explain the procedure it is simplest to assume that we
start with a good approximation for the solution on grid Lj −1 and we are looking for
a solution on the grid Lj . The steps taken are then:

1. Interpolate to find f j
0(i), an approximate value of the function on the finer

grid Lj.

    j
∑ A (i, j) f (j) = g(i)

    

1

d 2
( f (i +1) + f (i −1) − 2 f (i)) = g(i)

    

d 2f (x)

dx2
= g(x)
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2. Perform an iterative improvement (relaxation) of the solution on the finer grid.
This iteration involves calculating the error

(1.10.62)

where all indices refer to the grid Lj. This error is used to improve the solution on
the finer grid, as in the minimization procedures discussed in Section 1.7.5:

(1.10.63)

The scalar c is generally replaced by an approximate inverse of the matrix A(i,j)
as discussed in Section 1.7.5. This iteration captures much of the correction of
the solution at the fine-scale level; however, there are resulting corrections at
coarser levels that are not captured. Rather than continuing to iteratively improve
the solution at this fine-scale level, we move the iteration to the next coarser level.

3. Recalculate the value of the function on the coarse grid Lj −1 to obtain f 1
j –1(i). This

might be just a restriction from the fine-grid points to the coarse-grid points.
However, it often involves some more sophisticated smoothing. Ideally, it should
be such that interpolation will invert this process to obtain the values that were
found on the finer grid. The correction for the difference between the interpo-
lated and exact fine-scale results are retained.

4. Correct the va lue of g(i) on the coa rse grid using the va lues of r j(i) re s tri cted to
the coa rs er gri d . We do this so that the coa rs e - grid equ a ti on has an ex act soluti on
that is con s i s tent with the fine-grid equ a ti on . From Eq . (1.10.62) this essen ti a lly
means adding r j(i) to g(i) . The re su l ting corrected va lues we call g1

j– 1(i) .

    f1
j(i) = f0

j(i) − cr j(i)

    ′ i 
∑ A (i, ′ i ) f0

j
( ′ i ) − g(i) = r

j
(i)
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Figure 1.10.15 Illustration of four grids for a one-dimensional application of the multigrid
technique to a differential equation by the procedure illustrated in Fig. 1.10.16. ❚
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5. Relax the solution f1
j –1(i) on the coarse grid to obtain a new approximation to the

function on the coarse grid f2
j –1(i). This is done using the same procedure for re-

laxation described in step 3; however g(i) is replaced by g1
j –1(i).

The procedure of going to coarser grids in steps 3 through 5 is repeated for all
grids Lj −2, Lj −3,… till the coarsest grid, L0. The values of the function g(i) are pro-
gressively corrected by the finer-scale errors. Step 5 on the coarsest grid is re-
placed by exact solution using matrix diagonalization. The subsequent steps are
designed to bring all of the iterative refinements to the finest-scale solution.

6. Interpolate the coarse-grid solution  L0 to the finer-grid L1.

7. Add the correction that was previously saved when going from the fine to the
coarse grid.

Steps 6–7 are then repeated to take us to progressively finer-scale grids all the way
back to Lj.

This procedure is called a V-cycle since it appears as a V in a schematic that shows
the progressive movement between levels. A V-cycle starts from a relaxed solution on
grid Lj −1 and results in a relaxed solution on the grid Lj. A full multigrid procedure in-
volves starting with an exact solution at the coarsest scale L0 and then performing V-
cycles f or progressively finer grids. Such a multigrid procedure is graphically il lus-
trated in Fig. 1.10.16.
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Figure 1.10.16 The multigrid algorithm used to obtain the solution to a differential equa-
tion on the finest grid is described schematically by this sequence of operations. The opera-
tion sequence is to be read from left to right. The different grids that are being used are in-
dicated by successive horizontal lines with the coarsest grid on the bottom and the finest
grid on the top. The sequence of operations starts by solving a differential equation on the
coarsest grid by exact matrix diagonalization (shaded circle). Then iterative refinement of the
equations is performed on finer grids. When the finer-grid solutions are calculated, the
coarse-grid equations are corrected so that the iterative refinement of the fine-scale solution
can be performed on the coarse grids. This involves a V-cycle as indicated in the figure by the
boxes. The horizontal curved arrows indicate the retention of the difference between coarse-
and fine-scale solutions so that subsequent refinements can be performed. ❚
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There are several advantages of the multigrid methodology for the solution of
differential equations over more traditional integration methods that use a single-
grid representation. With careful implementation, the increasing cost of finer-scale
grids grows slowly with the number of grid points, scaling as N ln(N). The solution
of multiple problems of similar type can be even more efficient,since the corrections
of the coarse-scale equations can often be carried over to similar problems, accelerat-
ing the iterative refinement. This is in the spirit of developing universal coarse-scale
representations as discussed earlier. Finally, it is natural in this method to obtain esti-
mates of the remaining error due to limited grid density, which is important to
achieving a controlled error in the solution.

1.10.7 Levels of description, emergence of simplicity
and complexity

In our explorations of the world we have often discovered that the natural world may
be described in terms of underlying simple objects, concepts, and laws of behavior
(mechanics) and interactions. When we look still closer we see that these simple ob-
jects are composite objects whose internal structure may be complex and have a
wealth of possible behavior. Somehow, the wealth of behavior is not relevant at the
larger scale. Similarly, when we look at longer length scales than our senses normally
are attuned to, we discover that the behavior at these length scales is not affected by
objects and events that appear important to us.

Examples are found from the behavior of galaxies to elementary particles: galax-
ies are composed of suns and interstellar gases, suns are formed of complex plasmas
and are orbited by planets, planets are formed from a diversity of materials and even
life, materials and living organisms are formed of atoms,atoms are composed of nu-
clei and electrons, nuclei are composed of protons and neutrons (nucleons),and nu-
cleons appear to be composed of quarks.

Each of these represents what we may call a level of description of the world. A
level is an internally consistent picture of the behavior of interacting elements that are
simple. When taken together, many such elements may or may not have a simple be-
havior, but the rules that give rise to their collective behavior are simple.We note that
the interplay between levels is not always just a self-contained description of one level
by the level immediately below. At times we have to look at more than one level in or-
der to describe the behavior we are interested in.

The existence of these levels of description has led science to develop the notion
of fundamental law and unified theories of matter and nature. Such theories are the
self-consistent descriptions of the simple laws governing the behavior and interplay
of the entities on a particular level. The laws at a particular level then give rise to the
larger-scale behavior.

The ex i s ten ce of s i m p l i c i ty in the de s c ri pti on of u n derlying fundamental laws
is not the on ly way that simplicity arises in scien ce . The ex i s ten ce of mu l tiple lev-
els implies that simplicity can also be an em er gent property. This means that the
co ll ective beh avi or of m a ny el em en t a ry parts can beh ave simply on a mu ch larger
s c a l e .
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The study of complex systems focuses on understanding the relationship be-
tween simplicity and complexity. This requires both an understanding of the emer-
gence of complex behavior from simple elements and laws, as well as the emergence
of simplicity from simple or complex elements that allow a simple larger-scale de-
scription to exist.

Much of our discussion in this section was based upon the understanding that
macroscopic behavior of physical systems can be described or determined by only a
few relevant parameters. These parameters arise from the underlying microscopic de-
scription. However, many of the aspects of the microscopic description are irrelevant.
Different microscopic models can be used to describe the same macroscopic phe-
nomenon. The approach of scaling and renormalization does not assume that all the
details of the microscopic description become irrelevant, however, it tries to deter-
mine self-consistently which of the microscopic parameters are relevant to the macro-
scopic behavior in order to enable us to simplify our analysis and come to a better
understanding.

Whenever we are describing a simple macroscopic behavior, it is natural that the
number of microscopic parameters relevant to model this behavior must be small.
This follows directly from the simplicity of the macroscopic behavior. On the other
hand,if we describe a complex macroscopic behavior, the number of microscopic pa-
rameters that are relevant must be large.

Nevert h el e s s , we know that the ren orm a l i z a ti on group approach has some va-
l i d i ty even for com p l ex sys tem s . At long length scales, a ll of the details that occur on
the smallest length scale are not rel eva n t . The vi bra ti ons of an indivi dual atom are
not gen era lly rel evant to the beh avi or of a com p l ex bi o l ogical or ga n i s m . In deed ,
t h ere is a pattern of l evels of de s c ri pti on in the stru ctu re of com p l ex sys tem s . For
bi o l ogical or ga n i s m s , com po s ed out of a tom s , t h ere are ad d i ti onal levels of de-
s c ri pti on that are interm ed i a te bet ween atoms and the or ga n i s m : m o l ec u l e s , cell s ,
ti s su e s , or gans and sys tem s . The ex i s ten ce of these levels implies that many of t h e
details of the atomic beh avi or are not rel evant at the mac ro s copic level . This should
also be unders tood from the pers pective of the mu l ti - grid approach . In this pictu re ,
wh en we are de s c ri bing the beh avi or of a com p l ex sys tem , we have the po s s i bi l i ty of
de s c ri bing it at a very coa rse level or a finer and yet finer level . The nu m ber of l ev-
els that are nece s s a ry depends on the level of prec i s i on or level of detail we wish to
ach i eve in our de s c ri pti on . It is not alw ays nece s s a ry to de s c ri be the beh avi or in
terms of the finest scale. It is essen ti a l , h owever, to iden tify properly a model that
can captu re the essen tial underlying para m eters in order to discuss the beh avi or of
a ny sys tem .

Like biological organisms, man-made constructs are also built from levels of
structure. This method of organization is used to simplify the design and enable us to
understand and work with our own creations. For example, we can consider the con-
struction of a factory from machines and computers,machines constructed from in-
dividual moving parts, computers constructed from various components including
computer chips, chips constructed from semiconductor devices, semiconductor de-
vices composed out of regions of semiconductor and metal. Both biology and
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engineering face problems of design for function or purpose. They both make use of
interacting building blocks to engineer desired behavior and therefore construct the
complex out of the simple. The existence of these building blocks is related to the ex-
istence of levels of description for both natural and artificial systems.

Our discussion thus brings us to recognize the importance of studying the prop-
erties of substructure and its relationship to function in complex systems. This rela-
tionship will be considered in Chapter 2 in the context of our study of neural
networks.

294 I n t r oduc t i on  an d  P re l i m i n a r i e s

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 294
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:17 AM  Page 294



295

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 295
Title: Dynamics Complex Systems Short / Normal / Long

2
Neural Networks I:
Subdivision and Hierarchy

Conceptual Outline

Motivated by the properties of biological neural networks, we introduce
simple mathematical models whose properties may be explored and related to as-
pects of human information processing.

The attractor network embodies the properties of an associative content-
addressable memory. Memories are imprinted and are accessed by presenting the
network with part of their content. Properties of the network can be studied using a
signal-to-noise analysis and simulations. The capacity of the attractor network for
storage of memories is proportional to the number of neurons.

The feedforward network acts as an input-output system formed out of
several layers of neurons. Using prototypes that indicate the desired outputs for a set
of possible inputs, the feedforward network is trained by minimizing a cost function
which measures the output error. The resulting training algorithm is called back-
propagation of error.

In order to study the overall function of the brain, an understanding of sub-
structure and the interactions between parts of the brain is necessary. Feedforward
networks illustrate one way to build a network out of parts. A second model of inter-
acting subnetworks is a subdivided attractor network. A subdivided attractor network
stores more than just the imprinted patterns—it stores composite patterns formed out
of parts of the imprinted patterns. If these are patterns that an organism might en-
counter, then this is an advantage. Features of human visual processing, language
and motor control illustrate the relevance of composite patterns.

Analysis and simulations of subdivided attractor networks reveal that par-
tial subdivision can balance a decline in the storage capacity of imprinted patterns
with the potential advantages of composite patterns. However, this balance only al-
lows direct control over composite pattern stability when the number of subdivisions
is no more than approximately seven, suggesting a connection to the 7 ± 2 rule of
short-term memory.

❚ 2 . 5 ❚

❚ 2 . 4 ❚

❚ 2 . 3 ❚

❚ 2 . 2 ❚

❚ 2 . 1 ❚
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The limitation in the number of subdivisions in an effective architecture
suggests that a hierarchy of functional subdivisions is best for complex pattern-
recognition tasks, consistent with the observed hierarchical brain structure.

More general arguments suggest the necessity of substructure, and ap-
plicability of the 7 ± 2 rule, in complex systems.

Neural Networks: Brain and Mind

The functioning of the brain as part of the nervous system is generally believed to ac-
count for the complexity of human (or animal) interaction with its environment. The
brain is considered responsible for sensory processing, motor control,language, com-
mon sense,logic, creativity, planning, self-awareness and most other aspects of what
might be called higher information processing. The elements believed responsible for
brain function are the nerve cells—neurons—and the interactions between them.The
interactions are mediated by a variety of chemicals transferred through synapses.The
brain is also affected by diverse substances (e.g., adrenaline) produced by other parts
of the body and transported through the bloodstream. Neurons are cells that should
not be described in only one form, as they have diverse forms that vary between dif-
ferent parts of the brain and within particular brain sections (Fig. 2.1.1). Specifying
the complete behavior of an individual neuron is a detailed and complex problem.
However, it is reasonable to assume that many of the general principles upon which
the nervous system is designed may be described through a much-simplified model
that takes into account only a few features of each neuron and the interactions be-
tween them. This is expected, in part, because of the large number, on the order of
1011, neurons in the brain.

A variety of mathematical models have been described that attempt to capture
particular features of the neurons and their interactions. All such models are incom-
plete. Some models are particularly well suited for theoretical investigations, others
for pattern-recognition tasks. Much of the modern effort in the modeling of the ner-
vous system is of commercial nature in seeking to implement pattern-recognition
strategies for artificial intelligence tasks.Our approach will be to introduce two of the
simpler models of neural networks, one of which has been used for extensive theo-
retical studies, the other for commercial applications. We will then take advantage of
the simple analysis of the former to develop an understanding of subdivision in
neural networks. Subdivision and substructure is a key theme that appears in many
forms in the study of complex systems.

There have been many efforts to demonstrate the connection between mathe-
matical models of neural networks and the biological brain. These are important in
order to bridge the gap between the biological and mathematical models. The addi-
tional readings located at the end of this text may be consulted for detailed discus-
sions. We do not review these efforts here; instead we motivate more loosely the arti-

2.1

❚ 2 . 7 ❚

❚ 2 . 6 ❚
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ficial models and rely upon investigations of the properties of these models to estab-
lish the connection, or to suggest investigations of the biological system.

To motivate the artificial models of neural networks, we show in Fig. 2.1.2 a
schematic of a biological neural network that consists of a few neurons.Each neuron
has a cell body with multiple projections called dendrites, and a longer projection
called an axon which branches into terminal fibers. The terminal fibers of the axon
of one neuron generally end proximate to the dendrites of a different cell body. The
cell walls of a neuron support the transmission of electrochemical pulses that travel
along the axon from the cell body to the terminal fibers. A single electrochemical
pulse is not usually considered to be the quantum of information. Instead it is the
“activity”—the rate of pulsing—that is considered to be the relevant parameter de-
scribing the state of the neuron. Pulses that arrive at the end of a terminal fiber re-
lease various chemicals into the narrow intracellular region separating them from
the dendrites of the adjacent cell. This region, known as a synapse, provides the
medium of influence of one neuron on the next. The chemicals released across the
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Figure 2.1.1 Several
different types of
neurons adapted from
illustrations obtained
by various staining
techniques. ❚

Figure 2.1.2 S c he ma t ic
i l l u s t ra t ion of a bio l o g i-
cal ne u ral network sho w-
i ng several nerve cells
with bra nc h i ng axo ns.
T he axo ns end at syna p s e s
c o n ne c t i ng to the de n-
drites of the next ne u ro n
that lead to its cell body.
This sche ma t ic illustra-
t ion is further simplifie d
to obtain the artific ia l
network mo dels shown in
F ig. 2.1.3. ❚
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gap may either stimulate (an excitatory synapse) or depress (an inhibitory synapse)
the activity of the next neuron.

It is generally assumed, though not universally a ccepted, that the “state of the
mind”at a particular time is described by the activities of all the neurons—the pat-
tern of neural activity. This activity pattern evolves in time, because the activity of
each neuron is determined by the activity of neurons at an earlier time and the exci-
tatory or inhibitory synapses between them. The influence of the external world on
the neurons occurs through the activity of sensory neurons that are affected by sen-
sory receptors. Actions are effected by the influence of motor-neuron activity on the
muscle cells. Synaptic connections are in part “hardwired” performing functions that
are prespecified by genetic programming. However, memory and experience are also
believed to be encoded into the strength (or even the existence) of the synapses be-
tween neurons. It has been demonstrated that synaptic strengths are affected by the
state of neuronal excitation. This influence,called imprinting, is considered to be the
principle me chanism f or adaptive learning. The most established and well-studied
form of imprinting was originally proposed by Hebb in 1949. The plasticity of
synapses should not be underestimated, because the development of even basic func-
tions of vision is known to be influenced by sensory stimulation.

Hebbian imprinting suggests that when two neurons are both firing at a partic-
ular time, an excitatory synapse between them is strengthened and an inhibitory
synapse is weakened. Conversely, when one is firing and the other is not, the in-
hibitory synapse is strengthened and the excitatory synapse is weakened. Intuitively,
this results in the possibility of reconstructing the neural activity pattern from a part
of it, because the synapses have been modified so as to reinforce the pattern. Thus,the
imprinted pattern of neural activity becomes a memory. This will be demonstrated
explicitly and explained more fully in the context of artificial networks that success-
fully reproduce this process and help explain its function.

The two types of artificial neural networks we will consider are illustrated in
Fig. 2.1.3. The first kind is called an attractor network, and consists of mathematical
neurons identified as variables si that represent the neuron activity. i is the neuron in-
dex. Neurons are connected by synapses consisting of variables Jij that represent the
strength of the synapse between two neurons i and j. The synapses are taken to be
symmetric,so that Jij = Jji. A positive value of Jij indicates an excitatory synapse.A neg-
ative value indicates an inhibitory synapse. A more precise definition follows in
Section 2.2. The second kind of network,discussed in Section 2.3, is called a feedfor-
ward network. It consists of a set of two or more layers of mathematical neurons con-
sisting of variables sl

i that represent the neuron activity. For convenience, l is added as
a layer index. Synapses represented by variables J l

ij act only in one direction and se-
quentially from one layer to the next.

Our knowledge of biological neural networks indicates that it would be more re-
alistic to represent synapses as unidirectional,as the feedforward network does, but to
allow neurons to be connected in loops. Some of the effects of feedback in loops are
represented in the attractor network by the symmetric synapses.
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A second distinction between the two types of networks is in their choice of rep-
resentation of the neural activity. The att ractor network typically uses binary vari-
ables, while the feedforward network uses a real number in a limited range. These
choices are related to the nonlinear response of neurons. The activity of a neuron at a
particular time is thought to be a sigmoidal function of the influence of other neu-
rons. This means that at moderate levels of excitation, the activity of the neuron is
proportional to the excitation. However, for high levels of excitation,the activity sat-
urates. The question arises whether the brain uses the linear regime or generally drives
the neurons to saturation.The most reasonable answer is that it depends on the func-
tion of the neuron. This is quite analogous to the use of silicon transistors, which are
used both for linear response and switching tasks. The neurons that are used in sig-
nal-processing functions in the early stages of the auditory or visual systems are likely
to make use of the linear regime. However, a linear operation is greatly limited in its
possible effects. For example,any number of linear operations are equivalent to a sin-
gle linear operation. If only the linear regimes of neurons were utilized,the whole op-
eration of the network would be reducible to application of a linear operator to the
input information—multiplication by a matrix. Thus, while for initial signal process-
ing the linear regime should play an important role,in other parts of the brain the sat-
uration regime should be expected to be important. The feedforward network uses a
model of nonlinear response that includes both linear and saturation regimes, while
the attractor network typically represents only the saturation regime.Generalizing the
attractor network to include a linear regime adds analytic difficulty, but does not sig-
nificantly change the results. In contrast, both the linear and nonlinear regimes are
necessary for the feedforward network to be a meaningful model.

Each of the two artificial network models represents drastic simplifications over
more realistic network models. These simplifications enable intuitive mathematical
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Figure 2.1.3 Schematic illustration of two types of artificial neural networks that are used
in modeling biological networks either for formal studies or for application to pattern recog-
nition. On the left is a schematic of an attractor network. The dots represent the neurons and
the lines represent the synapses that mediate the influence between them. The synapses are
symmetric carrying equal influence in both directions. On the right is a feedforward network
consisting of several layers (here four) of neurons that influence each other in a unidirec-
tional fashion. The input arriving from the left sets the values of the first layer of neurons.
These neurons influence the second layer of neurons through the synapses between layer one
and two. After several stages, the output is read from the final layer of neurons. ❚
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treatments and capture behaviors that are likely to be an important part of more re-
alistic models. The attractor network with symmetric synapses is the most convenient
for analytic treatments because it can be described using the stochastic field formal-
ism discussed in Section 1.6.The feedforward network is more easily used as an input-
output system and has found more use in applications.

Attractor Networks

2.2.1 Defining attractor networks
Attractor networks, also known as Hopfield networks, in their simplest form, have
three features:

a. Symmetric synapses:

Jij = Jji (2.2.1)

b. No self-action by a neuron:

Jii = 0 (2.2.2)

c. Binary variables for the neuron activity values:

si = ±1 (2.2.3)

There are N neurons, so the neuron indices i, j take values in the range {1,...,N}. By
Eq.(2.2.1) and Eq.(2.2.2),the synapses Jij form a symmetric N × N matrix with all di-
agonal elements equal to zero.

The bi n a ry repre s en t a ti on of n eu ron activi ty su ggests that the activi ty has on ly
t wo va lues wh i ch are active or “f i ri n g,” si = +1 (O N) , and inactive or “qu i e s cen t ,” si =−1
(O F F) . The activi ty of a particular neu ron ,u p d a ted at time t, is given by:

(2.2.4)

where the values of all the other neurons at time t − 1 are polled through the synapses
to determine the i th neuron activity at time t. Specifically, this expression states that
a particular neuron fires or does not fire depending on the result of performing a sum
of all of the messages it is receiving through synapses. This sum is formed from the
activity of every neuron multiplied by the strength of the synapse between the two
neurons. Thus, for example,a firing neuron j, sj =+1, which has a positive (excitatory)
synapse to the neuron i, Jij > 0, will increase the likelihood of neuron i firing. If neu-
ron j is not firing, sj = −1, then the likelihood of neuron i firing is reduced. On the
other hand,if the synapse is inhibitory, Jij < 0, the opposite occurs — a firing neuron
j, sj = +1, will decrease the likelihood of neuron i firing, and a quiescent neuron j, sj =
−1, will increase the likelihood of neuron i firing. When necessary, it is understood
that sign(0) takes the value ±1 with equal probability.

The activity of the whole network of neurons may be determined either syn-
chronously (all neurons at once) or asynchronously (selecting one neuron at a time).
Asynchronous updating is probably more realistic in models of the brain. However,

    

si (t) = sign( J ijs j (t − 1)
j

∑ )

2.2
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for many purposes the difference is not significant, and in such cases we can assume
a synchronous update.

2.2.2 Operating and training attractor networks
Conceptually, the operation of an attractor network proceeds in the following steps.
First a pattern of neural activities, the “input”, is imposed on the network. Then the
network is evolved by updating several times the neurons according to the neuron up-
date rule, Eq.(2.2.4). The evolution continues until either a steady state is reached or
a prespecified number of updates have been performed. Then the state of the network
is read as the “output.” The next pattern is then imposed on the network.

At the same time as the network is performing this process, the synapses them-
selves are modified by the state of the neurons according to a mathematical formula-
tion of the Hebbian rule:

Jij(t) = Jij(t − 1) + csi(t − 1)sj(t − 1) i ≠ j (2.2.5)

where the rate of change of the synapses is controlled by the parameter c. This is a
mathematical description of Hebbian imprinting, because the synapse between two
neurons is changed in the direction of being excitatory if both neurons are either ON

or OFF, and the synapse is changed in the direction of being inhibitory if one neuron
is ON and the other is OFF.

The update of a neuron is considered to be a much faster process than the
Hebbian changes in the synapses—the synaptic dynamics. Thus we assume that c is
small compared to the magnitude of the synapse values, so that each imprint causes
only an incremental change.Because the change in synapses occurs much more slowly
than the neuron update, for modeling purposes it is convenient to separate it com-
pletely from the process of neuron update.We then describe the operation of the net-
work in terms of a training period and an operating period.

The training of the network consists of imprinting a set of selected neuron firing
patterns { i } where i is the neuron index i ∈ {1,...,N} , is the pattern index ∈
{1,...,p}, and i is the value of a particular neuron si in the th pattern. It is assumed
that there are a fixed number p of patterns that are to be trained. The synapses are then
set to:

(2.2.6)

The prefactor 1/N is a choice of normalization of the synapses that is often conve-
nient, but it does not affect in an essential way any results described here.

2.2.3 Energy analog
The formulation of the attractor network can be recognized as a generalization of the
Ising model discussed in Section 1.6. Neurons are analogous to spins, and the inter-
action between two spins si and sj is the synapse Jij.

We can thus identify the effective energy of the system as:

    

J ij =
1

N
i j

=1

p

∑ i ≠ j

0 i = j
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(2.2.7)

The update of a particular neuron, Eq.(2.2.4), consists of “aligning” it with the effec-
tive local field (known as the postsynaptic potential):

(2.2.8)

This is the same dynamics as the Glauber or Monte Carlo dynamics of an Ising model
at zero temperature. At zero temperature the system evolves to a local minimum en-
ergy state. In this state each spin is aligned with the effective local field.

The analogy between a neural network and a model with a well-defined energy
enables us to consider the operation of the network in a natural way. The pattern of
neural activities evolves in time to decrease the energy of the pattern until it reaches
a local energy minimum, where each neuron activity is consistent with the influences
upon it as measured by the postsynaptic potential. Imprinting a pattern of neural ac-
tivity lowers the energy of this pattern and, to a lesser degree,the energy of patterns
that are similar. In lowering the energy of these patterns,imprinting creates a basin of
attraction. The basin of attraction is the region of patterns near the imprinted pattern
that will evolve under the neural updating back to the imprinted pattern (Fig. 2.2.1).

The network operation can now be understood schematically as follows
(Fig. 2.2.2). We imprint a particular pattern. If we then impose a different pattern on
the network, the evolution of the neurons will recover the original pattern if the im-
posed pattern is within its basin of attraction. The more similar are the two patterns,
the more likely the imposed pattern will be in the basin of attraction of the imprinted
one. Since part of the imprinted pattern was retrieved, the network acts as a kind of
memory.

    

hi (t) = J ijs j

j ≠i

∑ (t − 1)

    

E s i{ }[ ] = −
1

2
J ijs is j

i ,j

∑
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Figure 2.2.1 Schematic illustration of the energy analog of imprinting on an attractor net-
work. Imprinting a pattern lowers its energy and the energy of all patterns in its vicinity. This
creates a basin of attraction. If we initialize the network to any pattern within the basin of
attraction, the network will relax to the imprinted pattern by its own neural evolution. The
network acts as a memory that is “content-addressable.” When a pattern is imprinted we can
recover it by starting from partial information about it (see Fig. 2.2.2). This is also a form of
associative memory. ❚
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The operation of the network may be described as an associative memory. The
restoration of the complete imprinted pattern, in effect, associates the reconstructed
part of the pattern with the part of the pattern that was imposed.We can also say that
the network has the ability to perform a kind of generalization (Fig. 2.2.3). The net-
work has generalized the imprinted pattern to the set of patterns that are in its basin
of attraction. Moreover, the retrieval process is also a form of categorization,since it
assigns the imprinted pattern as a category label to the set of patterns in the basin of
attraction. All of these properties of the neural network are suggestive of some of the
basic features that are thought to apply to human memory, and thus to the biological
neural network. Their natural relationship to each other and the simplicity by which
they are achieved in this model is one of the main reasons for the interest in this neural
network representation.

We can contrast the properties of the network memory with a computer mem-
ory. In a computer, the memory is accessed by an address that specifies the location of
a particular piece of information. In order to retrieve information, it is necessary to
have the address, or to search systematically through the possibilities. On the other
hand, for a human being, retrieving the rest of the sentence “To be or not to be …”is
generally much easier than retrieving line 64 from act 3, scene 1, of Hamlet, by
William Shakespeare.To emphasize the difference in the nature of addressing between
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Imprint

Impose Recover

Figure 2.2.2 Schematic operation of the attractor network as a content-addressable memory.
Imprinting a pattern on the network in the training stage (top) enables us to use the net-
work as a content-addressable memory (bottom). By imposing a pattern that has a signifi-
cant overlap with the imprinted pattern the original pattern can be recovered. This is analo-
gous to being able to complete the sentence “To be or not to be …” ❚
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a computer memory and a network memory, we say that the network memory is con-
tent addressable.

The associative nature of the attractor network thus captures some of the prop-
erties of human memory that are quite distinct from those of a computer memory. It
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Category label

Figure 2.2.3 The neural dynamics of an attractor network maps a variety of patterns onto an
imprinted pattern. This is equivalent to a classification of patterns by a category label, which
is the imprinted pattern. The category of patterns labeled by the imprinted pattern is its basin
of attraction. Classification is also a form of pattern recognition. Moreover, we can say that
the basin of attraction is a generalization of the imprinted pattern. Thus the attractor net-
work has properties very unlike those of a conventional computer memory, which is accessed
using a numerical address that is distinct from the memory itself. It works much more like hu-
man memories that are accessed through information related to the information that is
sought after. 

The behavior of the attractor network may be summarized as follows:

Attractor network training and operation:
Training — Imprint a neural state.
Operation — Recover original state from part of it.

Analogies for operation:
• Content-addressable memory
• Limited form of classification
• Limited form of pattern recognition
• Limited form of generalization

The relationship between human information-processing and various network models will be
discussed further in Chapter 3. ❚
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should be understood,however, that this is not expected to be the last word in devel-
opment of such models or in the understanding of these processes.

One of the important properties of a memory is its capacity. If we try to imprint
more than one pattern on the network,the basin of attraction of each pattern will take
up some of the space of all possible patterns. It is natural to expect that there will be
a limit to how many patterns we can imprint before the basins of attraction will in-
terfere destructively with each other. When the memory is full, the basins of attrac-
tion are small and the memory is not usable because it can only recover a pattern if
we already know it. When the destructive interference is complete, the basins of at-
traction disappear. At that point, a typical imprinted pattern will no longer even be
stable, because stability is a basin of attraction of one. Studying the number of im-
prints that are possible before the network reaches this condition gives us an under-
standing of the network capacity and how this capacity depends on network size.
Thus we can determine the storage capacity by measuring the stability of patterns that
are imprinted on the network.

Our mathematical study of attractor networks begins in Section 2.2.4 with an
analysis of the network behavior when there are a few imprints. This analysis shows
the retrieval of patterns and the relevance of their basin of attraction. In Section 2.2.5
we use a signal-to-noise analysis to determine the stability of an imprinted pattern,
and thus the storage capacity of the network. Simulations of an attractor network are
discussed in Section 2.2.6. Finally, some aspects of the overload catastrophe that oc-
curs when network capacity is exceeded are discussed in Section 2.2.7.

2.2.4 One or two imprinted patterns
We first consider the case of imprinting a single pattern { i}. The synapses are con-
structed as the “outer product” of the neural activities and we have:

(2.2.9)

Using these synapses, we start the network at a set of neural activities {si(0)} and
evolve the network using the definition of the dynamics (Eq. (2.2.4)):

(2.2.10)

The second line is a consequence of the normalization | i | = |±1| = 1.
If we didn’t have the restriction of j ≠ i in the sum in Eq.(2.2.10),the factor mul-

tiplying i would be independent of i. We would then have

(2.2.11)
    

si (1) ˙ ̇ ̇ = i sign( js j (0)) = ± i

j

∑

    

si (1) = sign( J ijs j(0)
j

∑ ) = sign(
1

N
i js j (0)

j≠i

∑ ) = sign( i )sign( js j (0)
j≠i

∑ )

= i sign( js j(0)
j≠i
∑ )

    

J ij =
1

N
i j i ≠ j

0 i = j
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where the ± sign in front is independent of i. This means that in one iteration the net-
work neurons reached either the imprinted pattern or its inverse. This implies that re-
call of the pattern has been achieved. Why either the pattern or its inverse? It shouldn’t
be too surprising that we can arrive at either the imprinted pattern or its inverse be-
cause the form of the energy function (Eq.(2.2.7)) and the neural update (Eq.(2.2.4))
is invariant under the transformation si → −si for all i simultaneously. Thus,in an at-
tractor network we automatically store both the pattern and its inverse.

How do we treat the actual case with the i = j term missing? We write

(2.2.12)

wh ere ⋅s(0) = Σ jsj(0) is the inner produ ct of the impri n ted pattern with the initi a l
s t a te of the net work . As long as this inner produ ct is gre a ter than 1 or less than –1, t h e
ex tra term doe s n’t affect the re su l t . This means that for | ⋅s( 0 )|> 1 , rec a ll is ach i eved and
s(0) is within the basin of a t tracti on of the impri n ted pattern or its invers e . This is nearly
a ll of the po s s i ble ch oi ces for s( 0 ) . No te that the impri n ted pattern is a stable fixed poi n t
of the net work dy n a m i c s — on ce the impri n ted pattern is re ach ed it wi ll be repe a ted .

The case of a single imprinted pattern is somewhat unusual in that even if the ini-
tial pattern {si(0)} is not correlated with the imprinted pattern, we will still recover
the imprinted pattern. If we take random numbers for {si(0)}, then the sum over j in
Eq. (2.2.12) is a random walk—the sum over N uncorrelated values of ±1
(Section 1.2). The typical size of this number is √N, which places the pattern solidly
within the basin of attraction of the imprinted pattern or its inverse. It has been sug-
gested that the case of a single dominant imprinted pattern has properties analogous
to human obsession, compulsion or fixation—because the imprinted pattern is the
output regardless of the input—and is a natural mode of failure of the network that
can arise in Hebbian imprinting.

We can also ask what wi ll happen if the magn i tu de of ⋅s(0) is equal to −1 ,0 , or 1.
In these cases the first itera ti on should not lead to the impri n ted pattern . However, it is
s ti ll most likely that after two updates the net work wi ll be in ei t h er the impri n ted pattern
or its invers e . Wh en the inner produ ct ⋅s(0) is +1 , the re sult of the first update is a new
p a t tern s(1) that is likely to have a larger than unit overlap with , ⋅s( 1 ) > 1 . Wh en ⋅s( 0 )
is −1 , it is likely that ⋅s(1) <−1 . The second itera ti on would be analogous to Eq .( 2 . 2 . 1 2 ) :

(2.2.13)

resulting in retrieval of the imprinted pattern.
The case of ⋅s(0) = 0 is special, and a synchronous update in this case simply

leads to oscillation of the pattern—a 2-cycle:

(2.2.14)

    

si (1) = i sign( js j(0)
j

∑ − i si (0))

= i sign(− i s i (0)) = − i
2s i (0) = −si (0)

    

si (2) = i sign( js j(1)
j

∑ − i si (1))

= i sign( ⋅s(1) − i s i (1))

    

si (1) = i sign( js j (0)
j

∑ − is i (0))= i sign( ⋅ s(0)− is i (0))
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More generally:

si(t + 1) = −si(t) (2.2.15)

This is one of the few cases where asynchronous updating would lead to a different
result,since the randomness inherent in the asynchronous updating would lead to the
evolution of the network to the imprinted pattern or its inverse.

We ran into some additional trouble in the preceding discussion because of the
omission of the i = j term in the synapses. Why don’t we just include this term? The
answer, from the point of view of the formal analysis, is that this corresponds to self-
action by a neuron on itself. Such self-action is inconsistent with an energy function.
In a real network, self-action is not impossible. It might correspond, for example, to
an inhibition of neural activity during a period of time after activity has happened.
This does occur in biological neurons where the period of self-inhibition is known as
a refractory period. The implications of such terms are,however, outside the present
discussion.

Our conclusion from the analysis of the single imprint case is that the basin of at-
traction of the single imprint is large. To measure the size of the basin of attraction,
we define the Hamming distance d(s,s′) between two patterns as the number of neu-
rons that differ between the two patterns. The Hamming distance is related to the in-
ner product by

(2.2.16)

as can be verified using a few examples. The Hamming distance of a pattern from it-
self is zero, from an orthogonal state is N /2, and from its opposite is N. For a single
imprint in a neural network the initial pattern s(0) is in the basin of attraction of the
imprinted pattern ifthe inner product between them is positive. This implies that the
Hamming distance must be less than N /2. This is the effective size (radius) of the
basin of attraction.

We can now ask what happens if two patterns are imprinted instead of just one.
The synapses are given by Eq.(2.2.6) with p = 2. Following through the same steps we
have the expression:

(2.2.17)

Q u a l i t a tively, we can understand this re sult by con s i dering an initial pattern s(0) that
is close to one of the impri n ted pattern s ,s ay 1. Let us assume that there is no parti c u-
lar rel a ti onship bet ween the two patterns that were impri n ted and, qu i te re a s on a bly,
that there is also no rel a ti onship bet ween the initial pattern s(0) and the second im-
pri n ted pattern 2. The first sum in Eq . (2.2.17) wi ll give us a nu m ber that has a mag-
n i tu de N − 2d(s, 1) . The assu m pti on that the initial con f i g u ra ti on is close to the firs t
i m pri n ted pattern means that d(s, 1) is small .The magn i tu de of the second sum is given
by the inner produ ct of the initial pattern with the second impri n ted pattern . If t h ere
is no rel a ti onship bet ween them ,t h en each term in the inner produ ct is indepen den t .

    

si (1) = sign( J ijs j(0)
j

∑ ) = sign( i
1

j
1s j (0) +

j≠i

∑ i
2

j
2s j (0)

j≠i

∑ )

      

d(s, ′ s ) =
N

2
−

1

2
s i ′ s i

i

∑
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Si n ce each term has the va lue ±1 with equal prob a bi l i ty, it is a ra n dom walk with 
(N − 1) step s .The typical magn i tu de of the second term is thus √N − 1. For large en o u gh
N t h ere is essen ti a lly no ch a n ce that the second term is as large as the first term .Negl ecti n g
the second term , the first term gives us the same re sult we had before , wh i ch is recov-
ery of the impri n ted pattern . We see from this argument that retri eval depends on the
prox i m i ty of the initial state with the pattern that wi ll be retri eved . If the initial pattern
is close to the second impri n ted pattern ,t h en the second impri n ted pattern wi ll be re-
tri eved . Su ccessful retri eval also depends on the nu m ber of n eu rons in the net work .

The retrieval of two patterns can be extended to more patterns. For a large
enough number of neurons, retrieval will still occur. We can make this argument
more rigorous by considering a “signal-to-noise” analysis that pits the term that is try-
ing to retrieve the pattern—the signal—against the rest of the terms—the noise. To
do this formally we will assume that all the imprinted patterns are truly uncorrelated
with each other. The neural activities are randomly selected values ±1. These values
are fixed over the duration of the discussion. In the language of Section 1.3 they are
quenched variables. Including correlations between the patterns would be important
in understanding how the real brain works. We will consider correlations between
patterns later in this chapter in Section 2.4.

2.2.5 Signal-to-noise analysis of memory stability
In this section, we formulate what is called a signal-to-noise analysis that enables us
to determine statistically the stability of an imprinted pattern. This in turn enables us
to determine the storage capacity of the network. Question 2.2.1 generalizes the
analysis to give an estimate of the basin of attraction of an imprinted pattern.

We start from a network imprinted with p uncorrelated patterns. From
Eq. (2.2.4) and Eq. (2.2.8), an imprinted pattern,imposed as the neural state {si |si =

i }, is stable when si = sign(hi) or equivalently:

sihi > 0 i ∈ {1,...,N} (2.2.18)

which implies that the local field at each neuron has the same sign as the value of the
imprinted pattern.

Without loss of generality, we consider the stability (retrieval) of the first pattern
{si |si = i

1}, since by symmetry the choice of pattern is arbitrary. To simplify slightly
the notation, we consider the stability of the first neuron s1, from the results we will
be able to infer the stability of the others. The stability of s1 depends on the sign of

(2.2.19)

Inserting the Hebbian form for the synapses after p imprints, Eq. (2.2.6), we have:

(2.2.20)

    

s1h1 =
1

N
1
1

1 j j
1

=1

p

∑
j=2

N

∑

    

s1h1 = s1 J1j s j

j=2

N

∑ = 1
1 J1 j j

1

j=2

N

∑
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We separate this expression into two parts. The first part is due to the imprint of the
pattern we are trying to retrieve. The other part is due to all of the other patterns:

(2.2.21)

The first sum was explicitly evaluated because the square of either ±1 is 1.The second
sum we can also evaluate, at least statistically. Since 1 is not correlated with j for
j ≠ 1, and j

1 is not correlated with j for ≠ 1, the four factors in each term of the
sum are independent of each other. Moreover, each term in the sum has a factor that
is independent of the factors in every other term. Therefore,each term in this sum is
±1 with equal probability, and each term is uncorrelated with the others. Thus it is just
a random walk with (N − 1)(p − 1) terms.

We can see that the two parts of s1h1 play distinct roles. The first part,called the
signal,is positive,and therefore tries to satisfy the stability condition of the imprinted
pattern. This is consistent with the idea that a Hebbian imprint contributes to stabil-
ity of the imprinted pattern. For N >> 1, the size of the signal is 1.

The second part,called the noise, can be either positive or negative. The average
value of the noise is zero, but the typical value (root mean square value) is given by:

(2.2.22)

where the latter expression is valid for N,p >> 1. When the typical value of the noise
is much less than the size of the signal,then most of the time the neurons will be sta-
ble and we can say that we have a stable imprinted pattern. When the noise is the same
size as the signal, then each neuron may either stay the same or switch after a single
update, and the pattern will not be stable.

From the expression for the noise term, we see that the stability of the pattern de-
pends on p, the number of patterns that are imprinted on the network. For low stor-
age, p << N, the noise term becomes negligible and the imprinted patterns are stable.

If we want to understand how large p can be before the storage will deteriorate,
we need to estimate the probability that a single neuron will be unstable—the proba-
bility that sihi is negative (see Fig. 2.2.4). The probability that a particular neuron will
be unstable is given by the probability that the noise is less than −1. This depends on
the distribution of the values of the noise, not just its typical value. We can find the
distribution of the noise using the central limit theorem (Section 1.2). When the
number of steps in the random walk is large, the distribution of values of the noise
can be approximated by a Gaussian (Eq. (1.2.39)). Then we can find the probability
that a neuron is unstable using:

    
=

1

N
(N −1)(p −1) ≈

p

N
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(2.2.23)

The latter expression follows from the definition of the error function erf(x). For
< 0.430 this probability, and therefore the fraction of unstable neurons in the im-

printed pattern, is less than 1%. The unstable neurons will switch their values when
the network updates itself.We now make the assumption that a few unstable neurons
will not, when they flip their values, destabilize many other neurons. This makes sense
for few enough unstable neurons. If we are satisfied with a small fraction of error of
about 1%, we can store a number of patterns that is given by

(2.2.24)
    

c =
p

N
= 2

  

=
1

2
1− erf(

1

2
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Figure 2.2.4 The probability distribution of the neuron activity times the local field sihi. This
figure illustrates the signal-to-noise analysis of the stability of an imprinted pattern. The av-
erage value of sihi (the signal) is 1. The standard deviation of the distribution P(sihi) (the
noise) is given by Eq. (2.2.22). Neurons that are unstable have a negative value of sihi. The
figure is drawn for = .379, when less than 1% are unstable. If is larger than this critical
value there are more unstable neurons, and when they switch after one update of the network
they destabilize the whole pattern. When is smaller than this critical value and there are
fewer unstable neurons, the rest of the pattern remains stable. The critical value of σ corre-
sponds to a maximum number of patterns that can be stored in the network. ❚
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or approximately 0.185 for = 0.430. A more formal analysis, which we do not re-
produce here,shows that there is a critical value of p/N at which the error fraction in
a pattern jumps from about 1% to essentially no useful retrieval. The critical value

c = 0.144 ( = 0.379) can be obtained from techniques developed in the study of spin
glasses.

Question 2.2.1 Generalize the signal-to-noise analysis to describe the
behavior of an initial pattern which is a Hamming distance B away from

one of the imprinted patterns. Assume that the initial pattern is not corre-
lated with any of the other imprinted patterns. Use the analysis to obtain an
estimate of the basin of attraction of the imprinted patterns.

Solution 2.2.1 We initialize the network with a pattern that is a Hamming
distance B from the first pattern. For convenience, we choose the pattern so
that the first N − B neurons are given by the first pattern,and the last B neu-
rons are inverted:

(2.2.25)

Our objective is to see whether the neural update will recover the imprinted
pattern. To simplify the analysis, we assume that the recovery of the pattern
must occur in the first update of the network. This will occur if the first 
N − B neurons are stable and the last B neurons are unstable.

We check the stability of the first N − B neurons by studying the stabil-
ity of the first neuron. It is stable if

(2.2.26)

is positive. Similarly, we check the stability of the last B neurons by studying
the stability of the last neuron. It is unstable if:

(2.2.27)

is negative. Multiplying Eq. (2.2.27) by –1, we see that the condition that
Eq.(2.2.27) is negative is actually the same as the condition that Eq.(2.2.26)
is positive. Thus we can study the stability of the first neuron in order to ver-
ify whether the imprinted pattern will be recovered after one update.

Inserting the Hebbian form for the synapses after p imprints into
Eq. (2.2.26), we have:

(2.2.28)
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We separate each sum in this expression into two parts. The first part is due
to the imprint of the pattern we are trying to retrieve. The other part is due
to all of the other patterns

(2.2.29)

where the parts due to the first imprinted pattern are explicitly evaluated be-
cause the square of either ±1 is 1. As before,the remaining sums constitute a
random walk. It doesn’t matter that there is a minus sign, since all of the
terms are either ±1 and are uncorrelated. The total number of terms is 
(N − 1)(p − 1). The typical magnitude (root mean square) of the noise is the
same as before, but the signal term is different. The ratio of signal to noise is:

(2.2.30)

where we have neglected 1 compared to both N and p.
To obtain an approximation to the size of the basin of attraction, we set

the signal-to-noise ratio equal to the critical value for pattern stability 1/√ c

obtained before. This gives a basin of attraction of size:

(2.2.31)

The result is consistent with two limiting results that we already know. The
basin of attraction for a small number of imprints is just N/2, which is con-
sistent with our discussion of a single imprint in Section 2.2.4. The basin of
attraction vanishes when p reaches cN. ❚

2.2.6 Simulations
The attractor neural network is well suited for simulation. In Fig. 2.2.5 we show the
probability that an imprinted pattern is unstable and in Fig. 2.2.6 we show the num-
ber of stable imprinted patterns. Both are plotted as a function of the number of im-
prints p. The network used in the simulations has N = 100 neurons. The results are
obtained by following the procedure:

1. Generate p random neural states { i }:

= {1,...,p},i = {1,...,N} (2.2.32)    i = ±1
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2. Imprint them on the synapses of the neural network:

(2.2.33)

    

J ij =
1

N
i j

=1

p

∑ i ≠ j
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Figure 2.2.5 Fraction of unstable imprints as a function of the number of imprints p on a
neural network of 100 neurons using Hebbian imprinting. For p less than 10 the stability of
all of the stored patterns is perfect. Above this value the percentage of unstable patterns in-
creases until all patterns are unstable. ❚
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Figure 2.2.6 Number of stable imprints as a func t ion of the number of imprints p on a ne u ra l
network of 100 ne u ro ns using He b b ian imprint i ng. For p less than 10 all patterns are stable.
T he ma x i mum number of stable imprinted patterns is less than 12. Above 15 imprints the nu m-
ber of stable patterns de c reases gra dually to zero. Ho w e v e r, thro u g hout this re g i me the basins
of attra c t ion of the patterns are very small and the system is not usable as a me mo r y. ❚

02adBARYAM_29412  3/10/02 9:27 AM  Page 313



3. Find the number of imprinted neural states that are stable:

(2.2.34)

where (i,j) is the Kronecker delta function defined by

(2.2.35)

4. Find the probability that a pattern is stable:

Pstable = pstable /p (2.2.36)

5. Average pstable and Pstable over a number of trials (steps 1–4) with fixed N and p.

We can also investigate the basin of attraction. Consider a particular stable state
of the neural network {si} which may be an imprinted state. The basin of attraction of
{si} measures the size of the region of possible network states which is “attracted” to
{si}. A neural state {s′i} is attracted to {si} if {s′i} evolves to {si} upon multiple applica-
tion of the neuron update rule. Measuring the size of the basin of attraction is im-
portant, because the functioning of the neural network as an associative memory de-
pends upon it.

In Fig. 2.2.7(a),the distribution of sizes of the basins of attraction B is shown for
different numbers of imprints p on a network with 100 neurons. Each curve is nor-
malized to 1 so that it gives the probability of finding a particular imprinted state with
the specified basin of attraction.Fig. 2.2.7(b) shows the corresponding histograms of
sizes of the basins of attraction for p imprinted states (the normalization of each curve
is p). The maximum possible size of the basin of attraction is 50,half of the number
of neurons. We can see from these figures that as the number of imprints increases,
the average size of the basins of attraction decreases,and the width of their distribu-
tion increases.In addition,the number of imprinted states that are unstable increases.
The algorithm used to obtain these figures includes the unstable states as having a
basin of attraction of zero.

Fig. 2.2.7 was obtained using the following procedure:

1. Generate p random neural states { i }:

= {1,...,p},i = {1,...,N} (2.2.37)

2. Imprint them on the synapses of the neural network:

(2.2.38)
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3. Find the basin of a t tracti on of e ach of the impri n ted patterns . The fo ll owi n g
s teps measu re the size of the basin of a t tracti on by finding the avera ge Ha m m i n g
d i s t a n ce to a state wh i ch is not in the basin of a t tracti on of the pattern :

a. Set the neural state to i .

b. Pick (at random) an ordering of neurons l(i).
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Figure 2.2.7 (a) Probability distribution of the size of the basin of attraction of imprinted
patterns for a neural network of 100 neurons, and (b) histograms of the number of imprinted
patterns with a particular basin of attraction. The horizontal axis is the Hamming distance,
which measures the size of the basin of attraction. The probability distributions are normal-
ized to 1, while the histograms are normalized to p. Each curve is for a different number of
imprinted patterns as shown. The size of the basin of attraction decreases as the number of
imprints increases. The probability distribution also broadens. When the number of imprints
becomes greater than 10, the number of imprints with basins of attraction of zero begins to
increase. This is the probability that a pattern is unstable as shown in Fig. 2.2.4. ❚
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c. Switch the state of each neuron in sequence according to the ordering l(i) and
find the minimum number of switches for which:the neural state resulting af-
ter at most a prespecified number n (taken to be 10) neural updates is not
equal to the neural state :

b = {0,...,N/2}

r = {1,...,n} (2.2.39)

The last expression specifies that we take the minimal value of b subject to the
constraint that the state w b, n is not equal to . A straightforward procedure
would increment b, evaluate wb,n, and stop incrementing b when the condi-
tion of the last equation is satisfied.

d. Average over choices of neuron orderings l(i).

4. Ma ke a histogram of the basins of a t tracti on for different , with fixed N and p.

Question 2.2.2 Use Glauber dynamics (Section 1.6.7) to introduce noise
into the neural dynamics. Show that the noise actually can improve the

retrieval of imprinted states. Specifically, use a network with 100 neurons
and imprint 8 (random) neural states. Starting from a random neural state
that was not imprinted, evolve the network a number of times with a mea-
sured amount of noise.Find the fraction of times that the network recovers
one of the imprinted states. Vary the amount of noise to see its effect.

Why would noise increase the probability of retrieving the imprinted
states? The imprinting not only creates basins of attraction for the imprinted
states,it also causes the existence of many small shallow local energy minima
that are called spurious memories. The noise enables the network to escape
these shallow local energy minima and fall into the deeper energy minima
that are the imprinted states. Spurious memories are discussed in
Section 2.2.7.

Solution 2.2.2 G l a u ber dynamics is a standard implem en t a ti on of a noi s y
u p d a te rule for neu ral net work s . It uses a stati s tical rule for the state of e ach
n eu ron at the next time step. At each time step the va lue of the neu ron is set
according to a prob a bi l i ty given by the local fiel d . The prob a bi l i ty is wri t ten as:

(2.2.40)
Psi

(+1;t) = 1+ tanh J ij s j (t − 1)
i

∑ 
 
 

 
 
 

 
 
 

 
 
 / 2

Psi
(−1;t) = 1− Psi

(+1;t)

    

B( ) = min
i ,w i

b ,n 
 

 
 

i
∏ =0

b

wi
b,r = sign J ij wj

b ,r−1

j
∑ 

 
 

 

 
 

    

w j
b ,0 = (1− 2 (j,l(j ′)))

j′=1

b

∏ i
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where = 1/kT and T is the effective temperature associated with the noise.
While Glauber dynamics uses asynchronous updating by selecting neurons
to update at random,synchronous updating does not give significantly dif-
ferent results in many cases.

We can write the Glauber dynamics in an implicit way by introducing a
temperature-dependent sign function which implies the probabilistic rule:

(2.2.41)

where signT (x) is suggestive of a finite temperature version of the sign func-
tion. However, this notation means nothing else than the previous proba-
bilistic expression. In the limit as T approaches zero, the original T = 0 up-
date rule is recovered. It should be noted that the temperature as used here
does not necessarily correspond to the physical temperature. In the brain
there is noisiness in the neural firing that may depend on the physical tem-
perature, but may also be controlled by other factors.

With the introduction of the temperature-dependent update rule, care
must be taken in defining the normalization of the synapse matrix Jij . This
is one of the reasons for the introduction of the normalization 1/N in the de-
finition of the Hebbian imprinting rule (Eq. (2.2.6)).

F i g. 2.2.8 shows the prob a bi l i ty of retri eving an impri n ted state as a func-
ti on of the amount of n oi s e . This is the fracti on of evo lved - ra n dom states that
re sult in impri n ted states of the net work (mem ories) for different va lues of .
No noise (T = 0) corre s ponds to =∞. The optimal noise for retri eval in these
s i mu l a ti ons is around = 4 . One probl em in the simu l a ti ons is how to iden ti f y
wh en we have arrived at an impri n ted state . Si n ce we are evo lving the net work
with noi s e , we should not arrive prec i s ely at the impri n ted state . One way to
s o lve this probl em is to assume that all states within a small Hamming distance
a re accepted as the impri n ted state . For these simu l a ti ons we avoid this prob-
l em by evo lving the net work at zero tem pera tu re ,a f ter it is evo lved with noi s e .

Fig. 2.2.8 was generated using the following procedure:

1. Generate p = 8 random neural states { i }:

i = ±1 = {1,...,p},i = {1,...,N} (2.2.42)

2. Imprint them on the synapses of the neural network:

(2.2.43)

3. Generate a random neural state {wi}:

wi = ±1 i = {1,...,N} (2.2.44)

    

J ij =
1

N
i j

=1

p

∑ i ≠ j

0 i = j

 

 
 

 
 

si (t) = signT Jij sj (t − 1)
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Figure 2.2.8 Tests of the influence of noise on the recovery of patterns imprinted on a net-
work. The curves show the fraction of times neural evolution from a random initial state re-
sults in an imprinted state. The simulations use a network of N = 100 neurons and p = 8 im-
printed states. The horizontal axis is the inverse of the effective temperature that describes
the noise. The smallest amount of noise corresponds to the highest value of . For low levels
of noise the probability of recovering an imprinted state is less than 0.6. When noise is in-
cluded the recovery rate can reach almost 0.7. The recovery rate improves gradually with in-
creasing noise until about  ≈ 0.04 when the recovery rate decreases dramatically. (a) shows
a broader range of , and (b) shows a narrower range near the optimal value of for these
simulations.  The variability in the result, despite averaging in the simulations, reflects the
importance of the particular (random) choice of imprinted patterns, and the use of only a lim-
ited number of updates of the network. ❚
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4. Update the neural state {wi} according to the Glauber dynamics update
rule r1 = 20 times at temperature T:

r = {1,...,r1},i = {1,...,N} (2.2.45)

5. Update the neural state {wi
r1} according to the update rule r2 = 5 times at

T = 0:

r = {r1 + 1,...,r1 + r2},i = {1,...,N} (2.2.46)

6. Find if the evolved neural state is equal to one of the originally im-
printed states:

(2.2.47)

7. Average Pstable over different trials to find the proportion of evolved ran-
dom states equal to one of the imprinted states. ❚

2.2.7 Overload and spurious states
We have discussed the storage capacity of attractor networks with Hebbian imprint-
ing. As part of this discussion we showed that the basins of attraction of the imprinted
states go to zero when the memory becomes overloaded. This implies that there is a
catastrophic failure of the network—when we exceed capacity, all of the memories are
forgotten. The reason that this occurs is that all of the memories are treated the same
by the imprinting process. When the capacity is exceeded,there is no mechanism for
the network to select which of them to remember.

There are modifications of the imprinting rule that enable the memory to retain
some of the imprinted patterns as memories,at the expense of losing the others. The
simplest way to determine which imprints to remember is by the order of the imprint.
Rather than keeping the first few imprints, it makes sense to retain the most recent
(last few) imprints. A memory that retains the most recent imprints is known as a
palimpsest memory, after the name of parchments that were erased and reused in me-
dieval times. Historians benefited from the residuals of earlier writings that remained
visible. For our neural network implementation, we could modify the Hebbian im-
printing by progressively increasing the st rength of the imprint of patterns by a fac-
tor e /N:

(2.2.48)

where we assume that each imprint is performed in a unit time interval,and the pat-
terns are indexed by time.A value of = 8.44 has been calculated as optimal for stor-
ing random neural states. In general this and other palimpsest memories reduce the
effective capacity of the network. Because of the difference in treatment of recent ver-

    J ij(t) = J ij (t −1)+ e + t / N
i
t

j
t (i ≠ j)
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sus older memories, there is a significant degradation in total number of memories
retained. This sacrifice occurs for the benefit of ensuring that some memories are re-
tained after overload would otherwise occur.

No te that mu l ti p lying all the synapses Jij by a constant does not affect any re su l t s
of retri eval or stabi l i ty. Thu s , on ly the rel a tive strength of d i f ferent imprints is impor-
t a n t . If a bound on the magn i tu de of synapses is de s i red , we can adopt the ex pre s s i on

(2.2.49)

instead of Eq. (2.2.48). This is more like the erasure of previous writing, because all
the synapses are reduced by the factor e− /N before the next imprint.

While there are methods,like these palimpsest memories, to ensure that overload
does not occur, it is important to understand how overload occurs. Overload is a nat-
ural mode of failure of the attractor neural network. Therefore,it is likely to occur for
biological networks under some circumstances. Detailed studies of attractor networks
at high capacity indicate that the behavior of the network near overload becomes
dominated by what are called spurious memories. We have spoken about the im-
printed patterns as if they are the only stable states of a network. This is not the case.
Spurious memories are stable states of the network that were not imprinted. Without
an independent way of telling whether they were imprinted or not, these states mas-
querade as memories, but they are not. Spurious memories are not completely unre-
lated to the imprinted states. Instead they are generally a mixture of states. One ex-
ample is a state formed by a majority rule from three imprinted states:

(2.2.50)

In Question 2.2.3 the stability of this state is shown using a signal-to-noise analysis.
The problem that arises as the number of imprints increase is that the number of such
spurious states increases combinatorially (greater than exponentially) with the num-
ber of imprints. The growth in the number of spurious states occurs because they are
formed from all possible combinations of the imprinted states. When overload oc-
curs,it is actually the basins of attraction of these states that swamp the basins of at-
traction of the imprinted states.

Once the spurious states swamp the imprinted states, the network becomes es-
sentially equivalent to a spin glass (Section 1.6) that has random weights for each of
the synapses. We can understand this qualitatively because the noise becomes larger
than the signal in the signal-to-noise analysis. Thus the energy of any state is given by
a sum over random variables. Beyond overload, the characteristics of the neural net-
work become similar to those of the spin glass, where there are a hierarchically struc-
tured set of minimum energy configurations with large barriers between them. The
lowest energy states are not the imprinted ones.

Question 2.2.3 Evaluate the stability of the symmetric mixture of three
states given by Eq. (2.2.50) using a signal-to-noise analysis. Hint: con-

vince yourself that the noise is essentially the same as that for an imprinted
state and evaluate only the signal.

    si = sign( i
1 + i

2 + i
3)

    J ij(t) = e − / N J ij(t −1) + i
t

j
t (i ≠ j)
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Solution 2.2.3 A difficulty in studying the stability of the spurious pattern
given by Eq. (2.2.50) is that there are two distinct types of neurons—those
where all three patterns in the mixture have the same activity, and those
where only two out of the three have the same activity. It is important to dis-
tinguish these two cases. We e valuate first the signal and then discuss the
noise.

The stability of s1 for the state given by Eq. (2.2.50) is determined by

(2.2.51)

Inserting the Hebbian form for the synapses after p imprints gives

(2.2.52)

Our objective is to determine the probability that this is negative, in which
case s1 is unstable. As in the treatment of the imprinted patterns in the text,
we do this by evaluating the average (the signal) and the standard deviation
(the noise) of the distribution, and approximate the distribution as a
Gaussian.

The signal arises from the first three terms in the sum over , which we
separate to obtain:

The average value of the first sum depends on whether 1
1,

2
1 and 3

1 have the
same sign. If they do we have a signal given by:

(2.2.54)

where the intermediate equation indicates the value of the term multiplied
by the probability of its occurrence. Thus, terms that have a magnitude of 3
occur 1/4 o f the time, while terms that have a magnitude of 1 occur 3/4 of
the time. Similarly, if 1

1, 2
1 and 3

1 do not have the same sign, then two out
of three of them have the same sign, and they have a signal given by:

(2.2.55)
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We see that for the first type of neuron (1/4 of the neurons are of this type)
the signal is higher than the signal of an imprinted pattern. On the other
hand for the second type of neuron (the remaining 3/4 of the neurons) the
signal is lower than that of an imprinted pattern.

The noise can be determined by direct evaluation of the standard devi-
ation of Eq.(2.2.53). However, we can convince ourselves that it is not much
different than the noise found for an imprinted pattern in Eq.(2.2.22). The
last sum in Eq. (2.2.53) is a sum over (N − 1)(p − 3) uncorrelated random
values of ±1. Its root mean square magnitude is 2 =√(p −3)/N. This is most
of the noise for p >> 1 because the first sum,after we subtract the mean, con-
tains no more than 3N uncorrelated terms with magnitude one. Thus the
standard deviation of the first sum is no more than roughly 1 ≈ √3/N, and
the total standard deviation satisfies

(2.2.56)

for p >> 1. This is the same as the noise term found for imprinted patterns.
The main conclusion that we reach from this analysis is that for low

storage, p << N, the neurons have a signal that is much greater than the
noise, so the pattern will be stable. The observation above that 3/4 of the
neurons have a signal that is half of the signal in an imprinted pattern im-
plies that the basin of attraction of the spurious patterns is shallower and
smaller than that of the imprinted patterns. ❚

Feedforward Networks*

2.3.1 Defining feedforward networks
Feedforward networks (Fig . 2.3.1) are convenient for visualizing input-output sys-
tems. They have also been more extensively used in the construction of commercial
applications than other neural network models.A feedforward network is composed
of several layers. The number of these layers is not large,in part because of difficulties
in training these networks. The synapses of a feedforward network are unidirectional.
The neuron activity is represented by a continuous variable over a limited range of
possible values. We take the range of values to be (−1,+1):

(2.3.1)

where l is the layer index,and the number of neurons in a layer Nl may vary from layer
to layer. For the synapses we adopt the notation:

(2.3.2)

For L layers of neurons there are L − 1 sets of synapses. By our indexing conventions,
the last set of synapses is J ij

L−1.

    i ∈{1,..., Nl +1}, j ∈{1,...,N l },l ∈{1,...,L −1}  J ij
l

    i ∈{1,..., Nl },l ∈{1,...,L}    si
l ∈(−1, +1)

2.3

    
2 = 1

2 + 2
2 ≈ 2

2 ≈ p /N
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The propagation of input through the network proceeds in a layer by layer fash-
ion. We can picture this as a signal that is propagating through the network, so that
the layer index l in the neuron variable si

l becomes the analog of a time index.
However, it is important to recognize that the propagation through the network is
both the space and time coordinate when the processing of an individual input pat-
tern is considered. There is no other time coordinate in the network operation.

The update rule that determines the activi ty of a neu ron at a particular time is a func-
ti on of the influ en ce of the neu rons of the previous layer, u su a lly taken to be sigm oi d a l :

(2.3.3)
    

si
l+1 = sgm( J ij

l s j
l

j

∑ )
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Figure 2.3.1 Schematic of a feedforward network showing the notation for the neurons si
l and

synapses Jij
l running in only one direction between the layers of neurons. The input to the

network enters from the left and the output is read from the right. The most commonly used
training algorithm for the feedforward network is the back-propagation algorithm. Starting
from an initial set of values of the synapses, the output is calculated from a preselected in-
put for which a desired output is known. The desired output is compared with the output that
is calculated. The difference is the error on the last layer of neurons (here the fourth layer)

i
4. The error is used to change incrementally the synapses Jij

3 so as to reduce the error. The
error is also used to obtain the corresponding error on the previous layer i

3 so that the pre-
vious layers of synapses Jij

2 can also be corrected accordingly. In this way the error is propa-
gated backward through the network to correct all of the synapses. ❚
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The sigm oidal functi on may be the functi on tanh(x) , wh i ch may also be gen era l-
i zed to

sgm(x) = tanh( (x − h)) (2.3.4)

The parameter is an overall multiplier of the synaptic weights, and therefore is re-
dundant. It may nevertheless be convenient to use it under some circumstances. h is
an additional parameter that could vary from neuron to neuron (with the notation
hi

l), and may also be adjusted as part of the training procedure described in the fol-
lowing section. Other forms of sigmoidal function may be used as well.

2.3.2 Operating and training feedforward networks
The operation of a feedforward network begins with the imposition of a pattern of
activity on the first layer of the neurons. This pattern is assumed to represent the op-
eration of sensory neurons. The activity of each successive layer is then determined
according to Eq. (2.3.3). The action of the network on this input ends with the ex-
traction of the neuron activities from the final layer of neurons. This extraction may
be considered to be an effect—an action caused by motor neurons. Alternatively, we
could consider the activities of the final layer of neurons to be a new representation
of the input sensory information—the recognition of a pattern.

To train the network synapses, we begin from a set of examples of input and out-
put pairs that the network should emulate. The objective is to produce the specified
outputs from the specified inputs. Once the network is trained, as far as possible, to
produce the desired output from each input, it automatically generalizes from these
training examples. The generalization is obtained by inputting other patterns to the
network and obtaining the resulting output. In effect, the network interpolates be-
tween the training examples.

We designate the input and output training pairs (of which there are p) as:

(2.3.5)

The training of the feedforward network can be performed in many ways. The most
common method begins from the recognition that it is only the values of the neurons
in the final layer that explicitly matter to the operation of the system. The layers be-
tween the input and output layer are “hidden.” The objective is to optimize the agree-
ment between the action of the network and the desired output. To achieve this we
write a cost function (energy), which measures the error—the difference between the
value of the output neurons after action on the input trial state and the desired out-
put. The cost function is:

(2.3.6)

where we have introduced the notation si
L( ) to indicate the activities of the Lth layer

of neurons that result from application of the network to the th input. For simplic-
ity, the different errors are weighted equally. Implicitly, si

L( ) and the cost function de-
pend on the values of all of the synaptic variables Jij

l . The cost function should be min-

    

E[{J ij
l }]= (si

L ( ) − i )2

i =1

N L

∑
=1

p

∑

    i ∈{1,..., N1}, j ∈{1,...,N L}, = {1,..., p}    ( i , j )
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imized with respect to them.The cost function may be minimized in a variety of ways
(Section 1.7.4), however, as usual for a problem with a high-dimensional minimiza-
tion space,there may be problems with many local minima. Nevertheless,the simplest
approach is a steepest-descent minimization algorithm.

Before proceeding with a mathematical derivation of the most common ap-
proach to minimizing the cost function, we briefly summarize the results. At each step
of the procedure, we present to the network a particular one of the input examples.
Once the network has operated on the input, we compare the activities of the last neu-
ron layer to the desired output.Our objective is to decrease the error. The easiest way
to improve the agreement is to change the last layer of synapses. We calculate the di-
rection to change these synapses to improve the agreement. In general, making this
change in the synapses will not be sufficient. To improve the agreement further, we
take the error at each of the output neurons and determine what changes would be
needed in the activity of the previous layer of neurons in order to correct the output-
neuron values. This is done using the existing synapses between the two layers. This
step, taking the error in the final layer of neurons and identifying the corresponding
error in the previous layer of neurons, is called back-propagation of error. Once we
know the error in the second to last layer of neurons, we can find the direction to
change the second to last layer of synapses. We repeat the procedure for earlier layers,
and correct incrementally all of the synapses of the network.

The following derivation is difficult only because of the number of subscripts and
superscripts. We adopt standard practice and assume that we will minimize the cost
function by modifying Jij

l in steps that reduce the cost function successively for each
of the patterns separately. Convergence is not guaranteed, but will work if the cost
function is well behaved. We thus adopt the partial cost function

(2.3.7)

To minimize this function we change Jij
l in the direction of steepest descent:

(2.3.8)

We use the time variable to indicate repetitive cycling over the different patterns . It
keeps track of the steps in the minimization, not propagation of the signal throug h
the network. c is chosen small enough, and possibly time-dependent, to provide for
convergence. In principle it doesn’t matter in which order we consider the Jij

l , but it is
convenient to start from the synapses leading to the final (Lth) layer Jij

L−1.

(2.3.9)
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where we have taken care to use a new index for the sum in the numerator. Taking the
derivative inside the sum we have:

(2.3.10)

The value of the k th neuron in the L th layer can only depend on synapses leading di-
rectly to it, and not on other synapses. Thus the derivative has to be zero unless k = i,
and the other terms in the k sum can be neglected. We show this explicitly using the
expression for sk

L( ) in terms of the previous layer of neurons:

(2.3.11)

The prime on the sigmoidal function has the conventional meaning of a derivative
with respect to its argument. In the third line we made use of the knowledge that 
sm

L−1( ) is independent of Jij
L−1 because the (L − 1)st layer of neurons precede the 

(L − 1)st layer of synapses.
Returning to the evaluation of the change in Jij

L−1 we find

(2.3.12)

We can simplify the notation by defining two auxiliary quantities.We define the error
at the Lth layer as:

(2.3.13)

The deriva tive of the sigm oidal functi on in Eq . (2.3.12) could be wri t ten as a functi on
of the neu ron si

L( ) , s i n ce it applies the sigm oidal deriva tive to the same argument (the
po s t s y n a ptic po ten tial) that determines the neu ron va lu e . We call this functi on w(s) :

(2.3.14)

This leads to the simplified form of Eq. (2.3.12)

(2.3.15)

which is the desired result.
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Before we continue to find the incremental changes in the other Jij
l for l < L − 1,

we discuss the result for Jij
L−1 in a simple case. Consider Eq. (2.3.15) if all of the neu-

rons have a level of activity that is within the linear range of the sigmoidal function,
taken to be tanh(x). This would be equivalent to neglecting the nonlinear response of
the neurons. Then sgm′(x) = 1 and w(si

L( )) = 1. Inserting Eq.(2.3.15) into Eq.(2.3.8)
we have:

(linear regime) (2.3.16)

Note that all of the neuron activities, indexed by , also have a t index,since they de-
pend on the synapses, and thus their values change during the minimization. We can
act with the new synapse values on the neurons of the previous layer to obtain the new
neuron values in the final layer. We assume that the values of the neurons at the pre-
vious layer have not been changed. This would be true if we chose not to modify the
previous layers of synapses, or if there were only two layers of neurons (one layer of
synapses), then:

(2.3.17)

Inserting Eq. (2.3.16)

(2.3.18)

From this we see that if the neuron values of layer L − 1 are normalized to
1 (Σsj

L−1sj
L−1 = 1) and c = 1/2 (or if c is chosen to be 1/2 of the inverse of the normal-

ization) then convergence will be perfect for the pattern , since then

(2.3.19)

More generally, a smaller value of c will bring the neuron values closer to the desired
result, as should be expected from a steepest descent. This shows that for a single
input-output training pair, the cost function may be readily minimized using only the
linear regime of one layer of synapses. Constructing a network that will perform a de-
sired pattern-recognition task can be much more difficult when there are many input-
output training patterns representing the task.

We return to the main line of our discussion and consider the second to last layer
of synapses Jij

L−2

(2.3.20)

The latter expression uses the sequentiality of the determination of the neuron val-
ues. We have also taken into account that in the (L − 1)st layer, it is only the i th neu-
ron that depends on the synapse Jij

L−2. Each of the factors is readily evaluated:
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(2.3.21)

leading to:

(2.3.22)

We can recast this expression into the same form as for the synapses Jij
L−1

(2.3.23)

by defining the error on the (L − 1)st layer of neurons as:

(2.3.24)

This expression,in effect,takes the error that was known on the L th layer and obtains
the error on the previous layer using the existing set of synapse values Jki

L−1(t). This
procedure is known as back-propagation of error and gives the name back-propagation
algorithm to this method of training feedforward networks.

The modification of earlier layers is obtained similarly by extending this analysis
layer by layer. In each case, an expression of the form of Eq. (2.3.24) can be written
that takes the error of one layer and sends it back to the previous layer. The correction
to the synapses is then written as in Eq. (2.3.23).

Subdivided Neural Networks

Among the objectives of the study of neural networks is the development of a basis
for an understanding of sensory processing, motor control, memory and higher
information-processing functions of the brain. In previous sections, we have seen that
it is possible to describe an associative content-addressable memory using an attrac-
tor neural network. The associative memory captures an important generic property
that we would like to build upon to understand additional aspects of brain function.
We also touched upon some aspects of the processing by feedforward networks that
are suggestive of sensory-motor systems. However, most of the higher information-

2.4
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processing tasks, of which the brain is readily capable,appear remote from these con-
siderations.

In order to make progress in understanding the higher information-processing
functions of the brain we must construct an additional level of organization between
neurons and the brain—that of brain subdivisions or subnetworks. The substructure
of the brain is well known to students of neurophysiology (see Fig. 2.4.1).
Experimentally, the mapping of brain function has identified sensory- or motor-
related aspects of the brain—visual processing centers, auditory processing centers,
the motor cortex, as well as aspects of language processing that may be counted
among the higher information-processing functions. There is a long-standing debate
regarding the degree of localization of function in the brain. In a simplified form,the
debate is between two camps, one suggesting that specific functions are localized on
individual neurons, the other suggesting complete delocalization of function
throughout the brain. At present, experimental evidence has led to general agreement
that at least an intermediate degree of regional specialization exists.

As we discussed in Section 1.10.7, most fields of inquiry are built upon levels of
description each of which is constructed on finer scales. To neglect the description of
the subdivisions of the brain and try to explain brain function directly from the be-
havior of individual neurons would be to skip an important and simplifying level of
description.One of our primary tasks,therefore,in studying neural networks,is to in-
vestigate and identify the function and interaction of subnetworks. We hope then to
build models of human information-processing using subnetworks as the analog of
brain subdivisions. It is almost a separate endeavor to construct such a theory of
higher information-processing. The historical efforts in this area are the theories of
the mind such as those of Freud, which separated the mind in two ways. The first sep-
aration was between the conscious and subconscious and the second between the id,
ego and superego. This and other theoretical models should be considered within the
domain of our inquiry. However, until we have a better understanding of the function
of brain subdivisions, we will not be able to evaluate the validity of the many psycho-
logical theories or propose more complete ones.

There are two forms of subdivision that can be readily identified—longitudinal
and lateral. We have already considered the longitudinal form of subdivision in the
example of feedforward networks. A multilayer feedforward network describes a set
of neural subdivisions each of which is a single layer of the network. In this model
there are no synapses within a neural subdivision,all of the synapses run between sub-
divisions, specifically in a feedforward direction. The input layer (or first few layers)
represents sensory processing, and the output layer (or last few layers) represents mo-
tor control. Intermediate layers are less clearly identified. This longitudinal subdivi-
sion in feedforward networks is directly related to sequential stages in processing.
Longitudinal subdivision in feedforward networks is necessary because of limitations
on what a single layer of synapses can be trained to accomplish.

In the remainder of this chapter we consider the second type of subdivision—lat-
eral subdivision—formed when the synaptic connections within each subdivision are
of greater number or of greater strength than between the subdivisions. In contrast to
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longitudinal subdivision, lateral subdivision separates the processing of sensory or
other information into parallel channels. This kind of subdivision can be treated and
understood within the attractor network model (Fig. 2.4.2).

In developing an understanding of the role of subdivisions in the brain, we must
begin from basic questions. The most basic is the question, Why should the brain be
subdivided at all? This may seem a simple question,since it might seem obvious that,
for example, language should be separate from visual processing and from auditory
processing and from motor control—doesn’t this make sense? But we know that all of
these are also connected to each other. Why then should we not process them all to-
gether? In the attractor network, we simplify the consideration of network function
to that of an associative memory. If we compare a subdivided attractor network with
the fully connected attractor network, we immediately run into a fundamental prob-
lem—a lower storage capacity.

The storage capacity of a neural network increases with the degree of intercon-
nectedness. In Section 2.2 we determined the storage capacity for the fully connected
network with Hebbian imprinting. The network could store cN patterns. We can
count,instead,the total number of independent bits in the stored patterns. Since each
pattern has N bits,this gives a total of cN 2 bits. This is somewhat deceptive,since in
the limit of maximum storage, just below overload, we must present almost all of the
pattern in order for it to be“retrieved.” However, because any part of the pattern could
be retrieved, we might still consider c N2 to be the maximum number of bits of in-
formation stored in the network. The expression c N 2 should not be surprising, since
the information is stored in the synapses and the number of synapses is N 2. While it
is difficult to guess the value of the prefactor c , the maximum number of stored bits
must be proportional to the number of synapses. Many efforts have been made to im-
prove upon this storage capacity, however, for a fully connected network it is possible
to prove that the maximum number of stored independent bits cannot be greater than
2N 2, or 2N uncorrelated patterns. More generally, if all neurons are not connected to
each other, then the maximum number of patterns that can be stored is limited by the
average number of synapses per neuron.

The loss of memory on reducing the number of synapses occurs when the
synapses are set to zero a priori, independent of the information to be stored. This is
a clue to the motivation for subdivision. The storage capacity would not be reduced
if the synapses are set to zero because a zero value is appropriate to the information
that is to be stored.

There may be reasons that are quite independent of storage considerations that
the brain does not make use of a fully connected network. The most well known of
these is the “connection problem.” Three-dimensional space does not allow us to con-
nect all neurons because of the difficulties in packing all of the connections into a vol-
ume in the presence of communication delays and heat-dissipation constraints. This
problem is familiar to those who study the problems of designing massively parallel
computers. While the connection problem might explain why the brain is not fully
connected, it does not reveal the reason for nonuniformity of function in the brain.
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We summarize our fundamental question as follows. For a network where each
neuron is connected to every other neuron, the number of imprints that can be re-
called, N, is proportional to the number of neurons N with a constant of propor-
tionality < c somewhat dependent on the particular imprinting rule and the de-
sired properties of retrieval. When additional imprints are added, an overload
catastrophe causes erasure of all information. Removing synapses or systematically
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(a)

(b)

Figure 2.4.2 Subdivided neural network formed out of three subnetworks. The subdivision
may be achieved either by setting the synapses between the subnetworks to be systemati-
cally weaker than those within a subnetwork or by systematically reducing the number of
synapses between subnetworks. The former is indicated by the relative thickness of the lines
in (a). In (b) the extreme case of a completely subdivided network is shown where the
synapses between the subdivisions have been removed. ❚
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weakening synapses between subdivisions inherently results in a decreased storage ca-
pacity. Why then subdivide the brain?

2.4.1 The left-right universe
To begin to answer this question, consider first an artificial world composed of pic-
tures with independent (uncorrelated) left and right halves (Fig. 2.4.3). This means
that any left half that is seen in the universe may be found with any right half.A con-
crete example is the set of possible first and last name initials, where all letters of the
alphabet might appear on the left,as they might on the right. Our task is to design a
neural network for an organism in this artificial world. We assume that the pictures
are mapped directly onto the network so that they are represented point by point as
the neuron activity pattern. We will consider this example in detail, since it captures
many of the essential concepts that will be relevant later.

As we have discussed, a fully connected network of N neurons is capable of re-
calling N distinct and uncorrelated pictures. We can represent the stored pictures us-
ing the notation (Li,Ri), where Ri is the right half of the i th picture and Li is the left
half of the ith picture. Then the stored images are of this form with i in the range
{1,..., N}. In order for the pictures not to be correlated,the left sides of all stored pic-
tures must be different from each other, as must be the right sides.If the pictures that
the organism encountered in the universe were indeed distinct and uncorrelated,this
is the best that can be expected from Hebbian training. However, in the left-right uni-
verse, the pictures that might be encountered are correlated.

Let us divide the network into left and right hemispheres by cutting all of the
synapses running between them. The left hemisphere receives the left part of each
picture and the right hemisphere receives the right part of each picture. Each of the
hemispheres has N/2 neurons. Using Hebbian imprinting, each hemisphere can store
( N/2) distinct half-pictures. Because the subnetworks are halfas large as the full net-
work, the number of patterns that can be stored is half as many and each pattern is
also half as large.The storage of the left hemisphere is of left halves of pictures, Li. The
storage of the right hemisphere is of right halves of pictures, Ri. In both cases i takes
values in the range {1,..., N/2}. Storage in the left hemisphere is independent of the
storage of the right hemisphere. When we test for recall,each of the patterns stored by
the left hemisphere can be combined with each of the patterns in the right hemisphere
to obtain a different stored picture. These are composites of the imprinted pictures.
Thus the subdivided network stores a total of ( N/2)2 composite pictures of the form
(Li,Rj) , where both i and j are taken independently from the range {1,..., N/2}. Each
of these ( N/2)2 pictures may be encountered in the left-right universe. Since the
number of neurons N is large, ( N/2)2 is much larger than N. Cutting the synapses
between the hemispheres results in a huge increase in the number of pictures that can
be stored in the network. For an organism in the artificial world, this is a significant
advantage.

The retrieval process is different in the ful ly connected network and in the sub-
divided network. In the fully connected network, retrieval starts by presenting to the
network an image that is close to one of the stored images (Li ,Ri). Somewhat over 50%
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of the neurons must be presented to the network in order to recover the full image. If
we stored the patterns (L1,R1) and (L 2,R2) and then the universe presents the pattern
(L1,R2),the network will choose to settle into either  (L1,R1) or (L2,R2), depending on
which one of these is closer to (L1,R2). In either case we could say that the network is
in error, but this error occurs for a state that the network never imprinted.

The subdivided network works on the retrieval of each half of the picture sepa-
rately. It recognizes (L1,R2) from a pattern that is close to L1 on the left and close to R2
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Figure 2.4.3 Illustration of the left-right universe, which consists of images that are com-
posed out of independent left and right halves. The set of all initials is a simple example of
such a universe. We could try to store these images on a fully connected network, or we could
first subdivide the network into two hemispheres. The fully connected network would re-
member more completely independent images, but would fail to be able to store multiple im-
ages with the same left half or the same right half. The subdivided network would store in-
dependently the left and right half, and so would store many more images that would be
composed of a selection of the stored left halves and the stored right halves. A biological
analog of the left-right universe may arise in the control by the different brain hemispheres
of left- and right-hand motion. ❚
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on the right. It might appear that there is a disadvantage because the subdivided net-
work cannot use partial information from one half of the network to help in recall of
the other half. However, it is imp ortant to recognize that this is actually dictated by
the nature of the information in the left-right universe and only incidentally by the
subdivision of the network. Using information from the left half to help on the right
would only lead to errors, since it was assumed that there is no correlation between
the two parts of the information.

It is significant that the training of the subdivided network was achieved with
only ( N/2) imprints. The subdivided network recognizes many more pictures than
were trained. In this way the network generalized from the training set to a much
larger number of pictures. This works if we are able to select which pictures to train
initially. We take ( N/2) of the pictures and make sure that all of the left halves and
all of the right halves are different. We imprint these pictures. From the perspective of
the storage of complete patterns, what we have done may appear quite strange. It is
true that we have caused the network to store ( N/2)2 patterns, but aren’t all of these
really only a few patterns? Yes, they are all related to the imprinted ( N/2) patterns.
The point is that in the artificial world, where the left and right parts of the image are
independent, we want to store the ( N/2)2 different combinations rather than only a
particular set of complete patterns.

Let us consider an alternative design of an organism in the left-right universe—
a different way of subdividing the network. Instead of cutting the synapses between
left and right hemispheres, we cut the synapses between the top and bottom halves of
the network. In this case each half of the network acts to store ( N/2) half pictures.
The top half stores the top part of each picture. The bottom half stores the bottom
part of each picture. Now we cannot claim that the network stores ( N/2)2 pictures,
because different combinations of top and bottom are not possible pictures in the
universe. Instead the network stores at most only a total of ( N/2) of the possible pic-
tures. There is an additional problem in retrieval, because information from the top
cannot be used to help with retrieval of the bottom part of the image, and informa-
tion from the bottom cannot be used to help with the top. In order to retrieve a par-
ticular image, we must have over 50% of the neurons correct in the top half and over
50% of the neurons correct in the bottom half. We have degraded the network stor-
age with no compensating advantages. We have also created a whole host of undesir-
able memories that are not real. These undesirable memories are combinations of
stored top and bottom halves of pictures.

From this discussion we learn that subdividing a network can improve dramati-
cally the storage of patterns. However, the effectiveness of subdivision requires direct
matching to the nature of the information:if we know that the organism lives in the
left-right universe we can cut synapses between left and right hemispheres.

2.4.2 Imprinting correlated patterns
The advantage of subdivision in terms of the number of pictures that can be stored is
not the whole story for the left-right universe. The fully connected network actually
fails when patterns that are imprinted are significantly correlated. We have,until now,
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considered only uncorrelated pattern storage in the fully connected network. In the
left-right universe, the independence of information between the two halves of the
pictures means that the patterns themselves are correlated. Two or more patterns that
are to be remembered may have the same right halves and different left halves. When
we imprint such correlated information in a fully connected network using Hebbian
imprinting, the patterns are not stored.Qualitatively, the problem arises because the
right-hand side of the network does not know which of the left sides to reconstruct.
When we try to retrieve one of the stored patterns,the result on the left is retrieval of
some intermediate picture that is neither of the desired memories. The degree of fail-
ure of the network depends on the number of pictures that are imprinted with the
same right halves. Memory degradation occurs for just two imprinted pictures.
Failure becomes explicit when there are as few as three imprinted pictures. It is,how-
ever, simplest to consider first the case of four imprinted patterns, all of which have
the same right halves.

We can see the failure of a fully connected network analytically by considering the
update of neurons when starting from one of the imprinted patterns. Extending
Eq. (2.2.17) to the case of four patterns we have:

(2.4.1)

We assume that we are looking at the value of a neuron in the left half of the network
i ∈{1,...,N/2} and the four patterns j

1, j
2, j

3, j
4, are identical in the right half of the

network j ∈{N/2,...,N}. We split the sums in Eq. (2.4.1) into separate sums over the
left and right halves of the network so that:

(2.4.2)

We have collected the sums over the right halves together since they are the same.We
can test the stability of the first imprinted pattern. Setting si(0) = i

1, the first sum and
the last sum are just N/2

(2.4.3)

The remaining three sums are random walks, because the left sides of the patterns are
assumed to be uncorrelated. They have a typical size of √N and are smaller than the
last set of terms. So we can ignore the first three terms. As we look at different values
of i ∈{1,...,N/2}, one-eighth of the time we will have pattern 2,3,4 opposite the first
pattern i
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one-eighth of a pattern changes after a single update, it is not stable. Since the same
argument holds for each of the imprinted patterns, they were not stored.

Let us now think about the case of three patterns imprinted with the same left
halves. Instead of Eq. (2.4.3) we have:

(2.4.4)

This implies that whenever the other two patterns differ from the first at a particular
neuron i

1 = − i
2 = − i

3, which happens 25% of the time, then the result is dependent
upon the overlap of the three states. Specifically, in this case we have

(2.4.5)

The argument of the sign function would always have to be negative in order for the
imprinted pattern to be recovered. Statistically, the sign function will be negative or
positive with equal probability. When it is negative,the whole pattern is stable. When
it is positive,25% of the initial pattern will not be recovered after a single iteration and
the pattern is unstable. Thus for three imprinted patterns, on average half of the pat-
terns will be stable. The stability of these patterns is based upon the sign of the
random-walk terms in Eq.(2.4.5). Imprinting any other pattern, correlated or uncor-
related, on the network will destabilize them.

In this section we have shown that the fully connected network fails for correlated
patterns.Earlier, in Section 2.4.1, we discussed storage of uncorrelated pictures in the
same network. If we have control over the order of pictures that are presented to the
network, we can choose uncorrelated pictures to imprint. However, in the left-right
universe, we should allow for an arbitrary order of the possible pictures. Some of the
pictures will have the same left or right halves. In this case, the fully connected net-
work with Hebbian imprinting will fail. Thus it is necessary to modify the fully con-
nected network to work in the artificial left-right universe,and subdivision of the net-
work is one way to do this. A network without synapses between left and right
hemispheres does not suffer from this failure.

The real world is not constructed out of independent left and right pictures, at
least the visual field is not. Can we make any sense of the actual subdivision of the
brain (specifically the cerebrum) into left and right hemispheres from this model left-
right universe? We can, at least in part, by recognizing that both tactile sensation and
motor control of the arms and legs requires states that are left-right independent.
Motor control requires neural activity patterns that describe (or prescribe) the mo-
tion. If we were to try to store the possible patterns of motion of the two hands in a
uniform network,the actions of one hand would always be directly related to the ac-
tions of the other hand. If we want to be able to do one of several actions with the left
hand for the same action of the right hand,then subdividing the network that stores
the pattern of neural activity makes sense,and may even be necessary. Of course we
would like there to be coordination between actions of the two hands or legs. This
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means that we need a balance between the independence and dependence of the pat-
terns in the two different divisions. We will investigate partially subdivided networks
as one way to achieve this balance.

2.4.3 Separating independent information
The example of left-right motor control is a special case in which the simple model of
subdivision might help, and might even correspond to an important example of sub-
division of the brain. We can generalize this example by recognizing that the infor-
mation we process is highly correlated. One of the reasons for the correlation is that
different aspects of the information are independent of each other in similar manner
to the independence of the left-right universe. It is this independence that gives rise
to correlations.

We therefore recognize that there are two tasks.First, we must in some way iden-
tify which parts of the information to be stored are independent (uncorrelated) and
separate these parts of the information. Then we must store these different types of
information in different parts of the network. Achieving this will enable tremendous
increase in storage of the correlated patterns.Fig. 2.4.4 shows a simple model for the
function of sensory processing consistent with this concept. Sensory information is
separated by input processors to distinct channels. The input processors are presumed
to be composed of feedforward neural networks that are illustrated only schemati-
cally. The information is then imposed on a subdivided attractor network that serves
as a content-addressable memory.

If the inf ormation in the different channels were completely independent, the
channels should be completely independent and the entire problem would be to iden-
tify what the channels should be. However, the information is not usually completely
independent. This suggests that we adopt a model where the network is partially sub-
divided, with weaker or fewer synapses between the subdivisions of the attractor net-
work. This is the model that we will adopt and investigate. Before pursuing this ap-
proach we discuss two more examples of the relevance of this architecture to human
information-processing: vision and language.

2.4.4 Sensory processing: color, shape and motion in vision
The human visual system does not take advantage of the two hemispheres of the brain
to divide the visual information right from left because the left and right parts of the
visual field are not independent. There is a large interconnection area called the cor-
pus callosum that connects the visual areas in the two hemispheres. Instead, detailed
mapping of the visual cortex has revealed that visual processing separates three
attributes of the information: color, shape and motion. The implication of the sepa-
rate processing of these three attributes using, in effect, a preprocessing step to sepa-
rate them, is that these information categories are partially independent. For exam-
ple, visual fields with different shapes can have the same colors. Or, vice versa, the
same shapes can have different colors. This independence has been used in the design
of the genetically encoded structure of the initial visual information-processing.
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The use of these three channels in the visual system can be recognized in our use
of attributes to identify objects. In describing objects, we generally distinguish distinct
types of attributes—color, shape and action/motion. Within each of these attribute
categories we can construct a list of attributes such as

color: RED, GREEN, BLUE, ORANGE, PURPLE, WHITE, BLACK, …

shape: ROUND, OVAL, SQUARE, FLAT, TALL, …

action/motion: STATIONARY, MOVING-LEFT, MOVING-RIGHT, RISING, FALLING,
GROWING, SHRINKING, …

The existence of three attribute categories enables a large number of descriptive cat-
egories to be constructed. A description is composed out of a selection of one at-
tribute from each category. The number of descriptive categories is the product of the
numbers of attributes of each type.
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Figure 2.4.4 Schematic illustration of a model for sensory processing that first separates the
information into distinct channels, each of which corresponds to a different attribute of the
input. The separated attributes are then imprinted on distinct subdivisions of a neural net-
work. This approach is effective if the different attributes of the information are independent,
or at least partially independent. ❚
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By subdividing a network into three subnetworks and separating the color infor-
mation to one subnetwork, the shape information to the second,and the movement
information to the third,it is possible for the network to identify categories such as:
RED ROUND MOVING-LEFT, RED ROUND FALLING, BLUE SQUARE MOVING-LEFT, and
BLUE ROUND FALLING. The network receiving color information identifies the color,
and so on. In a fully connected network these categories would each require separate
identification (and correlations would actually cause the network to fail).As with our
descriptions,in the subdivided network the total number of categories is the product
of the number of categories stored in each subnetwork.

We caution that the shape, color and motion attributes of the information are not
completely independent, and neither is their processing in the brain. Partial subdivi-
sion implies correlations between the different attributes are also significant.
Particularly in the natural world,there are important correlations between the over-
all shape of an object, its color, and both its direction and likelihood of motion. For
example, leaves have a set of characteristic shapes and they are usually g reen. Tree
trunks and their associated vertical or branching shapes are usually brown. The ways
in which leaves are likely to move are not the same as the way tree trunks are likely to
move. If we used a completely subdivided network for vision,after imprinting brown
stationary trees and green rustling leaves we would also remember brown rustling tree
trunks and green stationary tree trunks. In order not to lose the color-shape-motion
relationships, we must be able to store the correlations between these different attrib-
utes. This may be done in a partially subdivided network using the weaker or fewer
synapses that run between the different subdivisions.

2.4.5 Language and grammar: nouns, verbs and adjectives
If subdivision provides advantages for neural network function, then this should be
particularly manifest in man-made constructs. These constructs are likely to reflect
the architecture of the brain and therefore mirror the use of subdivision. In the con-
text of vision, one might consider the use of color and shape in abstract art,as well as
the decoration of man-made objects (e.g.,package labels).Studies of these construc-
tions might help develop an understanding of the human visual system. Another
source of information is human language. Known as “natural language” in the artifi-
cial intelligence community, to contrast it with computer languages, the spoken or
written language is a man-made construct that has been studied for many years by lin-
guists as a source of information or insight into the functioning of the human brain.

Linguists differentiate between the grammatical and semantic aspects of lan-
guage construction. Loosely speaking, grammar is the structure of well-formed sen-
tences, while semantics is the content of the sentences. It is grammar, which is much
more amenable to formal studies, that has been considered to reflect the architecture
of the brain. A basic premise in the field of modern linguistics is that common fea-
tures in the grammar of different languages exist and are the primary clue to the in-
herent brain architecture. The most recent widely accepted linguistic theory is the
transformational grammar. It suggests that there exists an underlying representation
that is transformed upon output into the usual grammatical form of sentences.
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Sentences are interpreted upon input to reconstruct the underlying representation.
This resembles our model of the neural architecture, with feedforward input process-
ing that leads to the subdivided attractor networks and, we add here,output process-
ing from the subdivided network to the motor controls. The input and output map-
pings that form the grammatical constructions used in a particular language are not
completely universal and must be trained. This will not be the focus of our attention
here.

Our objective at this stage in describing the connection between grammar and
our model is quite modest: to make contact with one of the most fundamental aspects
of grammatical construction that is familiar to everybody—the existence of parts of
speech in sentence construction. Indeed, without the existence of parts of speech,
there would be no meaning to the term “grammar.” Grammar investigates the con-
struction of sentences out of words. Words are separated into categories that are the
“parts of speech,” such as nouns, verbs, adjectives, and adverbs. The central role of
grammar is to describe the rules by which properly formed sentences are constructed
out of the parts of speech.

In o rder for words to be stored in the brain, some appropriate representation
must exist in terms of neuron activity patterns. We do not know what this represen-
tation is,nor how universal the representation is. However, assuming some represen-
tation, we can ask how the organization of words into parts of speech can be realized
in the brain. One way is to attach a label to each word that indicates what part of
speech it is,and to store each word with its label as a pattern in a uniformly connected
neural network. When we use a particular word,the label can serve to identify how it
should be used in a sentence. This is how dictionaries are organized. After each word
appears the usage—part of speech (abbreviated n, v, adj, adv, etc.)—identifying how
it may be used in a sentence. There are some technical problems with storing patterns
which incorporate labels in this way. Since the same label (part of speech) applies to
many words,this will not work in a conventional attractor network. There are ways to
overcome this problem, but we will not take this route here.

Instead we describe an alternative that makes use of network subdivisions. The
architecture is similar to the model for vision that was used in the previous section,
or the more general model of Fig. 2.4.4. We simplify the construction by considering
only three parts of speech—nouns, verbs and adjectives. We assign each part of speech
to a particular brain subdivision and assume that visual (reading) or auditory pro-
cessing separates the information stream into three parts. The separation of the in-
formation is equivalent to parsing sentences using the grammatical sentence struc-
ture, a process that is reasonably well-understood. The importance of input
processing provides a reason for the need for consistency in grammatical construc-
tion. After the initial processing parses the sentence,the parts (noun, verb and adjec-
tive) are transferred to distinct brain subdivisions. In order to generate sentences for
writing or speaking, an output processor (presumably another set of feedforward net-
works) is necessary to take the content of the brain subdivisions (noun, verb and ad-
jective) and compose a sentence. This output processor precedes the motor control of
speaking, writing or typing. It reimposes the grammatical construction of sentences.
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In this picture the brain as a whole does not store words, per se,but rather phrases
or short sentences that consist of one each of a noun, verb and adjective (n, v, adj). If
we wanted to discuss how this model is capable of continuous language we would add
a time e volution of the network that causes a transition from one word triple (n, v,
adj) to the next. We limit our consideration of this model to an understanding of the
role of subdivision by comparing a model with completely separated subnetworks with
another model that stores phrases or short sentences in a fully connected network.

The comparison is illustrated in Fig. 2.4.5. We take two networks with the same
number of neurons—a uniformly connected network and a network divided into
three parts. Since the independent pattern storage capacity grows linearly with the
number of neurons,the number of short sentences that can be stored in the uniform
network is three times the number of patterns that can be stored in each of the three
pieces of the subdivided network. For this example we take quite small networks,so
that each of the subdivisions can store three words coded appropriately. The uniform
network would then be able to store nine sentences with three words each. We choose
to imprint the nine sentences that are shown in Fig . 2.4.6 on the left. On the subdi-
vided network we can only imprint three sentences. However, twenty-seven compos-
ite sentences would be recognized.

The difference between the set of sentences that can be remembered by the full
network and the set that can be “remembered” by the subdivided network are related
to the distinction between the grammatical and semantic content of a sentence. The
complete network knows more full sentences, but does not have knowledge of the di-
visibility of the sentences into parts that can be put together in different ways. It does
not even recognize the existence of word boundaries. The subdivided network knows
the parts but does not know the relationship between them, thus it knows grammar
and it knows the individual words, but it does not know the semantic content. For ex-
ample,it does not know who it is that fell. The subdivided network generalizes from
the three imprinted sentences to twenty-seven sentences. This generalization is based
on the grammatical construction of the sentence. The fully connected network does
not generalize in this way because it remembers the specific imprinted sentences to
the exclusion of all others.

The field of linguistics as well as our intuition suggests that the actual process in
the human brain lies somewhere between these extremes. Sentences make sense or are
“grammatically correct” if properly put together out of largely interchangeable parts.
However, a recalled event is described by a specific combination. Language, whether
written or spoken, is generated by each individual out of sentences. The particular
sentences that are used were not necessarily learned. Whether read or heard,language
is understood by each individual by recognizing the component words. Yet much of
the new meaning that is learned is contained in the interrelationship of words.A spe-
cific combination of words can be remembered by an individual and repeated.
However, in general such memorization is not easy and is not as permanent as the
memory of individual words.

It is possible to achieve an intermediate balance between storage of components
and complete imprints by use of a partial interconnection between subnetworks. We
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will investigate a few properties of partially subdivided networks in Section 2.5. One
of the features of the partially subdivided network is that the synapses that run be-
tween subnetworks impose “compatibility” relations between the patterns stored in
each subdivision. Some combinations of subpatterns are stable while others are not.

The subdivided network provides a systematic method for information organi-
zation in terms of elements (the stable states of subnetworks) which are organized in
element-categories (the stable states of a particular subnetwork) and the compatibil-
ity relationships between elements as dictated by the inter-subnetwork synapses. This
is indeed reminiscent of the structure of grammar, where nouns, verbs and adjectives
and other parts of speech are categories that have elements,and there are compatibil-
ity relations among them.It is tempting to speculate that different subdivisions of the
brain are responsible for the classification of words into parts of speech,and that the
ability to combine them in different ways results from balancing the strength of inter-
subnetwork synapses and the intra-subnetwork synapses which store representations
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Figure 2.4.5 A practical example of the separation of processing into separate channels is
the separation of visual processing into color, shape and motion. A significant body of ex-
perimental literature indicates that visual processing is separated into different channels. The
channels are not fully characterized but are roughly considered to correspond to color, shape
and motion. ❚
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of each word. There is even some biological evidence for the separation of nouns and
verbs in different parts of the brain. We could take a step further and consider the re-
lationship of the subdivisions of the brain that store noun and verb representations
with other parts of the brain. For example,it makes sense to speculate that the subdi-
vision that stores nouns would be more strongly connected by synapses to sensory-
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Figure 2.4.6 Illustration of the use of subdivided networks in the context of language. A fully
connected network with enough neurons to store exactly nine sentences shown on the left
may be imprinted with and recognize these sentences. If the network is divided into three
parts it may be imprinted with only three sentences (center). However, because each sub-
network functions independently, all twenty-seven sentences (right) that are formed as com-
posites of the imprinted sentences are recognized. Comparing left and right columns suggests
the difference between semantics and grammar in sentence construction. ❚

Fully connected network Subdivided network

Imprinting and Retreival Imprinting Retreival

Big Bob ran. Big Bob ran. Big Bob ran.
Kind John ate. Kind John ate. Big Bob ate.
Tall Susan fell. Tall Susan fell. Big Bob fell.
Bad Sam sat. Big John ran.
Sad Pat went. Big John ate.
Small Tom jumped. Big John fell.
Happy Nate gave. Big Susan ran.
Mad Dave took. Big Susan ate.
Shy Cathy slept. Big Susan fell.

Kind Bob ran.
Kind Bob ate.
Kind Bob fell.
Kind John ran.
Kind John ate.
Kind John fell.
Kind Susan ran.
Kind Susan ate.
Kind Susan fell.
Tall Bob ran.
Tall Bob ate.
Tall Bob fell.
Tall John ran.
Tall John ate.
Tall John fell.
Tall Susan ran.
Tall Susan ate.
Tall Susan fell.
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processing parts of the brain as compared to motor-processing parts. In contrast,
verbs would be likely to be more strongly connected to motor control than most of
the sensory processing (but also to the motion-detection subdivision of the visual sys-
tem). This might even be part of an explanation of why words are divided into the cat-
egories of noun and verb, rather than some other categorization.

The discussion of the previous paragraph is the beginning of an approach to dis-
cussion of the architecture of the brain based on an understanding of how subdivided
neural networks function. A more detailed discussion of how this approach might
help in developing an understanding of neurophysiology will be given in Chapter 3.
However, we mention here the implication that one might use the logic of grammar
to represent more generally the function of the brain. To do this we would expand the
articulated sentence to include additional “unvoiced” words in new categories repre-
senting the state of brain subdivisions other than the language-related ones.

Analysis and Simulations of
Subdivided Networks

Our objective is to consider the advantages of subdivided networks in the context of
sensory processing or, more generally, in the context of pattern-recognition tasks.The
advantage of subdivision arises when the information is naturally subdivided so that
combinations of imprinted subnetwork states also represent desirable states to be re-
called by the network. We call these combinations of subnetwork states composite
states. For completely subdivided networks,the analysis is immediate (Section 2.5.1).
For partially subdivided networks, the analysis is discussed in Sections 2.5.2-2.5.4.
Partially subdivided networks are relevant to pattern recognition when the informa-
tion may be divided into partially but not completely independent parts. Thus a de-
termination of the interdependence of recalled subnetwork states is relevant. It is as-
sumed that for a particular pattern-recognition task, a balance is desirable between
independence and correlation of subnetwork states. The central question is whether
it is possible to achieve an adjustable intermediate balance between storage of com-
plete neural patterns and storage of composite states.

We will use partially subdivided networks consisting of a conventional network
of N neurons with Hebbian imprinting, where the strength of synapses b etween q
subdivisions of N ′ = N/q neurons are reduced by a factor g compared to the synapses
between neurons within each subnetwork. We can expect that dilution of inter-
subnetwork synapses, with g the fraction of remaining synapses, will lead to similar
results (Question 2.5.1 on p. 364). It is important to distinguish the subdivided net-
work from a randomly diluted network. Random dilution would sever synapses se-
lected at random. Dilution of inter-subnetwork synapses results in storage of com-
posite patterns. This would not occur for random dilution.

Consider a network with predefined subdivisions. The training of the network is
performed by imprinting complete neural states. Since subdivision is favorable only
when it is desirable to store and recognize composite patterns, we measure the stabil-
ity of various composite patterns such that the state of each subnetwork corresponds

2.5
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to its state for one of the imprinted patterns.* Thus,two questions to be asked about
the capacity of the network are: (1) How many complete neural states can be stored
in the network? and (2) How many composite patterns are stored in the network?

2.5.1 Completely subdivided networks
For either fully connected or completely subdivided networks, the capacity is ob-
tained from the results of Section 2.3 on fully connected networks. The maximum ca-
pacity of a large attractor network of N neurons for storage of complete neural states
is c N, where c = 0.145 for Hebbian learning when a small fraction of errors in re-
trieval is allowed. For a network of N neurons completely subdivided into q subdivi-
sions,the maximum capacity f or complete neural states is cN/q, which is lower than
for the undivided network. However, since storing cN/q states results in all possible
combinations of these substates being stored,the number of composite states stored
is ( cN/q)q, which is much larger than c N for large N and not too large q. This result
follows directly from the linear dependence of the network capacity on the number
of neurons.

As an example, for a network of 100 neurons, the storage capacity is 14.5 states
for the full network. When subdivided into two halves, the network capacity is 7.25
full memories,and (7.25)2 − 7.25 = 46 composite patterns in addition to the full mem-
ories. When subdivided into four subnetworks,the same 100 neurons store 3.75 com-
plete states and 195 composite patterns. This example is described and simulated
more fully below (see Fig. 2.5.1 through Fig. 2.5.4).

As an exercise we might calculate the number of subdivisions that results in stor-
age of the largest number of composite patterns:

(2.5.1)

For this number of subdivisions, the number of neurons in a subdivision would be
only e / c ≈ 19. The number of memories stored (assuming that the usual formula ap-
plies, which is only approximate in this small subnetwork limit) is e ≈ 2.7, or less than
3 on average. The total number of independent memories stored is:

(2.5.2)
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* In the present discussion we neglect the inversion of imprinted substates. For example, for a network
subdivided into two parts, we could consider a state formed out of the right half of one imprinted pattern
and the left half of the same pattern inverted. Such states may also be stable.A bias in the relative number
of ON and OFF neurons (see also Section 3.2.13),as is found in the brain, would lead such states to be less
relevant.
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This subdivision size is based on considering the maximum number of composite
states which can be stored.

The main problem with this analysis is that it only applies if the information can
be divided into independent parts consisting of N/q bits. We could also consider a
more extreme case where all bits are independent. In this case there would be no need
for synapses (or storage) since all 2N patterns are possible. Nevertheless,the implica-
tion that an optimal subnetwork size only stores approximately e states may be of sig-
nificance when we can adjust the pattern-recognition task to suit the capabilities of
the neural architecture.

Table 2.5.1 indicates the potential advantage of subdivision if the information
can be appropriately subdivided into aspects that can be mapped onto subdivisions
of the network. The human brain (with 1011 neurons) has left and right hemispheres
that are further subdivided into a hierarchy of subdivisions. Small divisions are some-
times modeled as having about 104 neurons in number. Further subdivisions into still
smaller neuron groups may also occur in the brain.

2.5.2 Summary of results on partially subdivided networks
In Section 2.5.3 and Section 2.5.4 we analyze networks that are partially subdivided.
In Section 2.5.3 simulations are used and in Section 2.5.4 a signal-to-noise analysis is
used. Before proceeding, we summarize the results.All of the results on partially sub-
divided networks depend on the degree of subdivision. g sets the relative strength of
inter-subnetwork synapses and intra-subnetwork synapses. For g = 1 we have a fully
connected network,and for g = 0 we have a completely subdivided network. The sim-
ulations and signal-to-noise analysis show that

1. For g = 1 the maximal number of imprinted patterns may be stored and for g = 0
the minimal number of imprinted patterns may be stored with a continuous in-
terpolation between them.

2. For g = 1 the lowest number of composite patterns may be stored and for g = 0
the largest number of composite patterns may be stored with a continuous in-
terpolation between them.

A n a l ys i s  an d  s im u l a t i on  o f  sub d i v i d ed  n e two r ks 347

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 347
Title: Dynamics Complex Systems Short / Normal / Long

# of patterns in # of patterns in # of patterns in maximal 
# of Neurons full network 2 subdivisions 3 subdivisions qopt # of patterns

100 1.45x101 5.26x101 1.13x102 5 1.48x102

1000 1.45x102 5.26x103 1.13x105 53 1.04x1023

10000 1.45x103 5.26x105 1.13x108 533 3.01x10231

Table 2.5.1 Table of the storage capacity for composite patterns in various subdivision
schemes. If the number of composite patterns stored is maximized, the number of subdivi-
sions qopt and the number of memories stored is indicated. Note that the number of imprints
needed to store a large number of composite patterns is not great. In particular it is only
three for all cases in the last column.
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3. For particular values of g a well-defined balance between complete patterns and
composite pattern storage is achieved.

4. a. We should distinguish bet ween com po s i te patterns that have some su b d ivi-
s i ons with the same impri n ted pattern in them . For ex a m p l e , for three su b d i-
vi s i on s ,t h ere are com po s i te patterns with two of the su b d ivi s i ons having the
same impri n ted pattern in them and the third su b d ivi s i on with a differen t
i m pri n ted pattern . Pa t terns that have more than one su b d ivi s i on with the
same impri n ted pattern con ti nue to be stable to high er va lues of g. More
s pec i f i c a lly:

b. The simulations study a network subdivided into four subdivisions.A com-
posite pattern formed by setting two of the subdivisions to one imprinted pat-
tern and two subdivisions to another is stable to higher values of g.

c. The signal-to-noise analysis considers networks with q subdivisions. Let a be
the smallest number of subdivisions occupied by an imprinted pattern in a
particular composite pattern. Then for low storage,this pattern will be stable
for all g satisfying

(2.5.3)

The significance of result 4 is that we can use the value of g to impose correlations
between patterns stored in different subnetworks by stabilizing some composite
patterns and not others.

5. When the number of subdivisions becomes large, Eq.(2.5.3) ceases to apply, and
it becomes impossible to selectively impose correlations between patterns stored
on different subnetworks. If we try to reduce g to allow composite states,then all
composite states become possible. As a consequence, we learn that beyond a cer-
tain number of subdivisions, partial subdivision is essentially impossible. The
network either behaves as a fully connected network or as a completely subdi-
vided network. For many purposes it is thus undesirable to have more than a few
subdivisions. The crossover point is calculated to occur for approximately seven
subdivisions. This result has some significance for our understanding of the sub-
division in the brain and brain function. For example,it is consistent with the 7
± 2 rule of short-term memory. It is also of significance for our understanding of
complex systems in general.

Another way to state result 5 is in the language of Section 1.3.6. A uniform net-
work may be categorized as a complex material. Removing part of the network affects
the smaller part but does not affect the larger part of the network. In contrast, for less
than approximately seven subdivisions,at intermediate values of g, subdivided neural
network function depends on each of its subdivisions. It is therefore in the category
of complex organisms. For greater than seven subdivisions it can no longer be in the
category of a complex organism. For large enough g it behaves as a fully connected
network and is a complex material. For smaller g the network decouples and becomes

    
g <

1

q −2a +1
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a set of independent networks. In this case it is unchanged under subdivision, like a
thermodynamic system.

2.5.3 Simulations of partially subdivided networks
To evaluate the behavior of networks that are partially subdivided rather than com-
pletely subdivided,it is natural to perform simulations. These simulations,analogous
to those of fully connected networks, test the stability of imprinted and composite
neural states. In the following we use Hebbian imprinting and synchronous updating
of an attractor network with 100 neurons partially subdivided into either two or four
subdivisions. The imprinted patterns are chosen at random with an equal probability
of the two neuron activities ±1. The procedure used for performing the simulations
of subdivided networks is:

1. Generate p complete random neural states:

i = ±1 = {1, ...,p}, i = {1,...,N} (2.5.4)

2. Imprint these neural states on the synapses of the neural network:

(2.5.5)

3. Write the matrix of synapses in block form corresponding to q equal size neuron
subdivisions

(2.5.6)

where each superscripted J is an N ′ × N ′ matrix, N ′ = N/q. Diminish off diago-
nal blocks of synapses, which connect between q different subnetworks of equal
size, by a factor g.

(2.5.7)
J i,j ← g J i,j

4. Find the number of imprinted and composite states that are stable under updat-
ing of the neurons.A composite state is composed from imprinted states in each
subdivision. In general:

(2.5.8)

    q ∈{1,..., p},i = {(q − 1) ′ N +1,..., N}
  i = i

q

  M
      2 ∈{1,..., p},i = { ′ N + 1,...,2 ′ N }M    i = i

2

    1 ∈{1,..., p}, i = {1,..., ′ N }    i = i
1

    i, j = {1,...,q},i ≠ j
    i = {1,...,q}  J

i ← J i

      

J =

J 1 J 1,2 L J 1,q

J 2,1 J 2 J 2,q

M O M
J q,1 J q,2 K J q
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The number of stable composite states is:

(2.5.9)

In the simulations, the number of stable memories for small p are counted by
enumerating all combinations. For p greater than a few, the number of stable
states is obtained by sampling. In both cases, averaging over many sets of im-
printed states is performed. Note that no errors are allowed in recall.

Fig. 2.5.1 shows the results of simulations of a network with 100 total neurons
and two subdivisions. It shows separately the number of stable composite states that
were not imprinted (Fig. 2.5.1(a)),and the imprinted states (Fig. 2.5.1(b)).Fig. 2.5.2
shows the total number of stable states. Different curves show the result of diminish-
ing the inter-subnetwork synapses by g ranging from 0 to 1 in increments of 0.1. The
maximum number of stable imprinted states is for a network that has not been sub-
divided, g = 1. The maximum is obtained for 13 or 14 imprints and is about 11 mem-
ories. This is the same as the earlier Fig. 2.2.6. The maximum number of composite
states recalled is for the completely subdivided network. The maximum is obtained
for approximately 7 imprints, resulting in recall of 45 composite states. These num-
bers approximate the expected results given by the analytic treatment. Note that the
analytic treatment need not give exactly the same result as the simulation, because it
assumes that N, N ′ are very large, and it allows some error in the network recall.

    

pstable = i , J i ,j j
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Figure 2.5.1 The number of stable memories after imprinting p patterns (horizontal axis) on
a subdivided neural network with 100 total neurons and two subdivisions. (a) shows the num-
ber of stable composite patterns composed of combinations of imprinted subnetwork patterns
where the complete pattern is not an imprinted one. (b) shows the number of stable imprinted
patterns. Note the difference in vertical scale. The different curves are labeled by the factor
g which weakens the synapses connecting different subnetworks. The curves labeled 0 are for
a completely dissociated network. ❚
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Figure 2.5.2 The total number of stable composite and imprinted states after imprinting p
patterns on a subdivided neural network with 100 total neurons and two subdivisions. The
value of g is indicated on each curve. ❚

Of particular interest in these simulations is the possibility of partially subdivid-
ing the network and achieving an intermediate balance between storing imprinted
states and composite states. For interconnection strengths reduced by g = 0.3, and
with 9 imprints of which nearly all are recalled,the number of additional composite
states recalled is about 10. This example of the network subdivided into two parts il-
lustrates the balance between complete and composite memories. However, the na-
ture of stability of subnetwork combinations in a subdivided network is more effec-
tively illustrated with additional subdivisions.

Imprinting on a network with four subdivisions results in various possibilities for
composite patterns. As in step 4 (p. 349), letting i

1 be the state of the i th neuron in
the 1 imprint, we can write the composite states using the notation ζi → ( 1, 2, 3,

4). The distinct types of vectors whose stability can be tested are distinguished by the
equality or inequality of the i as shown in Table 2.5.2. The number of stable memo-
ries of each type for 100 neurons and after p imprints is plotted in Fig. 2.5.3, and to-
taled in Fig. 2.5.4.

For a completely subdivided network (g = 0) the storage capacity for imprints is
just over 3, compared with the full network capacity of 11. The number of composite
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states recalled is nearly 400. When interconnection strengths are reduced by g = 0.2,it
is possible to store between 6 and 7 complete memories while enabling the stability of
70 additional composite states at the same time. These composite states are roughly
equally divided between those with two equal substates, and those with two & two
equal substates. Other values for the interconnection strength can provide a distinct
balance between the independence and dependence of subnetwork states.

Systematically, it is possible to see that composite patterns that have more than
one subdivision containing the same imprinted pattern remain stable at higher val-
ues of g. When all substates arise from different imprinted states (Fig. 2.5.3(a)), the
stability decreases very rapidly as g increases. The number of substate combinations
with two equal substates (Fig . 2.5.3(b)) decreases almost as rapidly. In contrast, the
stability of states with two & two equal substates (Fig. 2.5.3(c)), diminishes much
more slowly. The number of states with three equal substates (Fig. 2.5.3(d)) is in-
significant in these simulations. The greater stability of states with two & two equal
substates at higher values of g is reasonable because the synapses between the subdi-
visions can contribute to the stability of each of the two parts of the composite pat-
tern that arise from different imprints, even though the interactions between the two
parts tend to destabilize each other. This will become more apparent through the an-
alytic discussion in the following section.

2.5.4 Signal-to-noise analysis of subdivided networks
A signal-to-noise analysis of the stability of composite patterns in partially subdivided
networks requires some care, because there are several different contributions to the
signal and to the noise. Before we perform the analysis, it is helpful to discuss these
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Category Number of Such States Label Schematic

(α1,α1,α1,α1) p Imprinted states

(α1,α1,α1,α2) 4p(p −1) Three equal substates

(α1,α1,α2,α2) 3p(p − 1) Two & two equal substates

(α1,α1,α2,α3) 6p(p − 1)(p − 2) Two equal substates

(α1,α2,α3,α4) p(p − 1)(p − 2)(p − 3) Unequal neural substates

Table 2.5.2 Different types of composite states for a network subdivided into four parts. The
first type consists of substates that all originate from the same imprinted state—an imprinted
state. The second type consists of substates of which three are from the same imprinted state
and one originates from a different imprinted state. The other types are similarly defined. The
number of states of each type is indicated (it is assumed that p ≥ 4) in the second column.
A label for each type, which is used in the figures and in the text, is given in the third col-
umn. A schematic is indicated in the last column. Note that the number of states in the last
category is largest when p becomes large enough, however, for p < 9, the second to last cat-
egory has a larger number of states. ❚
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contributions qualitatively. Confirmation of the qualitative discussion can be found
in the details of the analysis below. Fig. 2.5.5 illustrates an example of a composite pat-
tern formed from four imprinted patterns in a subdivided network with eight total
subdivisions. We will analyze the stability of a neuron in the first subdivision. The
state of this neuron is initially chosen from the first imprinted pattern. We must de-
termine ifit retains this value after an update of the network. The synapse matrix con-
tains one contribution from the imprinting of each of the imprinted patterns,and the
synapses between subdivisions are reduced by the factor g.

The signal term that tries to maintain the stability of the neuron in the first sub-
division arises from the imprint of the first pattern. However, only synapses to other
neurons whose activity is set according to the first imprinted pattern contribute to the

A n a l ys is  a n d  s im ul a t i on  o f  su bd i v id ed  n e t wo r ks 353

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 353
Title: Dynamics Complex Systems Short / Normal / Long

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30

0
0.1

0.2

0.3

Three equal substates(d)

0
5

10
15
20
25
30
35
40
45
50

0 10 20 30

0

0.1

0.2

0.3

Two & two equal substates

0.4

(c)

0

50

100

150

200

250

0 10 20 30

0

0.1

0.2

0.3

Two equal substates(b)

0

20

40

60

80

100

120

140

0 10 20 30

0

0.1

0.2

0.3

Unequal neural substates(a)

0

2

4

6

8

10

12

0 10 20 30

0
0.1

0.2 0.3 0.4

Imprinted patterns
(e)

p

p p

p p

Figure 2.5.3 Same as Fig. 2.5.1 but for four subdivisions. Each panel (a)–(e) is for a differ-
ent type of composite pattern (see Table 2.5.2). ❚
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signal. Thus, the signal arises from synapses to other neurons within the first subdi-
vision,and also from synapses to neurons in the second subdivision, but not to neu-
rons in any other subdivisions. The signal from the second subdivision is reduced
from what it would be in a fully connected network by the factor g.

The noise terms arise from the imprinting of all the other patterns. However,
there are special problems with the subdivisions that have other patterns present in
them. These subdivisions are trying to recreate their own pattern in the full network.
For example,the third, fourth and fifth subdivisions in Fig. 2.5.5 all contain the sec-
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Figure 2.5.4 Total number of stable composite and imprinted patterns corresponding to the
sum of Fig. 2.5.2(a)–(e). (a) shows a linear scale, and (b) shows a logarithmic scale for the
same results. ❚
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ond imprinted pattern. The neurons in these subdivisions act coherently to try to in-
fluence the neuron in the first subdivision to take its value according to the second
imprinted pattern. Its value in the first imprinted pattern, whose stability we are test-
ing, may or may not be the same as its value in the second imprinted pattern.On av-
erage,half of the neurons in the first subdivision will receive an influence that will try
to flip them. Because all the neurons in the third, fourth and fifth subdivisions act co-
herently to try to reconstruct their pattern in the first subdivision, we must calculate
their combined influence as a contribution to the noise which may destabilize the pat-
tern in the first subdivision. It is important that this destabilizing influence is dimin-
ished by the factor g, since in a fully connected network the composite pattern would
be unstable for this reason.

An important distinction between two cases arises in our analysis when we con-
sider the combined effect of all of the other patterns present in the composite state.
There are a total of four patterns in Fig. 2.5.5. This means that there are three coher-
ent noise terms that are trying to destabilize the first pattern. When we calculate the
effect of these noise terms, we must decide whether we can average them together or
whether we must add their effects. The correct answer depends on how many patterns
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Figure 2.5.5 S c he ma t ic illustra t ion of a composite pattern re p re s e nted by a subdivided ne t-
work. Each of the distinct shadings ind icates the re g ion of the network that cont a i ns a par-
t icular imprinted pattern. In the illustrated case, the network has eig ht subdivisio ns and the
composite pattern is fo r med from parts of four imprinted patterns, 1 t h rough 4. For sim-
p l icity the parts of the network that contain the same pattern are shown adjacent to each
o t he r. The values of a1 t h rough a4 i nd icate how ma ny subdivisio ns re p re s e nt each of the im-
p r i nted patterns. ❚
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there are. When there are only a few patterns, we cannot average them together, but
when there are many, we can. By the analysis discussed below, the crossover point oc-
curs roughly at seven patterns.A simple way to understand this result is to realize that
seven equal contributions to the noise will add together (have the same sign) 1 in 27

times, or just under 1% of the time. As discussed in the case of a fully connected net-
work (Section 2.2.5),this is the limiting fraction of unstable neurons that can be tol-
erated in a stable pattern. Thus, when there are more than seven patterns,it is not nec-
essary to add their contributions to determine the impact of the pattern stability; it is
enough to average them.

The existence of a crossover in the behavior of the subdivided network with seven
parts of a composite pattern is the basis of our discussion of the 7 ± 2 rule. In essence,
when we can average over the effects of other subdivisions,then each subdivision does
not influence the other subdivisions directly, only the average effect is relevant. In
contrast, when there are no more than seven different patterns, which is always true
when there are no more than seven subdivisions,then the effect of each of the subdi-
visions must be considered explicitly in evaluating the stability.

We review and introduce additional notation for the signal-to-noise analysis. We
assume a network comprised of q subnetworks each containing N ′= N/q neurons that
are fully internally connected but more weakly connected to each other. The ratio of
connection strengths is controlled by the parameter g ∈ [0,1]. g = 0 corresponds to a
completely subdivided network and g = 1 corresponds to a fully connected network.
For arbitrary g, the synaptic connection matrix is written as:

(2.5.10)

where x is the integer part of x. The first case corresponds to i and j in the same block
along the matrix diagonal,i.e.,in the same subnetwork. J ′ is the usual Hebbian matrix:

(2.5.11)

The composite pattern that we wish to test the stability of is formed out of pieces
of imprinted states. As in the simulations, it is important to distinguish how many
subdivisions have the same imprinted pattern. We test the stability of a trial compos-
ite pattern written in the form:

(2.5.12)

This pattern is constructed by taking the first a1 subdivisions from the corresponding
part of the first pattern. The next a2 subdivisions are taken from the second pattern
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and so on. In general there are a subdivisions extracted from the pattern . We de-
note the number of {a } that are non zero by p̂. The sum over all a is the total num-
ber of subdivisions:

(2.5.13)

We start by considering the stability of the first subdivision by looking at the sta-
bility of the first neuron

(2.5.14)

and separate J into the part due to the subdivision itself and all the rest, which is mul-
tiplied by the factor g compared to the usual expression:

(2.5.15)

It is helpful to consider separately the part of the j sum that corresponds to each of the
parts of the composite pattern. The first imprinted pattern appears in the composite
pattern not only in the first subnetwork, but in the first a1 subnetworks. We also have
to consider each of the other patterns in the composite state.To simplify the notation,
we will look at only the second pattern (in the subdivisions {a1 + 1,...,a1 + a2}) and
add the rest at the end:

(2.5.16)

With this separation of the sum over j, we can now replace the values of sj with their
corresponding values in terms of the imprinted patterns. The first two sums have
sj = j

1 and the third term has sj = j
2. We also substitute the value of s1 = 1

1 which ap-
pears in each of the terms:

(2.5.17)

The signal will arise from the imprinting of the first pattern, = 1, but only in the
first two terms above. All the rest of the terms will give rise to the noise. However, we
must also be careful in the third term how we treat the contribution of the imprint-
ing of the second pattern = 2. So we separate these parts from each of the terms:
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(2.5.18)

We can now resolve all squares of variables to +1. When we do this,the first two sums
can be directly evaluated, since they are sums over unity. Note also that the middle
sum in the square brackets is a summation over terms that are independent of j, and
can be evaluated by taking out the factor 1

1 = 1
2:

(2.5.19)

The signal term is now visible. The first part of the signal arises from the first subdi-
vision acting upon itself,and the rest is from the other subdivisions that contain the
first imprinted pattern. We can take N >> 1 and substitute q = N/N ′ to obtain the
expression:

(2.5.20)

To evaluate the noise we must pay attention to the special terms mentioned be-
fore. We have succeeded to resolve Eq.(2.5.19) in such a way that each of the remain-
ing terms is uncorrelated in sign.When we reached this point in the uniform network,
all we had to do was to count the number of terms—the number of steps in the ran-
dom walk—and use a root mean square evaluation of its magnitude. In this case,
however, all of the steps do not have the same magnitude. This is a particular prob-
lem for the special term in the middle of the square bracket. There will be one such
term for each of the imprinted patterns. We can rewrite the noise term by replacing
the uncorrelated values with the notation ±1. This makes it easier to count how many
terms there are in each sum:
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(2.5.21)

In the last expression we have restored the contribution of all of the other parts of the
composite pattern explicitly. We can now see that there are three kinds of steps in our
random walk,those that have a coefficient of 1/N of which there are (N ′ − 1)(p − 1),
those with a coefficient of g/N of which there are a total of

(2.5.22)

and a special set of p̂ − 1 terms with coefficients of the form

(2.5.23)

Because of this last set of terms—the coherent noise terms—we have to be much more
careful about our analysis than in the uniform network case. The magnitude of the
first two kinds of terms are small as N becomes large, and the number of terms is
large. The coherent noise terms may be large even for large N, and their number can
be small since it only increases with ̂p. For the uniform network we considered a root
mean square estimate of the noise. This root mean square estimate only works,how-
ever, if the number of terms is large. Thus we must distinguish between the cases
where p̂ is small and when p̂ is large.

Wh en we stu d i ed the sign a l - to - n oise analysis of the fully con n ected net work and the
retri eval of i m pri n ted pattern s , we found that for low stora ge , p < < N, the noise disap-
pe a red and retri eval of the impri n ted patterns would occ u r. Th en we could con s i der the
s tora ge capac i ty as p i n c re a s ed . For com po s i te pattern s , the situ a ti on is differen t , bec a u s e
the noise does not disappear for low stora ge . Thus we first stu dy the low - s tora ge case.

We start by considering two estimates of the magnitude of the noise relevant for
p̂ large and small respectively. For the case of p̂ large we can use a root mean square es-
timate of the noise because the number of independent terms is large. To obtain the
noise we use a generalization of the random walk with different step sizes Di (left half
of Eq. 1.2.51):

= √ΣDi
2 (2.5.24)
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In the limit of low storage p << N and not too many subdivisions q << N only the co-
herent noise terms are important. From Eq.(2.5.23) this gives us a root mean square
noise

(2.5.25)

Whenp̂ is small we cannot average the noise terms and consider only the typical value.
Thus we consider the maximum possible effect of the coherent noise terms. This oc-
curs when all values of ±1 are −1. The magnitude of the maximum noise is

(2.5.26)

If the signal is greater than the maximum noise, then the pattern must be stable.
However, if the signal is significantly greater than the typical noise, but less than the
maximum noise, then it may be stable. If the signal is about the same as the typical
noise, then the pattern is almost certainly unstable.

Thus, we can guarantee retrieval of a composite pattern if the maximum possi-
ble noise is less than the signal. This places a limit on g determined by the inequality

(2.5.27)

If g = 0, this inequality is always satisfied. This is just the completely subdivided case
that we know leads to stability of composite patterns. If g = 1,this condition becomes:

a1 > q/2 (2.5.28)

This means that the first pattern must have more than half of the subdivisions in or-
der to be stable. How we define subnetworks is arbitrary in the case of g = 1, but the
meaning of this statement is that a pattern is stable only if it occupies more than half
of the network. However, this must apply to each of the parts of the composite pat-
tern,and thus implies that no composite pattern except the trivial one of a single im-
printed pattern can be stable in the case g = 1.

If we assume that 1 > g > 0, we can simplify the inequality in Eq. (2.5.27) to
obtain:

(2.5.29)

or

(2.5.30)

This limit on g ensures that the part of the composite pattern in the first subnetwork
is stable. In order for all parts of the composite pattern to be stable, g must be smaller
than the minimum value of this expression taken over all subnetworks:
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(2.5.31)

where

a = min a (2.5.32)

is the minimum number of subnetworks containing any one of the imprinted pat-
terns. The greatest restriction on g arises from demanding the stability of the smallest
part of the composite pattern (smallest a ). This result is the same as Eq. (2.5.3).

For p̂ large, this limit on g is overly severe, since the maximum noise occurs in-
frequently. In this case we use the root mean square estimate of the noise,Eq.(2.5.26).
However, stability of the pattern does not result when the signal is just greater than
the noise. As in the signal-to-noise analysis of the fully connected network
(Section 2.2.5),it must be sufficiently greater to ensure that only about 1% of the neu-
rons will be unstable. The mean probability that a given neuron is unstable is given by
integrating the probability of the noise being less than the signal. We thus require the
signal-to-noise ratio to be greater than the number r = 1/√ c ≈ 2.64:

(2.5.33)

This gives a limit on acceptable g of

(2.5.34)

If we assume that the maximal allowable error rate at any neuron in any subdivision
is given by this inequality, then we have the result:

(2.5.35)

The limit in Eq.(2.5.35) corresponds to a certain probability, rather than a guarantee,
that subnetworks of the composite pattern are stable. This is important,since requir-
ing that all parts of the composite pattern are likely to be stable is a much stricter con-
dition. Similarly, requiring that at least one of the parts is likely to be stable is a much
weaker condition. For example,if all of the subdivisions have distinct imprinted pat-
terns {a = 1} and each has a probability P of being stable then the probability that all
are stable is only Pq and the probability that at least one is stable is 1 − (1 − P)q. Thus,
as a function of g, composite patterns become progressively unstable in more subdi-
visions in the vicinity of the limit in Eq. (2.5.35).

The analysis that we have performed reveals an interesting limitation to the de-
gree of useful subdivision if we consider the role subdivision may play in the brain, or
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in an artificial pattern-recognition task. The second limit we obtained in Eq.(2.5.35)
is a higher one than the first limit in Eq. (2.4.37) when there are many subdivisions.
Why is this a problem? Because it indicates that once the number of subdivisions be-
comes large, for g values that satisfy Eq.(2.5.35),essentially all possible combinations
become stable, but some parts will be stable at higher values of g and some at lower
values. Moreover, individual subdivisions do not affect the stability of the state. In
contrast, when there are only a few subdivisions, we can control which combinations
are stable using the value of g, and the state of each subdivision matters.

We can estimate the crossover point where the number of subdivisions becomes
too large by looking at a pattern where each subdivision has a different imprinted pat-
tern a = 1, for = 1,...,q, and equating the two limits

(2.5.36)

or

q = r 2 + 1 ≈ 7.94 (2.5.37)

This suggests that q should be less than this value for effective use of partially corre-
lated information stored by subdivisions in a network.It is possible to suggest that this
limitation in the number of useful subdivisions may be related to the characteristic
number of independent pieces of information a human is able to “keep in mind”at
one time. This number is conventionally found to be 7 ± 2. The comparative rigidity
of this number as compared with many other tests of variation between human be-
ings suggests that it may indeed be tied to a fundamental limitation related to the ar-
chitecture of neural networks as we have found.

Up to this point we have been considering the case of low storage. In the case of
high storage, we must consider all three types of noise terms found in Eq. (2.5.21)
rather than just the coherent terms. We should still distinguish between the cases
where p̂ is small or large. In either case, we estimate the contribution of the first two
types of terms as a random walk. However, only for p̂ large can we treat the coherent
terms as a random walk.

For p̂ large we calculate the typical noise from the three types of terms as:

(2.5.38)

This can be simplified using N,N ′, p >> 1 to obtain:

(2.5.39)

The relationship between the storage capacity, which limits the value of p/N, and the
interconnection strength g can be found by setting the signal-to-noise ratio to be less
than r = 1/√ c. This gives
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(2.5.40)

We have replaced a1 by a. Note that the numerator is zero when the maximum value
of g, according to Eq. (2.5.35), is reached.

For p̂ small we must take the maximum value of the coherent noise terms. This
value should be subtracted from the signal before we compare the result with the root
mean square value of the rest of the noise. Separating the two noise terms from each
other we have:

(2.5.41)

(2.5.42)

or using N,N ′, p >> 1

(2.5.43)

Subtracting the first noise term from the signal and insisting the result is greater than
r times the rest of the noise we have:

(2.5.44)

This implies that the number of patterns that can be imprinted,and the correspond-
ing composite patterns recalled, is limited by:

(2.5.45)

where we have again replaced a1 by a. Note that the numerator is zero when the max-
imum value of g at low storage is reached according to Eq. (2.5.32). The storage ca-
pacity increases for lower values of g if a is small compared to q ; i.e., for a composite
pattern. If we ask about the retrieval of only the imprinted patterns, then we can use
the same expression with a = q or

(2.5.46)

In this case the maximum storage is for g = 1, as we would expect for the imprinted
patterns.
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Question 2.5.1 Compare the signal-to-noise analysis presented above
with a signal-to-noise analysis of a subdivided network where the sub-

division is accomplished by diluting inter-subnetwork synapses.Specifically,
assume that a fraction g ′ of synapses between neurons in different subdivi-
sions remain after dilution.

Solution 2.5.1 Since the signal-to-noise analysis of a diluted network fol-
lows very similar steps to the analysis of a network whose inter-subnetwork
synapses are multiplied by the factor g, we mention only the differences in
the two treatments.

Reducing the number of terms in a sum by the factor g ′ leads to the
same effect on its average value as multiplying each of the terms by the same
factor. However, there will be a different effect on a root mean square esti-
mate of the magnitude of a random walk.A random walk with fewer steps,
by a factor g ′, will be reduced in magnitude by a factor of √g ′ rather than g ′.

Thu s , the analysis of the signal is the same for diluti on as that given in the
text except for the su b s ti tuti on of g by g ′. This also applies to the low - s tora ge
a n a lysis of the co h erent noise term s , ei t h er for small p̂ or for large p̂. In each
of these cases, the sums over indivi dual synapses are perform ed direct ly, ra t h er
than as a ra n dom walk, and thus g can be direct ly rep l aced by g ′.

The only place in the analysis where the dilution gives a different result
is in the discussion of the noise terms that limit the storage capacity. These
terms, in Eq.(2.5.39) and Eq.(2.5.43), can be found for the case of dilution
by substituting √g ′ for g. The resulting noise terms are larger for the case of
dilution, resulting in a smaller storage capacity as compared to the effect of
multiplying all the inter-subnetwork synapses by the same factor. ❚

From Subdivision to Hierarchy

In the last section our analysis of the properties of partially subdivided networks led
to a conclusion that begs for further discussion. Our motivation for investigating the
properties of subdivided networks was to discover the underlying purpose of func-
tional subdivision. We were able to demonstrate that subdivision does provide a
mechanism for storage of patterns with a particular composite structure. However, we
encountered a fundamental limitation. Once there are too many subdivisions, the
ability to store correlations between the subdivisions is diminished. In this section we
review the argument that led to this conclusion and discuss further implications.

A fully connected network stores complete neural patterns.On the other hand, a
completely subdivided network stores independent subpatterns without correlations
between them. For most applications it is reasonable to assume that different aspects
of the information are partially independent. This requires the ability to balance the
storage of independent subpatterns and yet retain correlations between them. To
achieve this balance requires an intermediate degree of interconnection between the

2.6
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subdivisions. This is possible, we found, when the number of subdivisions is small.
However, when the number of subdivisions is large there is essentially no intermedi-
ate possibility: either the connections are strong enough to store complete states or
they are weak enough to allow all combinations. What is particularly surprising is that
the meaning of the term “large” is any number greater than roughly seven. While this
is consistent with the well established 7±2 rule of short term memory, the implica-
tions extend yet further.

We are limited to a maximum of seven subdivisions, and yet the advantages of
subdivisions for storage of independent aspects of information extends to many more
subdivisions. An architecture that could provide further use of subdivision within the
limitation is a hierarchically subdivided system. By keeping the branching ratio less
than seven, we would construct a network formed of small networks that are strongly
coupled, large networks that are weakly coupled, and still larger networks that are
more weakly coupled. At each level of organization the strength of the connections
within each subdivision must be strong enough compared to the connections be-
tween subdivisions to establish the integrity of the subdivision.Yet they must be weak
enough to allow for the influence of the other subdivisions.Our model of the brain is
no longer a model of interacting neurons, but rather of interacting units that at each
level of organization attain an additional degree of complexity.

The brain has been found to be subdivided in a hierarchical fashion, and at least
at the level of the major structures,this hierarchy does not have a high branching ra-
tio. The brain is formed from the cerebrum, the cerebellum and the brain stem. The
cerebrum is divided into two hemispheres. Each hemisphere is divided into four
lobes.Each lobe is further divided into smaller functional regions;however, there are
fewer than ten of these per lobe. The brain stem can also be subdivided into a hierar-
chy of functional regions. One could argue that the mapping of these structures re-
flects our own abilities caused by the 7±2 rule that lead us to divide the brain into
only a few parts when we study it. This, however, misses the point of our observa-
tions. Our conclusions predict the relative strength of interdependence of different
sections of the brain. This prediction would require additional systematic studies to
confirm.

As we em ph a s i zed in the introdu cti on to this boo k , our approach is pri m a ri ly a
s t a ti s tical on e . However, i f the sys tem we are inve s ti ga ting is com po s ed out of on ly a
few disti n ct com pon en t s ,t h en the stati s tical approach must have limited abi l i ty to de-
s c ri be it.Wh en there are on ly a few com pon en t s ,e ach one should be spec i f i c a lly de s i gn ed
for the purpose to wh i ch it is assign ed . A gen eral stati s tical approach does not captu re
t h eir specific natu re . This is the re a s on the pref ace recom m ends the need for com p l e-
m en t a ry inve s ti ga ti on of p a rticular aspects of i n d ivi dual com p l ex sys tem s . Here , we
wi ll con ti nue to pursue other gen eral principles thro u gh the stati s tical stu dy of t h e s e
s ys tem s . It is natu ral to ask wh et h er we can gen era l i ze the con clu s i ons from the stu dy
of n eu ral net works to other com p l ex sys tem s . Several aspects of this qu e s ti on are dis-
c u s s ed in the fo ll owing secti on and others wi ll arise in later ch a pters of this boo k .
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Subdivision as a General Phenomenon

In this section we pursue the question of the necessity of subdivision and substruc-
ture in complex systems. All of the examples of complex systems that we will discuss
in this text have the property that they are formed from substructures that extend to
essentially the same scale as the whole system. We will review them as they are intro-
duced more fully later in the text. Here we summarize some examples. The human
body has nine physiological systems further divided into organs. Proteins have sub-
structure formed of -helices and -sheets, and are often organized together with
other proteins in quaternary structures.Life on earth considered as a complex system
is divided among climates,ecosystems,habitats and species. Weather is formed out of
large-scale air and ocean currents,storms and regions of high and low pressure. In all
of these systems the largest scale of subdivision comprises fewer than 100 parts,and
more typically of order 10 parts of the whole system. Why should this be the case?

Our discussion of subdivision in this chapter has been based on the function of
the neural network as a memory. The importance of both combinatorial expansion of
composite states and the constraints upon them due to interactions between subnet-
works played a role. Similar considerations may apply in some of the other complex
systems. For example,in the immune system the importance of composite states is ap-
parent in the generation of a large variety of immune receptors by a process that com-
bines different segments of DNA.A related discussion of substructure in the context
of evolution will be included in Chapter 6.

In this section we adopt a different approach and relate substructure to the cate-
gories of complex systems that were articulated in Section 1.3. We argue qualitatively
that substructure is necessary for what we generally consider to be a complex system.
More specifically, we distinguish between a complex material and a complex organ-
ism. As defined in Section 1.3, a complex material is a system from which we can cut
a part without significantly affecting the rest of the system.A complex organism is a
system whose behavior depends on all of its parts and so is changed when a piece is
removed. We propose that complex organisms require substructure.

In a system formed out of many interacting elements,each element may interact
directly with a few or with many other elements.Our concern is to establish the con-
ditions that imply that the behavior of a particular element depends on various sets
of elements that comprise a significant fraction of the system. When this is true we
have a complex organism.Otherwise,parts of the system may be removed without af-
fecting the rest,and the system is a complex material or the system may even be a di-
visible thermodynamic system. The effective interaction between elements may be di-
rect, or may be indirect because it is mediated by other elements. However, even if
there is a direct interaction,ifit does not affect the behavior of the element we are con-
sidering, then this interaction is irrelevant as far as we are concerned.

Let us start by considering generic interacting spin models such as the Ising
model (Section 1.6). When the interaction between spins is local, then the system is
generally a divisible thermodynamic system. When the interactions are long range,

2.7
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then,if there is a dominant ground state, we have a divisible thermodynamic system
analogous to a magnet. If there are competing ground states,the system behaves as a
spin glass or as an attractor neural network model with trained states.The neural net-
work is the most favorable for consideration as a complex system.

We classify a fully connected neural network with Hebbian imprinting as a com-
plex material rather than as a complex organism. This classification is based upon
evaluating the impact of removing, say, 10% of the neurons.Our main concern in de-
scribing a neural network is the storage and retrieval of patterns. If we have only a few
imprinted states, then separating the smaller part of the network does not affect the
ability of either the large or small parts to retrieve the patterns. This is characteristic
of a divisible system. If the number of stored patterns p is greater than the capacity of
the smaller part, by itself, but smaller than the capacity of the larger part (0.9 c N >
p > 0.1 c N), then the smaller part will fail in retrieval and the larger part will be un-
affected. This is the regime of operation in which the network would be expected to
be used—the regime in which its storage capacity is utilized and the basins of attrac-
tion remain significant. The behavior is characteristic of a complex material. On the
other hand,if we are very close to the full capacity of the network ( c N > p > 0.9 c N)
then both the large and small parts of the network will be affected by the removal of
the small part.We could consider this to be a regime in which the network has the be-
havior of a complex organism. However, this is the regime in which the basins of at-
traction of memories are significantly degraded,and any perturbation affects the per-
formance of the system. A better way to approach the classification problem is to
consider the number of states that can be stored before and after the separation. We
see that the storage capacity of the larger part of the system is weakly affected by the
removal of a small part, while the small part is strongly affected. Thus the fully con-
nected network should be classified as a complex material.

We classified the attractor network as a complex material on the basis of our in-
vestigations of its properties. However, the reason that the system is not a complex or-
ganism rests more generally on the existence of long- (infinite-) range interactions. If
a particular element of the system interacts with all other elements, it is difficult for
the removal of 10% of the system to affect its behavior significantly. Since there is
nothing that differentiates the part of the system that was removed from any other
part,the most that can be affected is 10% of the forces that act on the particular ele-
ment. This is not enough, under most circumstances, to affect its behavior.

We found that short-range or long-range interactions do not give rise to complex
organism behavior. Since an element cannot be affected by many other elements
directly, it makes sense for us to start with a model where the element is primarily af-
fected by only a few other elements that constitute its neighbors. This is the best that
can be achieved. Then,so that it will be affected by other elements, we arrange inter-
actions so that the neighborhood as a whole is affected by several other neighbor-
hoods, and so on in a hierarchical fashion. This is the motivation for substructure.

What happens if we cut out one subdivision of a subdivided network which has
only a few subdivisions, or a significant fraction of a subdivision? The stable states of
the network are composite states. If the interactions between subdivisions are too
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weak,then all composite states are stable and removal will affect nothing. The system
is a completely divisible system. If the interactions are too strong, then we are back to
the case of a fully connected network. However, in the intermediate regime deter-
mined in Section 5.4.5, the stability of the composite states depends on the int erac-
tions between the subdivisions and the behavior of the large and small parts are both
affected. Why? The reason is that only some of the composite patterns are stable.
Which ones are stable depends on all of the subdivisions and their interactions. Thus,
in the intermediate regime of interactions,the system behaves as a complex organism.

We could further develop the complex organism behavior of a subdivided net-
work by recalling that the architecture is designed so that a particular aspect of the in-
formation is present in each subdivision. The loss of a subdivision would cause the
loss of this aspect of the information. While this is reasonable argument, it is not a
fundamental difference between a subdivided system and the fully connected net-
work. We could choose to map different aspects of the inf ormation onto different
parts of a fully connected network and arrive at the same conclusion. Even though this
is more natural for a subdivided system,it is not inherent in the subdivision itself and
therefore does not advance our general discussion.

An alternate way to consider the complex behavior of the subdivided network is
in terms of the growth in the number of stable states of the network. For a fully con-
nected network, the growth is linear. For a completely subdivided network, the
growth is exponential, reflecting the independence of subdivisions. In the intermedi-
ate regime of interconnection,the growth in the number of composite states requires
more detailed study and depends on the particular way in which the growth is per-
formed. This suggests a level of control of properties of the system by its structure that
we associate with a complex organism.

We have been considering the influence of elements of an Ising model upon each
other. There is an important case that we have not included that could be represented
by a feedforward network or by an Ising mo del sensitive to boundary conditions. In
such systems,the influence of one neuron is transferred by a sequence of steps to other
neurons down a chain of influence. We could consider an extreme case in which there
is a long sequence of elements each affecting the subsequent one in the chain.
Removing any of the elements of this sequence would break the chain of influence and
all of the downstream elements would be affected. As a complex system that cannot
be separated,this violates our claim that substructure is necessary or necessarily lim-
ited to only a few elements.

This counterexample has some validity; however, the argument is not as simple
as it might appear. There are two general cases.Either each of the elements in the chain
of influence serves only as a conduit for the information, in which case the nature of
its influence is minimal, or, alternatively, each element modifies the information be-
ing transmitted, in which case generally the influence of the input dies rapidly with
distance and only a few previous elements in the sequence are important for any par-
ticular element. The former case is like a pipe. All the segments of the pipe are essen-
tial for the transmission of the fluid, but they do not affect its nature. From the point
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of view of describing the behavior of complex systems,a conduit performs only a sin-
gle function and therefore may be described using a single (or even no) variables.On
the other hand, when each element affects the information, then we are back to the
circumstance we have considered previously, and substructure is necessary. The rea-
son that the influence dies with distance along the chain can be understood by con-
sidering a sequence of filters. Unless the filters are matched,then even a few filters will
block all transmission.

We can revive the counterexample by considering a system whose elements rep-
resent a long sequence of logical instructions such as might be found in a computer
program. Here we are faced with a problem of interpretation. If the system always rep-
resents only one particular program, then it is similar to a conduit. If the program
changes, then we must consider the mechanism by which it is changed as part of the
system. Nevertheless,the recognition that a narrowly construed sequence of instruc-
tions does represent an exception to the 7±2 rule about substructure can play a role
in our understanding of the behavior of complex systems.

The discussion of substructure may be further generalized by considering ele-
mentary building blocks that are more complex than binary variables. Our objective
is to argue that even when the building blocks are highly complex,the generalized 7±2
rule that requires substructure applies without essential modification. It applies
therefore to complex systems formed from abstract or realistic neurons or to complex
social systems of human beings. Our discussion has already, in a limited sense, con-
sidered elements of varied complexity, because subnetworks may contain different
numbers of neurons. Our conclusion about the number of allowed subdivisions
(seven) was independent of the number of neurons in the subdivision. Why should
this be true?

We might imagine that a particular element with a greater complexity can be af-
fected in one way by some elements and in another way by other elements. This would
enable the whole complex system to be composed of a number of subdivisions equal
to the number of aspects of the element that can be affected.Or we could even allow
seven subdivisions for each aspect of the element. Then the number of subdivisions
could be the product of seven times the number of aspects of an element. For exam-
ple, when we think of human physiology, a cell requires both oxygen and sugars for
energy production. Why couldn’t we construct a system that is composed of seven
subdivisions that are involved in providing oxygen and seven subdivisions that are in-
volved in providing sugar, with a result that we have a system of fourteen subdivisions
that is still a complex system. We could argue that the oxygen system and the sugar
system are new subsystems that are described by the model. However, since there ap-
pears to be no limit to the number of aspects of an element,there should be no char-
acteristic limit to the number of relevant subsystems. Make a list of all of the differ-
ent chemicals required by a cell and generate a separate system for each one.

This argument,however, does not withstand detailed scrutiny. The central point
is illustrated by considering a system formed out of elements each of which consists
of two binary variables called TOP and BOTTOM. Each of the binary variables is part
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of a neural network that is composed out of seven subdivisions. How many subdivi-
sions would there be altogether? The simplest case would be if there were fourteen
subdivisions seven of which contain all of the TOP variables and seven of which con-
tain all of the BOTTOM variables. Many other possibilities could be imagined. From
the point of view of a complex system,however, as long as the two binary variables at
each element behave independently, we could separately consider one set of seven
subdivisions by themselves and the other seven subdivisions by themselves. They are
completely decoupled. The physical proximity of the two binary variables as part of
the same element does not affect the essential independence of the decoupled systems.
As soon as there is a coupling between them we are back to where we star ted from,
with interacting binary variables. Thus, increasing the complexity of the elements
from which the complex system is composed does not appear to be able to change
qualitatively the requirements of substructure found for the neural network model.
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3
Neural Networks II:
Models of Mind

Conceptual Outline

The training of a model network that has subdivisions requires a process
that can train synapses within subdivisions and between subdivisions without sub-
jecting either to overload. A natural solution to this problem involves taking the net-
work “off-line,” so that a filtering of memories can occur when the network is disso-
ciated. This is a possible model for the role of sleep in human information-processing
that explains some of the unusual features of sleep and suggests new experiments
that can be performed.

Various features of human information-processing, including the learning
of associations, pattern recognition, creativity, individuality and consciousness can
be discussed within the context of neural network models.

Efforts to describe and explain the higher information-processing tasks that human
beings are capable of performing have always generated tension and concern. There
has been a tendency to elevate these processes outside of the domain of the physical
world, or to mystify them,through a characterization as infinite and incomprehensi-
ble. This tendency may arise from the desire to maintain a uniqueness of and impor-
tance to our own capabilities. We will adopt the contrary point of view that our ca-
pabilities are fundamentally comprehensible. However, it turns out that this does not
diminish a quality of uniqueness and importance. If anything, it shows us how this
importance arises.

We begin to tackle the task of explaining aspects of human inform a ti on - proce s s i n g
in this ch a pter. However, we wi ll not con clu de our discussion until we have de s c ri bed
com p l ex i ty in the con text of human civi l i z a ti on in Ch a pter 9. We start in Secti on 3.1 by
con s i dering the training of su b d ivi ded net works and the role of s l eep in human infor-
m a ti on - proce s s i n g. This secti on is an essen tial sequ el to the discussion in the last ch a p-
ter that introdu ced su b d ivi s i on . The probl em is to devel op a sys tem a tic approach to the
training of su b d ivi ded net work s .

❚ 3 . 2 ❚

❚ 3 . 1 ❚
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Sleep and Subdivision Training

3.1.1 Training a partially subdivided network

In Chapter 2 we discussed the role of functional subdivision in the brain. We showed
that the storage capacity of a subdivided network was reduced;however, the ability to
recall composite states may confer significant advantages on a properly designed net-
work. The subdivided network presents us with a new set of challenges when we con-
sider its training. The approach used in Chapter 2, where we imprinted a set of dis-
tinct patterns—each precisely what must be learned—is woefully incomplete. For
more realistic modeling of neural networks we should assume that the information
presented to the network is not so well-organized. When the information is presented
in either a random or, even more realistically, a correlated fashion, there arise prob-
lems that relate to the storage capacity of the network and the selection of desired
memories.

To illu s tra te the probl em ,we can retu rn to the simplest example—the lef t - ri ght uni-
verse (Secti on 2.4.1). In the first discussion it was assu m ed that there were no correl a-
ti ons bet ween the left and ri ght halve s . The two halves were com p l etely indepen dent and
a ll com po s i te states were equ a lly po s s i bl e . Now we assume that correl a ti ons ex i s t ,a n d
that there are some synapses that con n ect left and ri ght hem i s ph eres to captu re these
correl a ti on s . This means that there are many fewer po s s i ble states than NLNR but sti ll
m a ny more than NL or NR , wh ere NL is the nu m ber of po s s i ble left halves and NR is the
nu m ber of po s s i ble ri ght halve s . Moreover, we should ex pect that the nu m ber of po s s i-
ble imprints of e ach su bn et work is gre a ter than its stora ge capac i ty (NL ,NR > > N/ 2 ) .

Some selection of which states to keep in memory must be made. The point of
introducing the subdivided network was to accommodate more of the possible states
that can arise. However, if we try to imprint all of them, we will exceed both the ca-
pacity of the subnetworks and the capacity of the synapses between the subnetworks.
When we were faced with the problem of overload in a uniformly connected network,
we used a palimpsest memory to retain only the most recently imprinted memories.
However, in a subdivided network this is not the best strategy for keeping memories.
If the imprints are correlated,the most recent ones may all happen to have a particu-
lar right half, and this will end up being the only right half that will be remembered
by the network.

Thus, without control over the number of states that are imprinted and the or-
der in which they are imprinted, we must be concerned about the problem of over-
load failure. If we must stop the imprinting after only a few imprints sufficient to
reach the capacity of the smallest subdivision, we will have limited the training of the
network very severely. How can we overcome this problem?

To design a strategy to overcome the overload problem, we must first identify our
objective in training the network. The objective should be based on achieving the best
utilization of the available capacity: to enable each of the subdivisions of the brain to
store a number of patterns that are commensurate with its capacity. These and no oth-
ers. The stored patterns should be the most important patterns to remember. How do

3.1

372 N e u r a l  N e two r k s  I I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 372
Title: Dynamics Complex Systems Short / Normal / Long

03adBARYAM_29412  3/10/02 9:53 AM  Page 372



we identify the most important patterns? They should be the patterns that appear
most frequently, and the patterns that are most orthogonal—most different. The rea-
son for orthogonality is that it enables more patterns to be stored (Question 3.1.1).
Also, if two patterns are similar, we might be able to substitute one for the other with-
out too much loss.Thus if we cannot store two patterns as distinct,the next best thing
is to store them as one and classify them together. More generally, when there are
highly correlated states,we store one prototype that could be one of the states,or even
a spurious state that has maximal overlap with the correlated states. This best utiliza-
tion strategy enables each subdivision to retain states that are well representative, even
though not necessarily exact reproductions, of the possible states.

The next obj ective is to train synapses that run bet ween su b d ivi s i ons to ach i eve
correl a ti ons bet ween the patterns impri n ted in each of the su b d ivi s i on s . We can think
a bo ut each su b d ivi s i on as itsel fl i ke a neu ron . The differen ce is that the neu ron has on ly
t wo states while the su b d ivi s i on has approx i m a tely N ′ po s s i ble state s , wh ere N ′ is the
nu m ber of n eu rons in a su b d ivi s i on . Thus we train the synapses bet ween su b d ivi s i on s
to uti l i ze the stora ge capac i ty for com po s i te pattern s , ch oosing those that are the most
i m portant com po s i te patterns to rem em ber. As before , the most important pattern s
a re those that appear most frequ en t ly and those that are most ort h ogon a l .

If we have a subdivision hierarchy, then at the third level of organization, the
stable patterns of each of the subnetworks consists of various composite states. The
overall objectives that we articulated for the storage of patterns also apply to
the storage of states of the third level of the network. These objectives for training
the synapses between subdivisions continue to remain the same all the way up to the
complete network.

The model of a network of networks suggests a general strategy for its training.
Since the training of inter-subnetwork synapses relies upon a well-defined set of sub-
network states,it seems reasonable to train first the subnetworks and then the synapses
between them. To achieve this we would separate the subnetworks from each other,
train each one,and then attach them and train the synapses between them.In the first
stage of training, the subnetworks would be trained to their optimal capacity. Once
the subnetworks are trained, the storage of patterns using the inter-subnetwork
synapses would have a well-defined significance. Otherwise, if the synapses between
subnetworks were trained before the synapses within a subnetwork were set,then mod-
ifying synapses within the subnetwork would change the significance of the synapses
between subnetworks. Thus it seems that the brain should be trained by first training
the smallest subdivisions, then connecting them into larger groupings and training
the synapses between them. However, while it might appear to be convenient to train
the subdivisions first, this presents us with several practical problems.

We must assume that the training requires many exposures to various environ-
ments and circumstances. We cannot wait until the training of subdivisions is com-
plete before the brain is used. Moreover, the sensory information to which the brain
is exposed does not reach the brain except through the interaction of action and sen-
sation. In order to act,the brain must be functional,at least to some degree,and there-
fore we cannot train a brain when disconnected into its small parts.
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There is an alternative approach that takes into account the need for separation
and t raining of each subdivision while enabling the functioning of the brain. This
approach adds an additional dynamics to the brain. In addition to the neural dynam-
ics and the synaptic dynamics there is a dynamics of subdivision. The dynamics of
subdivision is incorporated in a two-step procedure:

1. Imprint the complete network. If the number of synapses between subdivisions
is smaller than within subdivisions,this already contains some predisposition to
subdivision. Since the network is connected, it can also function.

2. Separate the network into its subdivisions and selectively reinforce (filter) the
patterns that satisfy our objectives of optimal utilization of each subnetwork.

The cyclical repetition of steps 1 and 2 should enable the training of the subdivi-
sions to proceed as operation continues. However, it requires the system to go “off-
line” periodically for the filtering process.

The purpose of the two-stage process is to train the subdivisions separately from
the training of the inter-subnetwork synapses.However,there is a need to obtain neural
activity patterns for the training. These states must originate from the imprinting that
occurs when the system is together. How are the imprinted patterns retrieved for the
training of the subdivisions when the system is off-line? By the operation of the net-
work itself. We call the second step reimprinting or relearning. Simulations that build
an understanding of its operation are discussed in Section 3.1.2.

Having arrived at this scenario for training the subdivided network, we ask
whether there is an analog of this in the actual system. The answer may be that sleep
is the time during which the brain performs the subdivision training. This suggests
that we consider the phenomenology of sleep and see if it can be reconciled with the
possibility that the brain is separated into subdivisions and undergoes a filtering pro-
cedure. Because the training of subdivisions is central to their utilization in the brain,
as well as in other complex systems, and the purpose of sleep is one of the great un-
solved mysteries, we will consider their relationship in some detail in Section 3.1.3.

More generally, it is quite natural to suggest that complex systems that have iden-
tifiable function may undergo processes of dissociation and reconnection as part of
their developmental process. This enables the subdivisions to develop autonomous
capabilities which may then be recombined to achieve new stages of development.

Question 3.1.1 Show that the number of orthogonal states that can be
stored in an attractor network is N. This is larger than the number of

random states N derived in Section 2.2.

Solution 3.1.1 The orthogonality of different states may be written as:

(3.1.1)

Using a signal-to-noise analysis as in Section 2.2.5 we can evaluate the
stability of a particular neuron {si |si = 1

i} when the states i are orthogonal.
We arrive directly at Eq. (2.2.21):

    
j j

j=1

N

∑ = N ,
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(3.1.2)

The first term is the signal term and,as before,is just (N − 1)/N. The second
term, which was the noise term in the previous analysis, is essentially given
by the overlap of different states, which is zero in this case by Eq. (3.1.1).
However, we must take into consideration that the sum does not include
j = 1. So we have a correction to the signal

(3.1.3)

We see that the result vanishes when p reaches N. It is impossible to imprint
more than N orthogonal states because there are no more than N orthogo-
nal states of N variables. However, this analysis also shows that the basins of
attraction vanish in the limit of p = N. ❚

Question 3.1.2 Show that after imprinting N orthogonal states, all pos-
sible neural states have the same energy in the energy analog.

Solution 3.1.2 N orthogonal states of dimension N are a complete set of
states. This can be written as:

(3.1.4)

Except for the diagonal terms, this is the same as the synapses of the im-
printed neural network. Since all the diagonal terms of the synapses are se t
to zero, and the off diagonal terms are zero by Eq. (3.1.4), we must have a
completely null set of synapses. ❚

3.1.2 Recovery and reimprinting of memories
In this section we demonstrate the use of a neural network to recover memories and
reimprint them. The reimprinting reinforces some memories at the expense of oth-
ers.Effectively, the number of memories stored in the network is reduced so that fur-
ther imprinting does not cause overload. The retrieval process begins from a random
initial state which is evolved to a stable state. Using a random initial state means that
the retrieval emphasizes the memories with the largest basins of attraction. These
memories have been imprinted with the largest weight or are most different (most or-
thogonal) from other states that have been imprinted. In effect,the process is a filter-
ing of memories that retains the “most important” ones and the ones that provide for
best utilization of the storage capacity of the network. There are two advantages of
this selection procedure over palimpsest memories discussed in Section 2.2.7. First,
selection may be done after the original imprinting of the memories instead of dur-
ing the imprinting. Second, the selection does not solely rely upon the specific order
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of imprints, it enables the persistence of particular older memories. However, when
imprinting and selection are repeated many times, it is still true that recent imprints
are more likely to survive the filtering process.

The rei m pri n ting procedu re is a particular way of f i l tering mem ories so that over-
l oad in the net work is preven ted and learning can con ti nu e . The con ti nu ed learning is
a s su m ed to serve both as con ti nu ed ad a pt a ti on to a ch a n ging envi ron m ent and as a re-
f i n em ent of the stora ge due to sel ecti on of m ore optimal mem ori e s — m em ories that
a re more likely to be rec a ll ed because they appear more frequ en t ly in the envi ron m en t .

Reimprinting is well suited to subdivided neural architectures where each subdi-
vision is expected to have well-defined memories that serve as the building blocks for
the complete neural states of the network. In a subdivided network, reimprinting is
implemented during a temporary dissociation of the network, which may correspond
to sleep (Section 3.1.3).Temporary dissociation is achieved by diminishing the synap-
tic weights that connect between subdivisions. During the temporary dissociation,
reimprinting optimizes the storage of patterns within each subdivision without re-
gard to the associations established by inter-subnetwork synapses. When the inter-
subnetwork synapses are reestablished, these associations are also reestablished.

In order to understand how the reimprinting works, we describe simulations that
build the process step by step. The reimprinting of memories occurs on top of the im-
printing that has already been performed. We must first understand the effect of im-
printing states on top of existing memories using a palimpsest approach that weakens
the previous memories before imprinting new ones. We can anticipate the results in
two limits. The limit of no reduction in synapse strength corresponds to the conven-
tional training. On the other hand, if the synapse strengths are sufficiently reduced in
strength,then imprinting new patterns must be equivalent to the case of no prior im-
prints. Intermediate cases enable us to develop an understanding of the extent to
which prior memories affect new imprints, and conversely how new imprints affect
prior memories.

As suming Hebbian impri n ti n g, the com bi n a ti on of reducing the pri or synapse va l-
ues and impri n ting a new state is de s c ri bed by mod i f ying the synapses according to :

i ≠ j (3.1.5)

Instead of diminishing the synapses with each imprint, we consider an episodic ap-
proach. We imprint a prespecified number of states and then reduce the synapses be-
fore continuing. For the simulations we use a network of N = 100 neurons, and im-
print p1 = 4 neural states with equal coefficients. Then the synapse strengths are
multiplied by a factor . Then p1 more neural states are imprinted and the synapse
values are again multiplied by . This is repeated until a total of p = 16 neural states
are imprinted. The final value of the synapses could be written using the expression:

(3.1.6)
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To analyze the effect of the procedure, we calculate the basin of attraction of the
imprinted states. Results averaged over many examples are plotted in Fig. 3.1.1.Each
curve shows the distribution of basins of attraction for the imprinted states. The
curves are labeled by the factor , which scales the synapses between each set of 4 im-
prints. The results show that for 16 imprints of equal strength ( = 1) the network is
well beyond the optimal number of imprints. Only 10 imprints are stable and the
basins of attraction are very small. When we diminish the synapses between succes-
sive imprints, < 1, then the basin of attraction of the last four imprints are much
larger. However, this occurs at the expense of reducing dramatically the basins of the
other memories, eventually destabilizing them. Two conclusions from this analysis
are: (1) diminishing the synapses is an effective mechanism for ensuring that succes-
sive imprints are learned effectively, and (2) the older memories are lost.
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Figure 3.1.1 Simulations of an episodic palimpsest memory using a network of N = 100 neu-
rons. Each episode consists of reducing the synaptic strengths by a factor then imprinting
four new states. Plotted are the resulting histograms of basins of attraction (B). Curves are
labeled by the value of . The results illustrated have been averaged over many examples.
Unstable states are included as having basins of attraction of zero. The curves are normalized
to the total number of imprints p = 16. By diminishing the strength of synapses ( < 1) the
more recent imprints are better remembered, at the expense of forgetting the earlier sets of
memories. The total number of stable states as a function of is shown in the inset on the
upper left. ❚
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The procedure used to generate Fig. 3.1.1 is:

1. Generate p random neural states { i }

= {1,...,p}, i = {1,...,N} (3.1.7)

2. Imprint the first p1 neural states on the synapses of the neural network (Hebbian
rule)

(3.1.8)

3. Rescale the network synapses by a factor .

i, j = {1,...,N} (3.1.9)

4. Repeat steps (2) and (3) for each successive set of p1 neural states until all p neural
states are imprinted.

5. Find the basin of attraction of each of the neural states i , where an unstable
neural state is set to have a basin of attraction of zero (see Section 2.2.6).

6. Make a histogram of the basins of attraction for different i .

Thus far we have demonstrated the performance of an episodic palimpsest mem-
ory. As mentioned above, we prefer to retain selected older memories. They can be re-
tained if we reinforce them before the imprinting continues. We will consider several
models of reimprinting.

If we know the states that were imprinted, we can select some of the older mem-
ories and reimprint them. This is not a practical approach if the earlier imprints are
not known at the time of reimprinting, as when training a subdivided network.
However, because it can help us understand the optimal effect of reimprinting, this
will be the first case studied below.

If we do not independently know the imprinted states,then we must use the net-
work itself to recover patterns that were imprinted. In this case selective reinforce-
ment of memories may be achieved using the following steps: (1) initialize the
network to a random state, (2) update the network a prespecified number of times,
and (3) imprint the network. The neural update rule we have discussed in the text is
noiseless. Because of the spurious states it is advantageous to add a small amount of
noise. The noise helps the network escape from shallow minima associated with the
spurious states.Glauber dynamics is just such a noisy neural update rule that was in-
troduced in Section 1.6 and discussed in the context of neural networks in Question
2.2.2. Thus we will compare reimprinting in two cases, using a noiseless update rule
and using a noisy update rule.

It is important to perform the reimprinting well before the network reaches over-
load. As we approach overload, the memory becomes ineffective. This is not only a
problem for the network operation, it is also a problem for the filtering process that
uses the network to retrieve patterns for reimprinting. If the network is too near over-
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load, the retrieval process will find more spurious states than imprinted states.
However, we would like to be able to use a significant fraction of the network capac-
ity. In the simulations below, we balance these considerations by using an initial im-
printing with 8 states on a network of 100 neurons. Eight states is below, but a signif-
icant fraction of, the maximal capacity of about twelve states.

Figs.3.1.2 and 3.1.3 compare three different reimprinting procedures. Fig. 3.1.2
shows the distribution of basins of attraction.Fig. 3.1.3 shows the integrated number
of basins of attraction higher than the value along the abscissa. The starting point, be-
fore reimprinting, consists of a network with 8 imprinted neural states.This is shown
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Figure 3.1.2 Plots illustrating tests of reimprinting procedures. Histograms of the basins of
attraction are shown. The objective is to strengthen several memories at the expense of the
others. The starting point is a network of 100 neurons with 8 imprinted neural states. This is
shown as curve (a). Curves (b),(c) and (d) show the results after reimprinting. (b) is the op-
timal case where four of the originally imprinted states are imprinted again. In curve (c) the
4 imprinted states are evolved random states obtained by applying the deterministic neural
update rule to a random initial configuration. Curve (d) is the same as (c) except the neuron
evolution includes noise ( = 3.5) (see Question 2.2.2). In both cases there is an enhance-
ment of some of the basins of attraction. For curve (c) the number of basins enhanced is about
1.5 while for curve (d) it is about 2. Note that the basins of attraction of all of the evolved
random states are not necessarily included in the figure since they are not always desired
memories. The insert on the upper left shows the number of unstable memories out of the
eight originally imprinted states. ❚
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as curve (a). The objective is to strengthen several memories at the expense of others.
Curves (b), (c), and (d) show the results after reimprinting. (b) is the idealized case,
where four of the originally imprinted states are imprinted again. This is the same as
imprinting four of the states with twice the strength of the other four. As in Fig. 3.1.1,
the effect is to reduce the basin of attraction of the neural states that are not reim-
printed,and increase the basin of attraction of the ones that are reimprinted. In curve
(c) the four states to be imprinted are obtained by applying the deterministic neural
update rule to a random initial state. We call these “evolved random” states. In curve
(d) the four states to be imprinted are obtained by applying the noisy, or nonzero tem-
perature,neural update rule to a random initial state. The temperature kT = 0.285 or

= 3.5 was chosen based on simulations of the recovery of imprinted states at differ-
ent temperatures (Question 2.2.2).Whenever the nonzero temperature update rule is
used, we also evolve the network by the zero temperature rule to bring the neural state
to its local minimum. In both (c) and (d) there is an enhancement of some of the
basins of attraction. For curve (c) the number of memories that are enhanced is about
1.5, while for curve (d) it is about 2. The basins of attraction of memories that were
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Figure 3.1.3 Plots illustrating tests of reimprinting procedures. This figure is similar to Fig.
3.1.2, except that the plots show the integrated number of imprinted states with a basin of
attraction grater than a given value B. Flat regions of the curves separate states with large
basins of attraction from states with small basins of attraction. This shows the ability of the
reimprinting to reinforce some memories at the expense of others. ❚
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reimprinted appear as a peak around the value 40 in Fig. 3.1.2. There is also a small
probability that a memory will be reimprinted twice. Such memories appear in a
small peak near 50.

The results of the simulations demonstrate that the imprinting of evolved ran-
dom states enables selective reinforcement of prior imprints. Curve (d) is an im-
provement over curve (c) because more of the original states are reimprinted. This is
explained by the improved retrieval of imprinted states by the noisy evolution.

The procedure for generating Fig. 3.1.2 and Fig. 3.1.3 is:

1. Generate p = 8 random neural states { i }

= {1,...,p}, i = {1,...,N} (3.1.10)

2. Imprint the states on the synapses of the neural network:

(3.1.11)

3. Execute the branching instruction:
For (a): proceed directly to step 7.

For (b): imprint again the first p1 = 4 neural states on the synapses of the neural
network:

i ≠ j (3.1.12)

Then proceed to step 7.

For (c) or (d): proceed:

4. Generate p1 = 4 random neural states {w i }

= {1,...,p2}, i = {1,...,N} (3.1.13)

5. Execute the branching instruction:

For (c): update the neural states {w i } according to the neural update rule 10
times

(3.1.14)

Proceed to step 6.

For (d): (see Question 2.2.2) update the neural states {w i } according to the 
T ≠ 0 neural update rule 20 times

(3.1.15)
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then update the neural states {w i } according to the T = 0 neural update rule 10
times.

(3.1.16)

6. Imprint p1 = 4 evolved-random neural states {w i } on the synapses of the neural
network:

i ≠ j (3.1.17)

7. Find the basin of attraction of each of the originally imprinted neural states ,
where an unstable neural state is set to have a basin of attraction o f zero (see
Section 2.2.6).

8. Make a histogram of the basins of attraction for different . For Fig. 3.1.3 inte-
grate the histogram from a specified value up to 100.

The previous simu l a ti ons show the use of i m pri n ting evo lved ra n dom states to re-
i n force some of the mem ori e s . The next simu l a ti on takes the procedu re one step fur-
t h er to dem on s tra te the ef fect of su b s equ ent impri n ti n g. The simu l a ti ons consist of
four main step s . The first step consists of i m pri n ting ei ght neu ral state s . The secon d
s tep consists of s el ecting four ra n dom state s , evo lving them at a tem pera tu re T, t h en
evo lving them at T = 0 (to bring them to the local minimum) and impri n ting the re-
sult on the net work . The third step consists of diminishing the strength of the synapses
by a factor of 2 . This en su res that the ef fective impri n ting strength of rei m pri n ted state s
( wh i ch have been impri n ted twi ce) is com p a ra ble with that of n ew states to be im-
pri n ted . The fo u rth step consists of i m pri n ting four new states on the net work . Th e
p u rpose is to dem on s tra te the abi l i ty of the net work to con ti nue learn i n g.

The consequences of the full procedure are shown as curve (c) of Fig. 3.1.4 and
Fig. 3.1.5. It is the result of imprinting eight memories,then imprinting four evolved
random states,then diminishing the strength of the synapses by a factor of 2,and then
imprinting four additional memories. In Fig. 3.1.4 the distribution of basins of at-
traction is shown normalized to 12. Fig. 3.1.5 shows the integrated number of mem-
ories with basins of attraction greater than the value along the abscissa.

Two reference curves are included as curves (a) and (b). Curve (a) is the result of
imprinting 12 memories on the network. The degree of degradation of the basins of
attraction when 12 memories are imprinted is easily seen. This is essentially the max-
imum capacity of the network, the effectiveness of the memory of these patterns is
minimal. Curve (b) is the result of imprinting 8 memories, then diminishing the
strength of the synapses by a factor of 2,and then imprinting four additional memo-
ries. The total number of imprints is still 12. However, as in the simulations of
Fig. 3.1.1, the recent set of 4 imprints have large basins of attraction, while the initial
set of 8 imprints are effectively lost, since their basins of attraction have been com-
pletely degraded.
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The difference between the simulations leading to curve (b) and curve (c) is only
the inclusion of the reimprinting procedure in curve (c). Curve (c) shows that the
reimprinting was successful in isolating two of the original memories to retain. These
memories survive the imprinting of new states and join them to form a total of ap-
proximately six stable memories. This is easiest to see in Fig. 3.1.5, where the relatively
flat part of the curve extends down to zero and intercepts the axis at 6 states. Even
though curve (b) has more stable states (insert in Fig. 3.1.4), all of these except the
newly imprinted ones have very small basins of attraction.

The procedure used to generate Fig. 3.1.4 and Fig. 3.1.5 is:

1. Generate p1 = 8 random neural states { i }

= {1,...,p}, i = {1,...,N} (3.1.18)

2. Imprint the neural states on the synapses of the neural network
    i = ±1
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Figure 3.1.4 Continuation of the reimprinting test by imprinting some new states. Curves (a)
and (b) are for reference. (a) shows the degree of degradation of the basins of attraction when
12 memories are imprinted all with the same weight. (b) shows the effect of imprinting 8
states, then reducing the strength of the synapses by a factor of 2, then imprinting 4 new
states. As explained in Fig. 3.1.1 this results in effective recall of the recently imprinted
neural states at the expense of the previously imprinted neural states. The difference between
curves (b) and (c) is the insertion of the procedure of evolving four random states with noise,
and imprinting the result. This relearning procedure results in the retention of two of the
eight original memories for a total of six memories. The others are completely forgotten. ❚
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(3.1.19)

3. Execute the branching instruction:

For (a): proceed directly to step 5.

For (b): proceed directly to step 4.

For (c):

c1. Generate p2 = 4 random neural states {w i }:

w i = ±1 = {1,...,p2}, i = {1,...,N} (3.1.20)

c2. Update the neural states {w i } according to the T ≠ 0 neural update rule 20
times

(3.1.21)

c3. Update the neural states {w i } according to the T = 0 neural update rule 5
times.
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Figure 3.1.5 Similar to Fig. 3.1.4, except that the plots show the integrated number of im-
printed states with a basin of attraction greater than a given value. Flat regions separate
states with high basins of attraction from states with low basins of attraction. This shows the
ability of the reimprinting to reinforce some memories at the expense of others. ❚
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(3.1.22)

c4. Imprint p1 = 4 evolved-random neural states {w i } on the synapses of the
neural network.

(3.1.23)

4. Rescale the network synapses by a factor = 1/2.

Jij ← Jij i,j = {1,...,N} (3.1.24)

5. Generate p2 additional random neural states { i }

i = ±1 = {p1 + 1,...,p1 + p2}, i = {1,...,N} (3.1.25)

6. Im print the neu ral states on the synapses of the neu ral net work (Hebbian ru l e )

i ≠ j (3.1.26)

7. Find the basin of attraction of each of the p = p1 + p2 neural states (see
Section 2.2.6).

8. Make a histogram of the basins of attraction for different . For Fig. 3.1.5,in-
tegrate the histogram from a specified value up to 100.

3.1.3 Sleep phenomenology and theory
Sleep is one of the fundamental phenomena in biological organisms. An excellent re-
view of the phenomenology of sleep and speculations about its nature are given in the
book Why We Sleep by Horne. The analysis of subdivisions in complex systems in
Section 3.1.1 offers an interesting but speculative theory for the role of sleep—that
sleep constitutes dissociation with relearning. This theory is consistent with the sug-
gestion advanced in recent years that dreams have a role in “memory consolidation.”
However, it extends this role to all of sleep. It also provides a constructive framework
in which we can discuss the meaning of memory consolidation. In this section we will
provide a brief overview of the phenomenology of sleep, challenge two traditional
theories for its role and discuss a few modern theories for the role of dreams based
upon neural networks. In Section 3.1.4 we compare the theory of sleep as dissociation
with the phenomenology of sleep and suggest experiments that can directly test it.
While the theory is not directly supported by current experimental evidence,it is con-
sistent with existing results and is an example of a “good theory” because it predicts
definite outcomes for novel experiments and would significantly increase our under-
standing if found to be correct.Finally, in Section 3.1.5, we discuss a new experimen-
tal result which provides some support for the predictions.
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Human beings spend almost one-third of their lifetimes asleep. Human sleep is
known to have several levels identified by quite different brain electrical signals as
measured by electroencephalography (EEG). There are at least five recognized levels,
the two deepest are together called slow wave sleep (SWS), while the shallowest is
rapid eye movement (REM) sleep. Typically, in the first part of sleep, the deepest level
is attained rapidly. Then the level of sleep alternates in a pattern of shallower and
deeper levels with the average level becoming shallower as sleep progresses (see
Fig. 3.1.6). The sleep of animals does not have as many levels. The complexity of sleep
increases with the (conventional) evolutionary complexity of the organism.

Th ere are two con f l i cting popular vi ews of s l eep. One is that sleep is nece s s a ry for
health and well - bei n g. The other is that sleep is a waste of ti m e . Modern soc i ety of ten
p ays little atten ti on to the sign i f i c a n ce of s l eep. For ex a m p l e , doctors ,e s pec i a lly du ri n g
tra i n i n g, work very ex ten ded shifts. Ot h er profe s s i ons ei t h er work long shifts or ign ore
the natu ral sleep cycle of d ay and nigh t . Evi den ce has acc u mu l a ted that su ch practi ce s
a re co u n terprodu ctive and cause errors , even fatal errors . Th ere exist ef forts to ch a n ge
the training of doctors , and to avoid exce s s ive sleep disru pti on of a i rplane pilots. In ad-
d i ti on ,t h ere are many sleep clinics that are de s i gn ed to help indivi duals who su f fer from
s l eep disorders ,i n cluding va rious forms of i n s om n i a , an inabi l i ty to sleep.

Much of our understanding of the role of sleep arises from human sleep-
deprivation studies. These studies reveal that sleep loss results in psychofunctional
degradation. However, the precise nature of the degradation is not well-understood.
Some of the effects of sleep deprivation over several nights include visual illusions or
mild hallucinations, and loss of a proper time sense. There are also particular tasks
that have been shown to be sensitive to the loss of sleep. However, many others do not
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Figure 3.1.6 A sleep “hypnogram” — schematic illustration of the structure of sleep for
young human adults showing the different stages as determined by EEG signals. Stages 3 and
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appear to be systematically affected. An example of a test that is quite sensitive to the
loss of sleep is the vigilance test. In this test a person is asked to monitor a sequence
of pictures or sounds for a particular feature that should trigger a response.After sleep
deprivation, individuals frequently do not respond to the special feature when it is
presented.

Modern theories of sleep have suggested either that it serves a physiological
restorative function or that it exists because of genetic adaptation to a survival ad-
vantage in removing primitive man from danger. Extensive experimental measure-
ments directed at unveiling the physiological restorative function have not been suc-
cessful. It appears that aft er exertion, physical rest rather than sleep is sufficient for
reconstruction of tissue damaged during use.

The second suggestion, that sleep serves to remove primitive man from danger,
does not coincide with a variety of observations about sleep and its role throughout
the animal kingdom. First, sleep consists of a time of reduced awareness of environ-
mental dangers. Even if there were an advantage in inactivity, this lack of activity
could be achieved by physical rest rather than the loss of alertness that occurs in sleep.
Moreover, even animals that are in constant danger sleep. An extreme example is the
case of certain types of dolphins that sleep one half-brain at a time in order to mon-
itor their environment and avoid dangers. Moreover, it is surprising that there are no
animals that do not sleep. Nocturnal animals sleep during the day. Predators, whose
survival does not depend upon safety from other predators, sleep. Why have no
species adapted to the survival advantages of alertness and extra time to find food
without sleep? Finally, sleep-deprivation studies on animals show that extended sleep
deprivation is fatal. For example, rats die on average after 21 days without sleep. The
direct cause of death has not been identified despite substantial efforts.

Neither of the two traditional theories explains the mechanism for psychofunc-
tional degradation after sleep loss. They also do not explain many specific results in
sleep-deprivation studies on either humans or animals.

While there has been only limited discussion of the role of sleep in human psy-
chofunction, dreams have evoked more elaborate speculations. Many believe that
dreams, or more specifically rapid eye movement (REM) sleep, are the essence of sleep
even though they occupy only about one quarter of sleep. Because of their bizarre
content, dreams have always invoked mystery. Various theories have suggested that
dreams play an important role in human psychology. More recent theories relate
dreams to aspects of human information-processing, usually memory. In particular,
they suggest that dreams play a role in the conversion of short- to long-term mem-
ory—memory consolidation.

There are two specific proposals for the role of dreams that are based upon neural
network models. They are precisely opposite. Crick and Mitchison suggested that
dreams cause selective forgetting of undesirable or parasitic neural network states.One
piece of evidence for this approach is our inability to remember most dreams. More
concrete support for this proposal was gained through simulations of attractor net-
works. Simulations, similar to those in the previous section, were performed by
Hopfield, et al. After imprinting a network,the network was initialized to a random
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configuration and evolved. Instead of imprinting the resulting state, the state was
unimprinted, or imprinted with a small negative coefficient of 0.01. This was found
to improve the retrieval of imprinted states.The improvement arises because the states
with larger basins of attraction are responsible for the instability of the other imprinted
states. Reducing the large basins of attraction by a small amount improves the balance
between different states. In contrast,Geszti and Pázmándi suggested that dreams are
a form of relearning. Their relearning procedure is the one described in the previous
section. Its purpose is to filter the memories to enable continued learning.

Both of these models attributed information-processing tasks to rapid eye move-
ment (REM) sleep, or dream sleep. The other parts of sleep, where dreams are infre-
quent (non-REM sleep), are still generally believed to have a physiological role.
However, as described earlier, total sleep deprivation causes psychofunctional, not
physiological, deterioration in humans. The primary effects occur with loss of non-
REM sleep.

Based on the discussion of subdivision in neural networks and training it is rea-
sonable to propose that the stages of sleep correspond to degrees of interconnection
between subdivisions of the brain. SWS corresponds to the greatest dissociation,
where small neuron groups function independently of each other. At shallower levels
of sleep, larger regions of the brain are connected. Ultimately, the waking state is fully
connected, including sensory and motor neurons. From EEG measurements it is
known that all of the levels of sleep are neurologically active. Consistent with our dis-
cussion in the last section, it may be proposed that the activity is a filtering process
that reinforces some memories at the expense of others to prevent overload and allow
for additional learning. The filtering of memories occurs on all levels of organization.
The ultimate purpose of this filtering process is to establish the memories within sub-
divisions,and the stable composite memories. It also balances the strength of synapses
within subdivisions compared to the strength of synapses between them.

There are general consequences of the filtering that we can infer and use to make
predictions of its effects on memory. It is to be expected that the strength of associa-
tions that are represented by synapses between subdivisions are weakened more
rapidly than associations that are represented by synapses within subdivisions. Thus,
memories are progressively decomposed into their aspects, stored within subdivi-
sions. Implicit in this architecture is the assumption that the most permanent associ-
ations—stable patterns of neural activity—are stored inside the smallest subdivisions.
These associations are the elements that are the building blocks for new imprints on
the network, and thus are the elements for building new memories.

This theory for the role of sleep is based upon a subdivided attractor network,
with no directionality to the synapses, or to the processing as a whole. The presence
of directionality in the processing of sensory information should modify this picture,
but may not change the essential conclusions.One modification that we can expect is
that the triggering of a random neural state will also acquire directionality. The trig-
gering should follow the usual processing path in order to be consistent with the sys-
tem’s natural mechanism for retrieving memories.
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3.1.4 Predictions and experimental tests
A variety of aspects of the general phenomenology of sleep are consistent with the
idea that sleep is a temporary dissociation of the brain into its components. Several of
these are described in the following paragraphs.

Sleep itself consists of a dissociation of the cerebral activity from both sensory
and motor neurons. This separation is accomplished by sleep substances that control
particular interconnecting neurons or synapses. While the dissociation is not com-
plete—we can still respond to sounds and lights during sleep—the degree of correla-
tion between sensory stimuli and the activity of the brain is reduced. Similar controls
could be used to further dissociate various subdivisions of the brain.

As mentioned before,sleep is a time during which there is significant neural ac-
tivity. This is to be contrasted with the lack of explicit memory of this activity. The
patterns of neural activity differ qualitatively between different stages of sleep. These
changes can be measured using EEG signals, which are used to identify stages of sleep.
Systematic differences between patterns of neural activity imply basic changes in ei-
ther the activity of neurons or their synaptic efficiencies.This requires an explanation.
Qualitatively, the greater simplicity of EEG signals in SWS (hence the name slow wave
sleep) is consistent with a loss of complexity in the activity patterns due to a lack of
correlation between different neuron groups.

The internal triggering of patterns of neural activity occurs in all stages of sleep,
but is very apparent during REM sleep, where pulsed neural activity patterns extend
through a significant part of the cerebral cortex.

The greater difficulty of waking during SWS is consistent with a greater degree of
dissociation in deep sleep than in shallower levels of sleep. It may also be difficult to
wake from REM sleep, despite its other characteristics as a shallow stage of sleep.
However, in this case the internal triggering of neural activity appears to mask aware-
ness of actual sensory stimuli.

Systematic studies of dream content indicate that specific higher-level critical
faculties and a “sense of self” are absent. This includes a lack of surprise at the con-
tent of dreams, and an inability to see or perceive one’s self. It has been pointed out
by Hartmann that this is similar to the waking mental functioning of postlobotomy
patients, where connections to the frontal lobes of the brain have been severed.
Specific higher-level critical facilities related to self-awareness are often associated
with these frontal lobes. This suggests that during REM sleep, specific major sections
of the brain are dissociated.

Dissociation during sleep would imply that the neural activity is formed out of
composite states that typically would not occur if the brain subdivisions were con-
nected. In REM sleep, when only major sections of the brain are separated from each
other, the composite states are formed out of only a few elements. The waking brain
with full connections can, at least sometimes, make a kind of sense out of the juxta-
position of elements from the sleep state. This explains the possibility of recalling
sleep states from REM sleep in the form of dreams. It also explains their bizarre
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content. Moreover, it explains why dreams are not always recalled even when experi-
mental subjects are woken during REM sleep. For deeper levels of sleep, with smaller
subdivisions, the waking brain can generally make no coherent picture of the sleep-
ing mental state.This explains the absence of recalled dreams from deep sleep despite
the ongoing neural activity.

To make further progress in our understanding of sleep and the dissociation
model, we will discuss the psychofunctional effects of sleep deprivation.Our discus-
sion will provide some understanding of the deterioration that can result from sleep
deprivation. It will also explain why experimental efforts have found it difficult to
identify specific psychofunctional tasks that are affected. The central point is recog-
nizing that the deterioration of capabilities is directly linked to activities that are per-
formed during waking. Thus the question, How does sleep deprivation affect the ca-
pabilities of an individual? is meaningless without a specification of the activities
performed by the individual during the period in which he or she is awake.

The model of sleep as dissociation implies that it is basic to the functioning of the
subdivided architecture of the brain. However, the manifestation of sleep deprivation
would not be the complete disruption of this architecture. The shorter-term effects of
sleep deprivation are related to overload failure. Overload occurs because imprinting
is continued during waking hours without a periodic filtering process. Under normal
circumstances, there must be a substantial buffer before overload is reached. The
buffer exists because of the need to stop imprinting well before the overload thresh-
old. However, if the buffer were very large,then the full capacity of the network would
not be utilized. This explains the need for a regular sleep schedule with a consistent
structure to the levels of sleep. It also explains why there are dramatic effects of only
a few nights of sleep deprivation, which become catastrophic if further extended. We
note that no model of the role of sleep based solely on a concept of memory consoli-
dation would account for psychofunctional failure due to sleep deprivation.

The implications of overload failure in a fully connected network were discussed
in Section 2.2.7. When overload is reached, various spurious states replace memories
as the stable states of the network,and a complete loss of memory results. In order to
adapt this picture to describe the effect of sleep deprivation, we must include both the
correlated nature of the information that is presented to the brain over any particu-
lar period of time, and the subdivided architecture. Their implications may be un-
derstood simply. First, the correlated information implies that overload does not af-
fect all imprinted states equally. If newly imprinted states are confined to a particular
subspace of all possible neural states,then all states that are not correlated with them
will not be affected. The existence of subdivisions leads to similar conclusions by em-
phasizing that overload should occur in particular subdivisions first, rather than uni-
formly throughout the network. The conclusion is that the effect of sleep deprivation
is primarily confined to activities that are exercised during the waking period. This ex-
plains much of the difficulties that have arisen in the efforts to determine specific ac-
tivities that are strongly affected by sleep deprivation. Many tests evaluate the degra-
dation in an activity, such as intelligence tests, tests of ability to maintain balance,etc.
However, even when significant correlations are reported between sleep loss and a
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particular test in one experiment, these are found not to exist under other experi-
mental conditions. In contrast to the generally ambiguous results on specific abilities,
it has been reliably shown that a degradation of ability is found for repeated or simi-
lar tests, essentially independent of the nature of the task.

Unlike other activities, the vigilance test is a self-contained test of the ability to
persist in a particular activity. The vigilance test requires paying attention to a series
of varying sensory images, and responding only to a particular variant. We can un-
derstand why a sleep-deprived individual finds this difficult. Imprinting various sim-
ilar states up to overload would cause, in effect,the basins of attraction of the lack of
action to overtake the only slightly different circumstances that require action. The in-
ability to respond differently to a slightly different stimulus may very well be the cause
of accidents that occur in early-morning hours. Consider the train conductor who is
required to brake the train upon seeing a particular set of lights,after viewing many
different panoramas with various sets of lights. Consider the doctor, who after seeing
many patients with similar ailments is required to change the treatment based on one
of many pieces of information.

The relevance of repeated tasks to the need for sleep does not require sleep-
deprivation studies. It is sufficient to note the sleepiness that arises from boredom due
to monotonous or repetitive activity. It is also interesting that schools (at all levels) do
not schedule classes around learning a particular topic for a whole day. Instead, activ-
ities and classes vary through the day. Each subject is taught only for a limited period
of time.

Sleep-deprivation studies are generally performed in a monotonous environ-
ment without many stimulating or novel activities. Stress, which is likely to increase
imprinting (see Section 3.2.4),is also absent. This suggests that aside from the gener-
ally necessary activities, clinical sleep-deprivation studies do not capture the psycho-
functional degradation from typical daily activities. The most commonly observed
difficulties in sleep deprivation arise from visual illusions. This may be understood
both from the necessity of vision even under laboratory conditions,the popularity of
reading or watching TV during an experiment,as well as the monotonous laboratory
environment that implies significant correlations between visual stimuli.

Modeling sleep deprivation by overload failure implies that novel, stimulating,
stressful, or boring circumstances lead to an increased effect of sleep deprivation. As
will be discussed in Section 3.2.4,all of these, except for boring circumstances,can be
related to an increase in imprinting strength and a more rapid approach to overload.
Boring circumstances, by virtue of repetition, achieve this result rapidly not because
of the st rength of imprinting but because of the overlap of different imprints that
cause overload in a more limited domain of patterns in the network. Consistent with
experience, sleepiness that results from repetitive activity can often be overcome by
changing the activity.

If we wish to understand the implications of sustained sleep deprivation, we must
look for individuals that inherently possess a particular form of sleep deprivation. The
simplest to understand would be a loss of deep sleep, where the basic elements of
neural functioning in the smallest neural networks are established. A loss of SWS
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would be associated with a breakdown in psychofunction well beyond a severe case of
sleep deprivation. Experimentally, it has been found that there is a complete lack of
SWS in about 50% of individuals diagnosed with schizophrenia. Schizophrenia in-
cludes a broad class of severe psychofunctional disorders.

We now turn to discuss new experiments using several distinct methodologies
that could directly evaluate the possible role of subdivision during sleep. These tests
include clinical studies, imaging and physiological experiments.

The most direct clinical tests would measure the retention of memory of associ-
ations at higher levels of the hierarchy. According to the model of temporary dissoci-
ation,associations between disparate kinds of information stored in different regions
of the brain are preferentially lost during sleep. An experimental test would expose
subjects to information that is composed of two or more different aspects. The sub-
jects would be split into two groups, one would sleep and the other would not. The
retention of the information would then be tested. Various experiments of this kind
have been done but without specific emphasis on correlations of different aspects of
information. For example,a visual image and a sound could be presented at the same
time. A test would measure the ability to recognize which image-sound pairs were
presented. Other combinations of information could also be tested by selecting from
known subdivisions in the brain: vision,audition,somatosensory, language,and mo-
tor control. Within each category further tests could be performed. For example, tests
in vision could measure the ability to retain par ticular combinations of shape and
color. Pictures of people, each with particular color clothes, could be changed by re-
assigning colors. Tests would determine the ability to recall the association of color
with shape.

The development of positron emission tomography (PET) and magnetic reso-
nance imaging (MRI) has enabled more detailed mapping of brain activity in recent
years. The ability to map brain activity can also enable mapping of correlations be-
tween activity in different parts of the brain. This becomes increasingly feasible as the
temporal resolution of imaging is improved. Statistical studies of the correlations in
neural firing could directly measure the strength of influence between different parts
of the brain while a subject is awake, and during various stages of sleep.

Neurophysiological studies of animals characteristically measure the activity of a
neuron under particular stimulus. Using more than one probe at a time,the correla-
tions between neural activities in different parts of the brain could be compared in
waking and in various sleep states. Such experiments can also stimulate some neu-
rons,and measure the difference in signal transmission between neurons in different
parts of the brain in animals that are awake and asleep.

The dissociation model would require a chemical mechanism for preferential in-
hibition of the synapses or neurons that interconnect various regions of the brain.
The ability to chemically separate different regions of the brain can be directly tested
by investigating the impact of sleep substances on neurons and synapses. Synapses or
neurons that interconnect different regions of the brain would be expected to have a
characteristically distinct sensitivity when compared to neurons and synapses within
a particular region of the brain. In order to enable a difference between REM sleep
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and SWS it would also be necessary for there to be differences in the connections be-
tween smaller regions and larger regions. The possibility of sleep substances that pref-
erentially isolate a particular level of the brain structure may become apparent from
such tests.

3.1.5 Recent experimental results
In one of the first multiprobe experiments, Wilson et al. recently investigated correla-
tions between neural activities in the hippocampus. The hippocampus is an area of
the brain that is responsible for representation of information about the organism’s
spatial position,in particular its location with respect to large objects or boundaries.
They found that new correlations in neural activity due to changes in the environ-
ment were subsequently repeated during sleep.

This experiment supports a number of aspects of neural network models of brain
function. Of principal significance, it supports the attractor network model that
memories are stored and can be recovered as a pattern of neural activity. It also sup-
ports the discussion in this chapter, that they are recovered during sleep. The idea that
waking experiences are reflected in dreams is known. However, this is the first indica-
tion of the nature of their representation. Moreover, it is interesting (and consistent
with the above discussion) that the recovery of patterns of neural activity was not par-
ticularly associated with REM sleep, but rather occurred in SWS.

Brain Function and Models of Mind

3.2.1 The fundamental questions
We use phenomena that are associated with neural networks to understand some of
the aspects of brain function by our own recognition of their similarities. In the pre-
vious chapter, we briefly mentioned the associative memory function of the attractor
network that is reminiscent of human association capabilities. We will expand upon
this discussion in the following sections to cover a variety of information-processing
tasks. As we do so, we will find that we have to expand our model to include additional
features. We start with both the attractor network formed of symmetric synapses,and
the feedforward network with unidirectional synapses. We use subdivision to clarify
some of the basic issues and expand into the realm of higher information-processing
tasks.

As our description of information-processing functions progresses, we must al-
low ourselves to expand the conventional terminology. We use our model neural net-
work as a model of the brain. The functioning of this network is a model of the mind.
We can use terminology such as the subconscious mind to describe the part of the
neural network/brain whose function we identify with what is commonly understood
to be the subconscious. A sentence that contains such terminology can still possess
precise mathematical meaning in the context of the neural network architecture. This
is similar to the use of words like “energy”and “work,” which have different meanings
in scientific and popular contexts.

3.2
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3.2.2 Association
In the attractor neural network model of the human mind,the basic learning process
is an imprinting of information. The information may, for example, be a visual im-
age. This information is represented as a state of the neural network (pattern of neural
activity),and the synapses between neurons are modified so as to store—remember—
this information. The mechanism for retrieval is through imposing only part of the
same image. The synapses force the rest of the neurons to recreate the stored pattern
of activity, and thus their representation of the stored image.

In order to illustrate how this process manifests itself in behavior, we have to con-
sider the nervous system “output” leading to action as also part of the state of the
mind. Part of the pattern of neural activity specifies (controls) the muscles,and there-
fore behavior. Using the pattern of activity that represents both sensory information
and motor control we can,in a simple way, understand how reactions to the environ-
ment are learned.

We can con s i der the example of a child who learns to say the name “ Ma” wh en-
ever she sees her mother. Let us say that som eh ow (by smiling, for example) we are abl e
to tri gger impri n ti n g.At some ti m e , by pure coi n c i den ce , at the sight of h er mother the
child says som ething wh i ch sounds like Ma (or even qu i te different at firs t , su bj ect to
l a ter ref i n em ent) and we en co u ra ge an imprint by smiling. Th ere a f ter the child wi ll say
Ma wh en ever she sees her mother. The pattern of n eu ral activi ty that arises wh en the
m o t h er is in the vi sual field has been assoc i a ted with the pattern of n eu ral activi ty rep-
re s en ting motor con trol that manifests itsel f in the word “ Ma .” O f co u rse this proce s s
could be en h a n ced by all kinds of ad d i ti on s , but this is one essen tial process for hu m a n
l e a rning and human functi oning that this neu ral net work captu re s .

We note that the t raining of a feedforward network discussed in Section 2.3 re-
quires a comparison between the desired output and the output generated by the net-
work. Because both the desired output and the output generated by the network must
be represented at the same time,the feedforward network does not by itself provide a
model of how responses can be learned.A solution to this problem will appear when
we discuss consciousness in Section 3.2.12.

3.2.3 Objects, pattern recognition and classification
When we look at a room we do not interpret the image in the form of a mapping of
the visual field as a point by point (pixel by pixel) entity. Our interpretation is based
on the existence of objects and object relationships that exist in the visual field. The
same is true of auditory information, where sounds,notes or auditory representations
of words are the entities we differentiate. Similarly, our associations are driven not by
direct overlap of sensory information but rather by objects, aspects or relationships.
Why is this useful, and how is it possible to identify objects in sensory fields?

The reason objects are used rather than the visual field itself is easy to understand
within the neural network model. Consider a particular visual image which is mapped
pixel by pixel onto a neural network and imprinted. An attractor network relies upon
the Hamming distance of a new image with the imprinted image for recall and there-
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fore for association. Any new image mapped onto the network is characterized by the
overlap (similarity measured by direct counting of the number of equivalent pixels)
of the image with imprinted images.

This means, for example,that if we want the child of the last section to say “Ma”
no matter how her mother appears in the visual field, then all possible ways the
mother can appear in the visual field must be imprinted independently.“All possible”
means essentially independent ways,ways for which the overlap of one with the other
is small. This overlap is strictly a Hamming distance overlap—a count of the number
of equal pixels. Since there are many ways that the mother can appear in the visual
field with only a small overlap between them, this would require a large part of the
neural memory. Saying that we identify objects is the same as saying that the child
identifies as similar many of the possible realizations of the visual field that contain
her mother. We must then ask how this is possible when the visual fields compared
pixel by pixel are different.

Underlying the use of objects in describing the visual field is the assumption that
objects possess attributes that are unchanged by their different possible presentations
in the visual field. The existence of attributes,as discussed in Section 2.4,can be used
by a subdivided network to identify the objects. We identify the attributes of a partic-
ular object as the states of each of the subnetworks when we are presented with the
object. For example,in the separation of visual information into shape, color and mo-
tion,the attribute RED would be represented by a particular pattern of neural activity
in the subnetwork representing color information. Extracting different aspects of the
information and storing them in particular subdivisions of the network enables the
object to be identified by a particular set of subnetwork states—by the pattern of
common attributes. The suggestion that attributes can provide a mechanism for the
identification of objects is not a complete answer to the problem of object identifica-
tion. It is still necessary to examine how the characteristic att ributes of objects are
found in the visual field.

In recent years the field of computational vision has been dominated in large part
by discussion of computational problems associated, for example, with extracting
boundaries of objects. This is important because the extraction of edges provides an
important clue as to the existence and nature of objects. This research has been viewed
as opposed to the use of attributes for object identification. It may be better under-
stood as providing the computational approach to extracting these attributes. Thus,
the extraction of edges provides one (or several) attributes of the visual field that can
be used to identify objects; other attributes can be used as well. Rather than relying
upon a single algorithm to identify objects,the use of multiple attributes enables sev-
eral algorithms to act together through associative links, as suggested by Fig. 2.4.4.

Once we have understood the identification of objects through their att ributes,
we can likewise understand pattern recognition or classification as a process of iden-
tifying common attributes. Specifically, elements of a category may be identified by
the common state of a particular subnetwork or set of subnetworks. Pattern recogni-
tion, viewed in an abstract form, is equivalent to the problem of classification.
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The existence of objects is often considered one of the most concrete aspects of
reality. We see that the identification of objects is actually an abstraction. It is a basic
abstraction central to our ability to interpret sensory information. Moreover, the
same methodology of abstraction is also the key to understanding abstract concepts.
Abstract concepts,like concrete objects, may be stored in the brain by combinations
of aspects or attributes. The attributes are represented by patterns of neural activities
of brain subdivisions. This method of representation is also related to other aspects of
higher information-processing—generalization,creativity and innovation, to be dis-
cussed below.

In summary, because of the many different possible visual fields, it is impossible
for the brain to be imprinted with all of the appropriate ones,and associate them with
the appropriate response. Instead, the visual fields are reinterpreted as composed of
combinations of attributes that reflect the existence of objects and their relationships.

3.2.4 Emotions and imprinting
One of the central properties of the neural network that we have not investigated in
any detail is the strength of imprinting. Our numerical modeling of the imprinting
process generally assumed that each imprint has the same coefficient. However, it is
quite reasonable to include the possibility of stronger and weaker imprints, where the
strength of imprinting can be controlled in various ways.Stronger imprints result in
larger basins of attraction.Larger basins of attraction imply that recall is easier—trig-
gered by a smaller set of common attributes. Even in our discussion of association in
Section 3.2.2 it was necessary to invoke a mechanism for triggering stronger imprint-
ing in order to describe the learning of a response.

There are various ways to control the strength of imprinting at a particular
synapse.Our concern here is not with an individual synapse,but rather with the over-
all strength of a particular imprint. In the Hebbian imprinting model,this strength is
controlled by the parameter c in Eq.(2.2.6). The control of the strength of imprinting
must occur at every synapse in the brain. Chemicals that can be distributed through-
out the brain to affect the imprinting would be most easily distributed through the
bloodstream. The most natural assumption is that the relevant chemicals are associ-
ated with emotions.Emotions affect the general response by the body to external cir-
cumstances. At least some of these circumstances imply that imprinting and memory
should be enhanced. One indication of this is that new circumstances, or circum-
stances that are important due to the existence of a threat, or circumstances that are
painful, give rise to the release of such chemicals. It would make sense that the emo-
tional reaction governs not only the immediate reaction (the traditional fight or flight
response to stress) but also the recollection of such circumstances in the future.
Without discussing the process in detail we may conclude that imprinting strength
under these circumstances—the coefficient c —is increased by adrenaline (epineph-
rine/norepinephrine) and affected by other endocrine-system chemicals associated
with various emotional states.

A second way to strengthen the imprinting is to repeat the same imprint more
than once. In the simplest model of a constant imprinting strength,the total strength
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of imprinting grows linearly with the number of imprints. We will modify this as-
sumption in the next section, because such continued imprinting is not advisable.

If we assume that selective retention and forgetting of memories is necessary, as
discussed in Section 3.1,then the relative strength of the original imprinting will also
affect which memories persist. We can expect that memories that persist are those as-
sociated with the greatest stress or strongest emotions, or with the largest number of
repetitions.A classic example is the persistent memory of traumatic events. In a sub-
divided network,the persistent memories may be aspects of situations rather than the
situations themselves.

We have discussed,thus far, the effect of emotional response on the chemistry of
the blood and its consequent effect on imprinting. The source of emotional response
must also originate in the nervous system, because the sensory stimuli that describes
the environmental circumstances leading to the emotional response are received by
the nervous system. We must therefore assume that neural activity affects the adrenal
gland and other glands responsible for chemicals that affect the physiological re-
sponse. The circle of influences between bloodstream chemicals and brain function is
an important feedback loop. Part of the brain initiates the emotional state by con-
trolling the bloodstream chemicals, which then affect the functioning and the im-
printing of the brain. Physiologically, it is the diencephalon and particularly the hy-
pothalamus, a hybrid nervous-system component and endocrine gland, that bridges
between the nervous system and the endocrine system.

3.2.5 Fixation, compulsion and obsession
Any model of how the brain works contains within it a model for how the brain may
fail. Since there are also many real occurrences of failure, we can compare and try to
evaluate whether the model is properly predicting the failure. The storage of various
information in the brain with different imprinting strengths enables the possibility
that a single imprint will become dominant. The meaning of a single dominant im-
print was discussed early in Chapter 2 when the case of a single imprint was described.
Under these circumstances any initial state will evolve in time to the attractor that is
the dominant imprint. This description is very reminiscent of the behavior of a per-
son who suffers from fixation, compulsion or obsession. Such individuals repeat ac-
tions or thoughts regardless of the external circumstances and regardless of the recent
history.

Examples of dysfunction include a compulsive repetitive action such as hand
washing, fixation on a person or object, and obsession with an idea. In each case the
persistent return to the behavior pattern or thought pattern can lead to a severe
breakdown in human function.Strong imprinting of a particular thought or behav-
ior itself arises from repetition, so that this is a self-consistent failure of the architec-
ture. Self-consistency arises because repetition strengthens imprinting, and when im-
printing is strengthened the tendency to repetition is increased. As discussed in the
last section, the existence of strong emotions contributes to imprinting, and indeed
strong emotions, passion or anxiety, are often associated with the development of
these disorders.
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When there is a natural mode of failure, one must expect that the system has
built-in safeguards against it. When the failure occurs anyway, it is because of a
breakdown in the safeguards. Safeguards against the creation of a dominant imprint
may consist of a reduction in st rength of repeated imprinting. One approach to re-
ducing the strength of repeated imprints uses an internal feedback mechanism that
changes the imprint strength depending on whether the neural activity pattern is al-
ready stable. This can be done locally at each neuron—when a neuron activity is
consistent with the local field hi , its own synapses need not be imprinted. Some such
modification of the prescription of Hebbian imprinting is likely to exist in the brain
to avoid excessive imprinting of existing memories. A second safeguard would re-
quire a behavior that avoids exposure to repetitions. Boredom as an emotional state
may have a purpose of causing behavior that avoids continued repetition. In order
for this safeguard to work,there must be an internal mechanism for recognizing rep-
etition—for recognizing the stability of a state. The problem of recognition is dis-
cussed in Section 3.2.6.

While such safeguards may serve to help prevent this mechanism for failure, it
should also be understood that the strengthening of imprinting with repetition, and
the use of emotions, must not be completely curtailed by the safeguards. Otherwise,
the primary function of the brain would be degraded. This limits the implementation
of safeguards to an extent that enables function, but also enables failure.

Medical classification of mental disorders distinguishes between neurotic and
psychotic conditions. The former are less severe than the latter. Various neurotic com-
pulsions,fixations and obsessions may persist for years without treatment. Psychotic
conditions can require severe intervention using drugs or electroshock therapy. The
action of these treatments is not well-understood. However, we can speculate about
electroshock therapy as a means of shaking, in an uncontrolled way, the energy land-
scape of the space of states of the brain as we have represented it in the neural network
model. This may explain why, despite the grave concerns about its side effects, the
treatment continues to be used. Interpreted simply this also suggests that for these dis-
orders the forms of traditional psychotherapy that dwell upon the problem may ac-
tually promote it. Therapeutic strategies that emphasize other important (st rongly
imprinted) areas of a person’s life, and change as much as possible of the circum-
stances of a person’s life, would be expected to be more effective.

The distinction between different kinds of repetitive processes—fixation associ-
ated with the senses, obsession with abstract thoughts, and compulsion with simple
actions—suggests that an overly strong imprint may be localized in different regions
of the brain. However, because of the coupling between different parts of the brain
these distinctions may not always be maintained.

3.2.6 Recognition
One of the standard tests of memory is the recognition test. In this test, for example,
a person is shown a number of pictures and asked to recognize them later. The human
brain is capable of successfully recognizing at least ten thousand pictures. This would
seem to be a natural application of our neural network memory that imprints the im-
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ages and then recalls them. But is it? The process here is different. The subject is re-
quired to identify whether or not he has seen the image before. This is different from
reconstructing the image itself. In our model of the associative or content-addressable
memory, the task is to provide the missing pieces. In the recognition experiment,the
subject says “yes” or if he has, or “no” if he has not, recognized the image.Saying “yes”
reflects a particular pattern of neural activity exercising vocal control. The recogni-
tion task requires that these neurons have the same firing pattern for all stored images,
and a different firing pattern for any image that has not previously been stored.Our
model does not contain a single association with all of the images that have been stored.
Everything that is recovered in the attractor network is part of the original image.

One way to solve this problem is to suggest that there is a part of the brain that
stores the word “yes” along with every image we see. Then we can use this part of the
brain to perform the recognition task. We will not adopt this approach here. Instead
we will require that the network have some way of identifying whether or not it has
imprinted the picture from the behavior of the network itself.

When we impose upon the network a previously imprinted pattern of neural ac-
tivity, the state of the network is a fixed point of the neural evolution—a stable state.
We must find a way for the brain to know—i.e., represent the information—that it is
in a fixed point,so that it can say “yes”, and then when it is not in a fixed point,it can
say “no”. In order to act differently if the network is in a fixed point or not we need to
have a particular neuron, or set of neurons, that are ON in one case and OFF in the
other. Our problem is to construct a set of synapses and neurons that achieves this ob-
jective. This problem may appear superficial, but it is not. Let us try to do it in a nat-
ural way.

To distinguish between the case of a stable state and an unstable state, it is rea-
sonable to think about comparing the value of a neuron before and after a neural up-
date. We can do this using a synapse that includes a time delay. Biologically, the time
delay would be achieved through the axon rather than the synapse, but this is irrele-
vant to our argument.Using the time delay in the transmission of the signal from one
neuron to the next, we can arrange to have the second neuron (the recognition neu-
ron) receive information about the time evolution of the first neuron,in the form of
the neuron value at one moment and its value at a time corresponding to one update
later. We might think that this is enough to enable the recognition neuron to deter-
mine whether the neuron is changing or not. Surprisingly, this is not the case.

The reason that there is still a difficulty can be explained by considering the four
pictures at the bottom of Fig. 3.2.1. On the left of each picture are illustrated the two
states of the first neuron, before and after the update. The four pictures are the four
possibilities.On the right in each picture is shown the value that we want the recog-
nition neuron to take. The essential point is that we would like the recognition neu-
ron to have the same value when the two states of the original neuron are the same,
and the opposite value when they are different. This function is equivalent to the log-
ical operation exclusive or, XOR, which gives TRUE (ON) if either input but not both is
TRUE (ON) and FALSE (OFF) otherwise. What is illustrated in Fig. 3.2.1 is the opposite
or negation of XOR if we follow the usual pictorial interpretation of UP as TRUE. We
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Figure 3.2.1 The problem of recognition requires the network to be able to respond the same
to all patterns that have been imprinted, and differently to all patterns that have not. This
requires detection of a stable state, which can be found from the time dependence of neural
activity. To detect the stability of a particular pattern we use (top) two synapses, one of which
is delayed by a time ∆t. Both synapses run to a particular other neuron that is supposed to
fire only when the two signals it receives are the same. The four possible cases of neuron fir-
ings are shown (center) where the left neuron is shown at two different times. Considering
the right neuron as a function of two variables, we find (bottom) that it must represent the
negation of the logical function exclusive or (XOR). This function cannot be represented by an
attractor network. It can be represented by a feedforward network. ❚
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can invert the definition or the picture to make the two agree. However, the problem
is that the XOR logical operation cannot be built out of symmetric synapses between
pairs of neurons. This is apparent when we remember the energy analog of the neural
network (Section 2.2.3). Switching the activities of all neurons does not affect the en-
ergy, so the inverse of any low-energy conformation is a low-energy conformation.
Inverting the XOR operation results in the opposite logical operation, not the same
one.Pictorially in Fig. 3.2.1, we see that if the upper left is a minimum energy state,
flipping all of the neurons would not lead to the lower left but instead would cause the
recognition neuron to be inverted, giving the wrong information.

To overcome the problem of representation of the XOR operation and enable
recognition requires the introduction of a new kind of synapse. There are many pos-
sible ways to do this. One is to use interactions between three neurons sisjsk. This
breaks the inversion symmetry and enables the minimum energy states of the three
neurons to correspond to the XOR operation. However, using a symmetric three-way
synapse would still lead to some difficulties.A symmetric synapse, where the neurons
influence each other reciprocally, does not really make sense when there is a time de-
lay. Moreover, if a symmetric synapse is used,the recognition neuron could affect the
other neurons rather than representing their state. This would not be helpful. A di-
rected synapse such as the ones used in a feedforward network would be simpler.

There is a way to introduce an XOR operation using a feedforward network. This
is discussed in Question 3.2.1. However, the feedforward network requires two stages
for this operation,and it is not particularly convenient. Fortunately, we can probably
do just as well with an AND logical operation. The AND operation would detect when
a neuron stays ON. Ignoring the neurons that stay OFF, this would be enough to tell us
when the state of a neuron is stable. The AND operation can be represented by a feed-
forward network using one stage (Question 3.2.2). Experimental studies of the biol-
ogy of neurons also show the existence of individual directional synapses that couple
three neurons. In some of these, two neurons must fire in order for the third to fire,
thus directly implementing the AND operation. This solves the problem of enabling
the recognition task to be performed. The recognition task is fundamental not only
for the external r ecognition test that we have been describing but also for internal
processes that lead to other capabilities. For our purposes in continuing to build mod-
els of brain function it is sufficient to note the necessity and biological plausibility for
such logical operations.

Question 3.2.1 We have shown that an attractor network by itself can-
not perform the XOR operation to perform a recognition task. Find a

feedforward network with two layers of synapses that can perform the XOR

operation. You may supplement the two neurons that you are comparing by
a neuron that is always ON. Discuss the biological implementation of this
feedforward network.

Solution 3.2.1 The XOR operation requires a comparison of two different
binary variables. However, the feedforward network uses neurons repre-
sented by real numbers. According to the model we developed in Section 2.3,
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for two neurons s,s′ in the first layer, we can write the value of any second-
layer neuron as:

s2 = tanh(Js + J ′s′ + h) (3.2.1)

We can think of the constant term h as arising from a first-layer neuron that
is always ON. The two independent linear combinations of the neuron activ-
ities that we have are s + s′ and s − s′. Either can be thought of as a compara-
tor. If we construct a table from different values of s and s′ we have:

s s ′ s + s ′ s − s ′ XOR (s, s ′)

–1 –1 –2 –0 –1
–1 –1 –0 –2 –1 (3.2.2)
–1 –1 –0 –2 –1
–1 –1 –2 –0 –1

Comparing the s + s′ and s − s′ columns with the XOR column we see that the
XOR operation requires us to treat a positive sum and a negative sum the
same, or a positive difference and a negative difference the same. We must
therefore take an absolute value, or square the linear combinations. Two
ways to write the XOR operation in terms of floating point operations are:

−sign(|s + s′| − 1) = −sign((s + s′)2 − 1) (3.2.3)

The tanh function can provide us with the square of s + s′ by setting up a sit-
uation where we make use of its second-order expansion:

(3.2.4)

The expansion is valid if we use a small enough value of J. Setting up two
second-layer neurons with these values, we can take their sum to eliminate
the first-order term and keep the second-order term that we need. We use
J = 0.1, and h = 0.5 to obtain the following table:

s s ′ s2 = tanh(h+J (s+s′)) s ′2 = tanh(h − J (s + s ′)) s2 + s′2 tanh(J ′(s2 + s2) − 0.9J ′)

–1 –1 0.604 0.291 0.896 −1.000
–1 −1 0.462 0.462 0.924 –1.000
−1 –1 0.462 0.462 0.924 –1.000
−1 −1 0.291 0.604 0.896 −1.000

(3.2.5)

The final column is the value of the neuron in the third layer (after two lay-
ers of synapses) that gives the XOR operation on the first layer of neurons s,s′.
J ′= 1000 is a large number that makes the tanh function into a sign function
as required to obtain ±1. The value 0.9 that appears in the final formula is
chosen to lie between the two possible values of s2 + s′2 shown in the previ-
ous column.

      

s2 = tanh(h + J(s + ′ s )) ≈ tanh(h)+ J tan ′ h (h)(s + ′ s ) + 1

2
J 2 tan ′ ′ h (h)(s + ′ s )2 +K

′ s 2 = tanh(h − J(s + ′ s )) ≈ tanh(h)− J tan ′ h (h)(s + ′ s ) + 1

2
J 2 tan ′ ′ h (h)(s + ′ s )2 +K
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There are two difficulties with this representation of the XOR operation
that are related to robustness and reliability in a biological context. The first
is that it makes use of matched values of h and J on different synapses to en-
sure that s2 and s′2 have consistent values,and a matched value of J ′. The sen-
sitivity to different values can be seen, for example, by trying to use J = 0.11
only for s′2 in the above table. The second is that this operation uses a second-
order property of the synapse (the second derivative) that may be more vari-
able than first-order properties. ❚

Question 3.2.2 Construct a logical AND using a feedforward network.
You may supplement the neurons that you are comparing by a reference

neuron that is always ON.

Solution 3.2.2 The second-layer neuron must fire if and only if both neu-
rons of the first layer fire. If we add the activity of the two first-layer neurons,
and require the result to be greater than a number greater than zero in order
for the second-layer neuron to fire, then we will have the AND operation.
This can be achieved in Eq.(3.2.1), for example, by setting J and J ′ to a large
positive number, and h to its negative. Using a large number converts the
tanh function into a sign function.

The existence of logical operations such as AND and XOR in the available
functions of a neural network is interesting from a computer science point
of view. For example,using just AND and negation (NOT), we can construct
all possible logical operators (Section 1.8).This might suggest we could con-
struct mathematical or logical operations of the neural network along the
same lines as computers.One difficulty with this approach lies in the prob-
lem of representation. It is unlikely that the brain represents numbers in a
conventional binary fashion. Instead,the word and number “one” are some-
how represented as a state of the network involving many neurons. Thus the
use of conventional logical operations on individual neurons by synapses is
not likely to be the source of the brain’s ability to perform addition. At the
same time, we should not hesitate to make use of the logical operators at the
level of individual neurons to justify the brain’s ability to recognize images
that have been imprinted. ❚

3.2.7 Generalization
One of the important properties of neural networks in pattern recognition or artifi-
cial intelligence tasks is their ability to generalize from a few training examples to a
large number of cases.Generalization in a fully connected attractor network is simple
to understand. The training creates a local minimum in the space of possible network
states. The basin of attraction of this state becomes its generalization.

Partially subdivided networks provide an additional layer of generalization
(Section 2.4). In addition to trained states, various combinations of substates (com-
posite states) that may appear in the environment are recognized by the network.
Since the network has been trained on far fewer states than it recognizes,it may be said
to have generalized from the training set to the set of recognized states. This is an
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advantage ifthe architecture of subdivision of the network is in direct correspondence
to the information to be presented. However, it can be a disadvantage if the new com-
binations are “errors”—states that do not appear in the environment. The advantage
of using subdivision for language acquisition through grammatical decomposition of
sentences was discussed in Section 2.4.5.

In Section 2.5.3, the simulation of a network with four subdivisions illustrated
generalization in a subdivided network. The strength of the inter-subnetwork
synapses determines the number and kind of composite states that appear as memo-
ries. Moreover, the combinations that are recalled are preferentially those that share
some substate combinations with the originally imprinted states. For example, even
though the network is divided into four parts,a state that is composed equally of two
of the imprinted states is more likely to be stable than other possible combinations.
This is not the same, however, as a network with two subdivisions. When there are
four subdivisions, the combinations of two imprinted states can occur in three dis-
tinct ways. If we consider the substate imprints to correspond to attributes (features)
of the information, this implies that novel combinations of features may be recog-
nized if the combinations are not completely different from the imprinted states.

This description of our ability to generalize raises basic questions about the ob-
jective of brain function. We should not consider neural network models solely as a
model of memory. Traditional evaluations of an individual’s ability, such as in exams,
relied upon direct tests of memory. However, the central purpose of the brain is not
to remember experiences, but rather to obtain from them knowledge that will serve
in future circumstances. The memory of prior experience can serve in future circum-
stances when there are correlations between them.The purpose of the subdivided net-
work is to abstract the essential aspects of an experience and the relationships between
them, enabling this information to be used in future circumstances. In order to do so
it is essential both to remember relevant information and to forget information spe-
cific to the particular circumstance. As discussed in Section 3.1, a significant role of
sleep may be filtering memories, keeping the more persistent associations and forget-
ting associations that are specific to a particular circumstance.In this model the brain
architecture is constructed so that the information to be forgotten largely consists of
the associations between information stored in different subnetworks.

3.2.8 Internal dialogue
Through most of the twentieth century, behaviorism greatly influenced the field of
psychology. Behaviorism attempted to describe all of human behavior in terms of re-
actions to a set of stimuli. However, it has become more generally accepted in recent
years that descriptions of human behavior without invoking complex internal
processes (cognition) cannot provide an understanding of more than a limited num-
ber of behavioral patterns. We can contrast the behaviorist approach with the concept
of an internal dialogue that describes the ongoing language-based processes that oc-
cur in the brain without specific sensory stimulation or speech. One reason for mod-
ifying the behaviorist approach is the recent ability to measure neurological activity
by means other than behavior. Tools for measuring this activity include positron
emission tomography (PET) and magnetic resonance imaging (MRI). Even before
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these techniques, the behaviorist approach was not universally adopted. However,
such imaging techniques provide a scientific basis and tools for investigating the in-
ternal processes. More fundamentally, adopting a model that includes an internal
process, rather than a phenomenological behaviorist approach, is justified when it is
easier to describe behavior using the internal process.

In this section we discuss some features of a neural network that are necessary for
the existence of processes that are,at least in part,independent of the immediate sen-
sory information. Such independence is not found in a feedforward network, where
the input is progressively transmitted through stages to the output. It is also not real-
ized in an attractor network, where the initial state of the whole network is fixed by
input and the internal dynamics evolves the state to an attractor. These models are
thus incomplete, because thought,and the internal functioning of the brain,is often
largely independent of the immediate sensory input. People are able to think about a
problem without regard to circumstances unless the circumstances become demand-
ing upon their attention. We rely upon this when exams are given to students, since
we do not generally consider most sensory information in the room as relevant to a
student’s performance,unless there are significant distractions. How is this indepen-
dence realized in a neural network model?

A natural solution to the problem of introducing an internal dynamics is to as-
sume that there are internal loops whose input is their own output. These loops in-
teract with sensory input,and with motor output, but are not dictated by them. The
flow of neural influence is illustrated in Fig. 3.2.2. We can associate the internal
processes, for example, with internal dialogue. The existence of such loops leads to
several concerns. The first would be that the system becomes stuck in a self-consistent
loop. This is the dynamical analog of the excessively strong attractor that was dis-
cussed in the context of fixation. To avoid this problem requires some protections
against repetition. For example, a neuronal refractory period that is longer than the
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Figure 3.2.2 Internal processes such as internal dialogue can continue largely independent
of sensory information. This requires internal dynamical loops that receive input both from
the senses as well as from their own recursive structures. The figure illustrates a simple feed-
forward system with a recursive internal loop. ❚
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cycle time could protect against single-cycle repetition. However, it would not protect
against double-cycle repetition. While persistent loops are to be avoided,it is also pos-
sible for an internal cycle to preserve information over time. This may provide a form
of short-term memory. Among other capabilities,a short-term memory enables jux-
taposing, at one time in the neural state, events that are separated in time.

A second major area of concern in a discussion of internal loops is the balance
that is established between the influence o f the senses on the internal processes and
their independence. There are dangers associated both with excessive coupling or de-
coupling of the internal processes from the senses. The stereotype of the absent-
minded professor may be a manifestation of a particular balance between connection
and independence that might be realized in this model. This balance of connection
and independence is realized through the strength of particular sets of synapses. As
discussed in Section 3.1, such balances may be maintained through the processes that
occur during different stages of sleep.

A related question raised by the model of Fig. 3.2.2 is the relative capacity of the
information paths from the senses,as compared to the information paths cycling in-
ternally. Specifically, what fraction of the information present in the brain at any one
time is a direct consequence of the sensory input? This should play an important role
in our understanding of the qualitative behavior of the brain. Is it largely driven by
the outside or is it largely internal? When a system is completely determined by the
immediate sensory information, we would identify it as a reactive system. When the
sensory information determines only a part of the internal state, we can talk about the
external and internal worlds as they are manifest in the state of the network. The prob-
lem then becomes to identify the relative complexity and interactions between the ex-
ternal and internal worlds. We will discuss the quantitative characterization of com-
plexity in Chapter 8.

3.2.9 Imagination, creativity and error
There are two forms of creativity that are often discussed separately. The first is the
general human ability to create new sentences, or to respond to circumstances that
have not been experienced before. The second form of creativity is considered to be
rare and is associated with particularly “creative” individuals. In this section we dis-
cuss the first more general creativity. The second is related to the first, but also requires
an understanding of individual differences, and therefore it will be discussed in the
next section.

The term “create” implies an act after which something exists that was not pre-
sent before. However, acts of creation involve bringing together elements that were
previously in existence, but juxtaposed in new ways. The elements may be objects,at-
tributes or relationships. In order to create there must be an external manifestation—
the act of creation. However, a precursor to the act of creation is imagination. The
ability to imagine is the ability to represent internally a combination of elements that
was not previously experienced. Creativity thus involves both imagination and im-
plementation. Imagination requires a partial independence of internal representa-
tions from the external world. Otherwise, the internal state of the brain would only
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reflect the external reality and there would be no imagining or creativity. The previ-
ous section on internal dialogue described how such independence can be imple-
mented. Here we focus on the problem of generating internal representations that dif-
fer from imprinted information.

The ability to imagine novel combinations of elements is implicit in the subdi-
vided network we have been investigating. The network can generate a set of stable
composite states that are,in effect,untrue memories.Assuming that the internal neural
dynamics described in Section 3.2.8 explores various possible states of the network,
these composite states appear from time to time as “imagined” possible combinations
of partial states that were not imprinted. For example,having seen a bird in flight and
a walking human, one might imagine a composite consisting of a flying human.

The extent to which composite patterns appear is controlled by the relative
strength of inter-subnetwork synapses and intra-subnetwork synapses (the parame-
ter g) discussed in Chapter 2. The progressive decomposition of memories during
sleep, discussed in Section 3.1, suggests that sleep is also intimately related to the
emergence of composite patterns. Composite patterns would appear first during sleep
in the form of dreams, most of which would not be remembered. The partially sub-
divided network reflects both the concepts of divergent and convergent thinking.
Divergent thinking is the ability to imagine new combinations. Convergent thinking
is reflected in the inter-subnetwork synapses that limit them.

One question that might be asked is: How does the network distinguish be-
tween imagined states and real memories? A possible answer may be found in the
relative st rength of their basins of attraction. It can be shown that the basin of at-
traction of composite states is smaller than that of imprinted states. This may enable
the network to distinguish them using a strategy similar to that described in the sec-
tion on recognition. However, it is also apparent that some degree of confusion may
arise. Isolated occurrences would result in false memories. In extreme cases, this
confusion may give rise to functional disorders. This is consistent with the existence
of a variety of psychological disorders involving hallucination. Thus the possibility
of hallucination is rooted in the basic nature of the network architecture that en-
ables imagination to occur.

Another consequence of the model of imagination is a trade-off between mem-
ory and creativity. In order for new composite states to be formed,the strength of as-
sociations between subdivisions must be reduced. The relationship between the ele-
ments that were originally imprinted tends to be lost. The trade-off between storage
of more composite states and more imprinted states discussed in Section 2.4 appears
here as a t rade-off between memory and imagination, or even memory and creativ-
ity. Thus, for example, the ability to combine words into new sentences also requires
a forgetting of sentences that were heard or spoken before. Memory requires main-
taining the associations, while creat ivity requires loss of associations so that novel
combinations can be imagined.

We should also make a connection between creativity and error. Even the most
basic form of creativity—the application of prior experience to new circumstances—
requires the possibility of error. More generally, in any act of creation there must be a
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possibility for error. An error can be defined as a creation that is not consistent with
the external world.

The possibility of error implies the importance of limiting creativity. To manifest
all possible combinations of elements, while in some sense creative, would not be ef-
fective. Creativity is only effective when the many possible combinations are limited
to those that are more likely to be correct.A partially subdivided network appears to
be an effective approach. It limits the number and type of composite states.Limiting
creativity in this way reduces the probability of errors; however, it does not eliminate
them.

The interdependence of creativity and error, two characteristics of human activ-
ity, should not be considered a limitation of our neural network model;it appears in-
stead as a fundamental relationship. This relationship should persist despite im-
provements in the modeling and understanding of brain function.

Using the picture we have developed for creativity and error, we are able to begin
to describe individual differences. The degree to which subdivisions of the network
are isolated—the parameter g—can describe a one-parameter variability between in-
dividuals. Individuals who have a smaller value of g will be more forgetful,more cre-
ative and more prone to error. Individuals with a larger value of g will retain more
memories, be less creative and less prone to error. This prediction could be tested by
psychofunctional tests of a group of individuals. Here we can consider allegorical ev-
idence from conventional stereotypes of various professions. The conventional
stereotype of the most creative profession—artists—as also the least practical,can be
contrasted with professions requiring few errors, such as accounting. Since the con-
sequences of error are diminished,the arts would be expected to attract more creative
individuals (lower g), with weaker memories and higher susceptibility to error. On the
other hand,individuals with lower levels of creativity (higher g) and greater memory
retention would be expected to be more successful in professions where consequences
for error are higher.

The preceding paragraph begins to identify distinctions between individuals;how-
ever, this is only a small step toward understanding individuality or, more specifically,
the second form of creativity that is attributed to specific individuals. The artistic cre-
ativity of Picasso is typically considered to be a completely different phenomenon from
the commonplace ability to form new sentences. Nevertheless,it is possible to suggest
they are quite similar. To do so,however,requires us to go further into an understanding
of the subdivided network architecture and the source of individuality.

Question 3.2.3 Why didn’t we consider spurious states introduced in
Section 2.2.7 as a source of imagination/creativity?

Solution 3.2.3 Spurious states, like composite states, are formed from
combinations of imprinted states.Spurious states,however, do not generally
retain identifiable aspects of the original states. This is because they are
formed by combining individual neuron activities from each of the im-
printed patterns, rather than neurons associated with a particular attribute.
The only structure imposed upon spurious patterns is by virtue of their
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overlap with imprinted states.Spurious states may be stable states of the net-
work, and therefore may be imagined. However, unlike composite states, in
general they will not have a coherent interpretation. ❚

3.2.10 Individuality
The de s i gn of m odern com p uters relies upon a set of m odels that perform all com p u-
t a ti onal tasks (Secti on 1.9). De s p i te va rious arch i tectu ral differen ce s ,t h ere is a unifor-
m i ty of f u n cti on .O f ten the obj ective of n ew models of com p ut a ti on ,i n cluding neu ra l
n et work model s , is to dem on s tra te that they have su f f i c i ent capabi l i ty to be cl a s s i f i ed
with com p uters — t h ey are capable of u n iversal com p ut a ti on . We have argued alre ady
in Secti on 1.3 that one of the essen tial ch a racteri s tics of com p l ex sys tems is the dis-
ti n cti on bet ween different re a l i z a ti ons of the same arch i tectu re . Con s i s tent with this,
the su b d ivi ded neu ral net work su ggests an en ti rely different approach to com p ut a ti on
b a s ed on a nonu n iversal com p ut a ti on stra tegy. This nonu n iversal stra tegy is the su b-
j ect of this secti on and forms a basis for understanding human indivi du a l i ty.

Before proceeding, we mention that different computers, or a computer at dif-
ferent times operating on different information, behaves in different ways. We might
suppose that this would allow us to use the universal computation approach to ac-
count for individual differences. However, one aspect of the concept of universal
computation is that the basic capabilities are universal even though the particular data
and the particular hardware are not. For example,certain problems that are inherently
difficult for one computer running one computer program will also be inherently dif-
ficult for any other computer running any other program. There are various assump-
tions inherent in this statement,and it would be more correct to formulate it in terms
of computational complexity classes. However, in the case of the human architecture,
it appears that the capabilities are fundamental ly different between different realiza-
tions of the architecture.

The reason for nonuniversality is rooted in the original motivation for subdivi-
sion—correlations and independence in information. Our environment manifests
correlations that are nonuniversal. Tree leaves could be any color, or could be colored
at random. Objects need not retain their shape over time. Subdivision exists because
of the correlations in the information that is presented to the individual by the exter-
nal world. By structuring the information internally in a way that is compatible with
the structure of the external information, the subdivided architecture is designed to
accommodate to it, or take advantage of it. However, from a computation theory point
of view, there is no reason for the information to be structured in a particular way.

Once again our simplest example,the left-right universe (Section 2.4),is helpful.
We contrasted the capabilities of a network divided right from left and the network
divided top from bottom. These networks had radically different capabilities in the
left-right universe. This demonstrates in a simple way how the capabilities of distinct
individual realizations of the same architecture may vary drastically.

The inherent nonuniversality of the architecture of subdivision is modified by the
effect of selection due to fitness,which can lead to commonality between individuals.
Thus, for organisms in the left-right universe we would expect to find only left-right
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subdivided networks and no top-bottom subdivided networks. Similar commonali-
ties should also be expected among people. Thus the variability in brain architecture
and the resulting variation in capabilities is limited to the degree that selection im-
poses the architecture as a result of evolutionary processes (Chapter 6). Thus we have
argued that there can be an environmental/evolutionary pressure toward commonal-
ity in brain architecture because of a commonality in the environment of different in-
dividuals. However, this commonality is limited to the actual impact of selective forces.

The nonuniversality of the subdivided network becomes clearer when we think
about the hierarchical structure motivated by the 7±2 rule and the large variety of
possible mappings of sensory and motor information onto this structure. Consider
the many different filters of information that might be useful under different cir-
cumstances. It is possible for a single individual to have many of them and to selec-
tively use them.In the extreme case we can ask: If there are many possible filters of in-
formation that might be useful, why doesn’t each individual make use of all of them?
The first answer to this is that the number of such mappings grows exponentially with
the amount of information,so it would be impossible to contain them in a single re-
alization of the architecture.

We also recall that much of the usefulness of subdivision is lost when the num-
ber of subdivisions becomes greater than seven. In a hierarchy, we can use more than
seven distinct filters; however, choosing how to arrange them matters. The strongest
associations are maintained between information that is connected at the lowest level
of the hierarchy. Progressively weaker associations exist between subdivisions that are
connected at higher levels of the hierarchy. Depending on how the filtered informa-
tion is mapped onto the subdivisions, an individual will retain distinct associations
leading to a wide variety of possible individual differences.

Using the individualized hierarchically subdivided architecture as a model of the
brain we can return to a consideration of imagination, creativity and memory. The
functional hierarchy corresponds to a nonunique selection of attributes distributed in
a tree of stronger and weaker interconnection. This nonuniqueness suggests that dif-
ferent individuals will remember different associations and also be creative in differ-
ent ways. For example,some individuals will find it easy to remember the association
of names and faces while others will not. Those who remember these associations
have these attributes strongly connected to each other. In this model, generic capabil-
ities of an individual are directly related to the organization of information within the
architecture of the brain.

Our conclusion is that unlike modern computation theory, the subdivided ar-
chitecture of the human brain is a nonuniversal architecture whose individual real-
izations have widely different task-dependent capabilities.We also surmise that a uni-
versal strategy may not be effective at many human information-processing tasks.The
nonuniversal architecture is consistent with the uniqueness of individuals.

3.2.11 Nature versus nurture
A central controversy in modern science revolves around the relative importance of
the genetic code as compared to environmental influence in determining human be-
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havior and various aspects of brain function and human information-processing.
This is often called the nature versus nurture controversy. The model of the brain
formed from a hierarchy of functional subdivision also provides us with a model for
the relative influence of nature and nurture.

To extend the model for individuality to a first model of the influence of nature
and nurture we need only suggest that the subdivided architecture itself is genetically
controlled. On the other hand, the information that is imprinted upon it is a direct
result of the environment. Thus,the aspects of information that are retained by a par-
ticular individual are guided by genetics. Genetics controls the type of associations
that are strongly retained,and those that are readily forgotten. The environmental in-
fluence is contained in the actual associations and information that is present. This
model exhibits a complementary influence of genetics and environment on an indi-
vidual. It shows explicitly how genetics influences potential qualities of an individual,
and how the environment influences the actual qualities.

It is important to em ph a s i ze that while this pictu re is appealing in its simplic-
i ty, it must be con s i dered on ly as a first approx i m a ti on . As pects of the su b d ivi ded
a rch i tectu re are su s cepti ble to envi ron m ental influ en ce . For ex a m p l e , even the de-
vel opm ent of basic intercon n ecti ons of the vi sual sys tem are influ en ced by ex po-
su re to ligh t . A limited amount of s pecific inform a ti on may also be built in due to
gen etic progra m m i n g. These inclu de insti n ctive beh avi ors that are more preva l en t
in animals.

3.2.12 Consciousness and self-awareness
Of all the traits associated with human beings,the ability to be self-aware,and the re-
lated concept of consciousness present some of the most difficult philosophical
dilemmas. The practical implications of these dilemmas are related to the concepts of
free will and determinism and the related responsibility of an individual for action.
We separate consciousness from the problem of selective awareness (“I am conscious
of …”) which is described in the following section. In this section, after discussing
some conceptual obstacles, we will construct a neural network model of conscious-
ness. We then discuss practical reasons for its existence,a test of the model’s ability to
recognize self, and modes of failure of the model which can be compared with psy-
chofunctional failure.

Conceptually, a paradox in considering the problem of consciousness arises from
the problem of recursive signal processing. Consider, for a moment, the problem of
consciousness as that of being aware of sensory input, and consider the neural net-
work as a form of information processor. An example is the sensory processing that is
performed by the neurons that receive and process visual information. There is no in-
dication that this provides any awareness. It is simply a mapping of sensory informa-
tion into another form. This information is transferred to the input of another neural
system. The second system is now handed the job of providing the awareness.
However, no process that transforms the sensory information further would do any-
thing qualitatively different. Thus we are perpetually left to the problem of deferring
the consciousness to later, more internal stages,without resolution. Some have argued
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that the ultimate recursion must lead to something that is unphysical and therefore
outside the domain of scientific inquiry.

The problem with this model of the process of consciousness is that is places the
consciousness in the wrong place—as the primary recipient and interpreter of sen-
sory information. It also uses only a limited view of the function of a neural network.
We will address both from a different perspective.

We begin by considering a model that differentiates in an essential way between
the conscious and subconscious mind. There is generally no disagreement that such
a differentiation should be made,since casual introspection shows that the conscious
mind is not aware of—does not contain—all of the internal processes taking place in
the brain. Indeed,it is aware of very limited aspects of these processes. Thus we begin
by constructing a subconscious part of the brain. The responsibility of the subcon-
scious region of the brain is to receive sensory input and to act upon it.This may seem
strange at first sight; isn’t the conscious mind necessary? The answer is, largely, no.
Habitual acts and most of the details of daily activity are performed directly without
apparent input from the conscious part of the brain. The easiest way for us to repre-
sent the subconscious brain is as a conventional feedforward network that takes the
sensory input and determines motor control based on this sensory input. Thus far we
have done nothing at all unusual except to claim that this model does not possess con-
sciousness, which we knew from the outset.

Now we would like to construct consciousness. We do this from a pragmatic
point of view by asking, What is the information that the conscious mind possesses?
Introspection suggests that the conscious mind possesses sensory information. It also
possesses knowledge of motor activity. However, it does not possess information
about the internal processes that lead from sensory to motor activity. This suggests
that we construct a new part of the network model that represents both the sensory
information and motor activity information, but not the intermediate stages. The
next question to ask is, What does the conscious mind control? The first answer is that
it has no primary control function. By this we mean that control is not continuous in
the same way that it is for the feedforward network. We can see this from the termi-
nology—the awareness or consciousness do not convey the meaning of action. They
are rather passive terms describing the possession of information. No a ction is re-
quired on the basis of this information.

There is, however, a secondary control function. The awareness is capable of ex-
ercising control over the motor activity. However, this control is circumscribed. It acts
as a corrective process rather than a control over moment-by-moment action. Thus
the direct control over action is performed by the subconscious network, while the
conscious network acts by redirecting the subconscious feedforward network.

How does the conscious network decide to exercise control over actions of the
subconscious network? We answer by considering the conscious mind as an attractor
network (Fig. 3.2.3). The pattern of neural activity in the attractor network represents
both sensory and motor activity. It’s task is to recognize their “compatibility.” As dis-
cussed in Section 3.2.6, recognition can be performed by measuring the dynamics of
the attractor network. If the juxtaposition of the sensory and motor activity is recog-
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nized,then the conscious mind does not interfere. However, when the state of the sen-
sory and motor activities are not recognized,then the conscious mind acts by causing
the feedforward network to modify its actions. This occurs over a longer time scale
than direct action by the subconscious network.

An interesting way to summarize the recognition process that the attractor net-
work performs is as a question. The question, in this case, is: Is this me? Or specifi-
cally: Is the current situation and my actions within it consistent with my self-image?
The self-image is the set of stable states of the attractor network. Summarized in this
way, we see how the notion of self-awareness and consciousness are related and are
represented by this model.

An additional concept that can be described is the concept of a will. It is easiest
to identify the will by noting the use of the modifiers that describe an individual as
having a strong or weak will. The will represents the ability of the conscious part of
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Figure 3.2.3 A model that captures some of the essential features of self-awareness and con-
sciousness can be constructed out of two parts. The first part, representing the subconscious
mind, is a feedforward network that is a sensory motor control system. The input is sensory
information and the output is motor control. The second part, representing the conscious
mind, is an attractor network whose state is composed of input both from the sensory infor-
mation and from the motor control. It has no direct control function. However, when the sen-
sory and motor information is not recognized as an imprinted state the network exercises con-
trol over the actions through recognition synapses similar to those discussed in Section 3.2.6
and Fig. 3.2.1. In effect, the imprinted states in the conscious network represent a model of
the self. When the actions are not consistent with the model it intervenes to change the be-
havior. The network function is illustrated schematically in Fig. 3.2.4. ❚
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the mind to control the subconscious. In this model this is represented by the strength
of the synapses that originate in the conscious attractor network and act to modify the
state of activity of the subconscious feedforward network.

The architecture we have constructed,shown in Fig. 3.2.3,is a comparatively sim-
ple model that captures some of the features that we attribute to the function of the
conscious and subconscious parts of the mind as well as the interactions between
them. The interactions are described pictorially in Fig. 3.2.4. Given the conflicts that
have arisen out of the concept of consciousness, the possibility of discussing a con-
crete model provides some new opportunities for progress in our understanding.

The practicality of consciousness can be considered by realizing that the combi-
nation of feedforward and attractor networks provides a solution to the limitations of
each of these network architectures. As discussed in Sections 2.3 and 3.2.2,the train-
ing of a feedforward network requires storage of the desired input-output pairs. In
our model of consciousness, this storage is performed using the attractor network.
Moreover, the training of the feedforward network must be done incrementally, while
that of the attractor network may be achieved by a single imprint.On the other hand,
the attractor network is not capable of complex processing and will suffer overload if
too many patterns are stored in it. In this model, complex processing can be left to the
feedforward network, and once it is trained,the size of the basin of attraction of the
attractor network pattern can decrease. Significantly, it is not necessary f or the at-
tractor network by itself to be able to generate the pattern representing a response,it
must only verify and provide corrections to this response.

Consciousness is characterized by the recognition of oneself. Experimentally it is
manifest in the ability to recognize oneself in a mirror. This ability is not present for
animals other than apes and man. Even monkeys appear unable to recognize them-
selves. The neural network model indicates how self-recognition can occur. By virtue
of juxtaposing sensory and motor information in an associative memory (attractor
network), it enables correlations between them to be imprinted. When moving and
seeing this motion in a mirror, the imprinted information is recognized by the con-
scious network, and thus the answer to the question, Is this me? is yes.

The physiological location of the conscious and subconscious networks can be
tentatively identified. The frontal lobes that are much more developed in apes and
man than in other animals have generally been identified with consciousness and
planning. They also have a topographic map of the body that serves as an area of mo-
tor control. However, the motor control due to the frontal lobes has been associated
with voluntary rather than habitual motion. Involuntary movement and the coordi-
nation of voluntary and involuntary movement are both centered in the cerebellum,
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Figure 3.2.4 Schematic illustration of the model of consciousness described in the text. This
model assumes two components of the mind—the conscious mind and the subconscious mind.
The activity and interactions of the two components are illustrated in the figure as a time
sequence. The subconscious mind is directly responsible for receiving sensory input and act-
ing upon it. The conscious network corrects the subconscious based on an internal represen-
tation of the self, and triggers retraining of the subconscious network. ❚
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to which there are many projections from the motor areas of the frontal lobes. These
observations are consistent with the neural network model.

While most animals do not recognize themselves in a mirror, they do have a sense
of self associated with location/territory or smell. The part of the brain associated
with representing information about spatial location is the hippocampus. This part
of the brain may serve as the associative network that enables an identification of self
related to location, as in:“I am here” or “This is my place.” Recent experiments dis-
cussed in Section 3.1.5 identify the hippocampus as a network that stores information
in correlated patterns of neural activity—an associative network. This also suggests
that consciousness is not a monolithic entity; it may have various aspects related to
different parts of the brain.

As with other aspects of the models we have discussed, the model of conscious-
ness provides an understanding of some of the failure mechanisms of the network.
One failure mechanism is found by considering the strength of the control by the con-
scious over the subconscious—the will. We see that the subconscious mind is essen-
tially reactive. When the will is weak, the behavior would be characterized as impul-
sive. On the other hand, if the will is too strong, then the attractor network, which
does not have the ability to process information through several layers of synapses,
takes over the reactive function. This implies that actions are based upon relatively
simple conscious processing. When all actions are based upon simple conscious pro-
cessing, behavior is characterized as fanatic.

We can take the discussion one step further by discussing changes in the will.
Similar to other synapses, the will is likely to be changed by imprinting. Thus it is
strengthened by action and weakened by inaction. Since the exercise of the will is un-
der conscious control,it may be strengthened by consciously exercising control even
when the control is unnecessary, or it may be weakened by passivity when the control
would otherwise be exercised.

In this section we have emphasized the limited control that the conscious mind
exercises over action. However, the conscious mind appears to exercise direct control
over what we are paying attention to, as discussed in the following section.

3.2.13 Attention
One of the phenomena associated with both internal dialogue and response to sen-
sory stimuli is that of attention. We are able to be aware of various aspects of sensory
information, or focus on a particular thought.How would we design a system that can
achieve this? One approach is used by computers, where a central processing unit re-
ceives information from different parts of the memory according to its instructions.
The central processing unit must label the information according to where it is taken
from in the memory. This requires an addressing/labeling that distinguishes one part
of the brain from another. We will discuss an alternate strategy that leaves the infor-
mation in place but acts as a kind of spotlight. This approach is better suited to the
neural network models we have been describing, because the nature of information is
established by its location in the brain rather than by retrieval and labeling. We con-
tinue to avoid an explicit labeling scheme in this manner.
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Until now we have been comfortable with the model that neurons are firing or
not firing with roughly equal probability, and the pattern of activity or inactivity rep-
resents the information that is present in the mind at a particular time. We now need
an additional intrinsic label that will enable us to identify which region of the brain
has our attention.One way to achieve this is to give up the symmetry between activ-
ity and inactivity and assume that significantly more of the neurons are inactive; it is
then the neurons with significant activity that are representing the information. This
helps because we can then control the overall activity level in a particular region of the
brain. If we raise the overall activity we are drawing attention to it, and if we reduce
the level of activity we are reducing our attention to it. It is indeed well established
that the neurons in the brain are active less than half of the time. Moreover, imaging
experiments that are assumed to measure which parts of the brain are utilized at a
particular time measure their average neural activity, which is higher than in other re-
gions of the brain.

How does this change affect all of our previous analyses of the storage of patterns
in attractor networks? The answer is that qualitatively very little changes. A pattern
that is to be imprinted consists of a pattern of neural activity where the fraction of ac-
tive (si(t) = 1) neurons is less than one-half. The imprinting rule may be modified
slightly to prevent the bias itself from being imprinted. If the average activity of the
neurons is consistently m, then the Hebbian imprinting (Eq. (2.2.6)) may be modi-
fied to read:

Jij(t) = Jij(t − 1) + c(si(t −1) − m)(sj(t −1) − m) i ≠ j (3.2.6)

This means that imprinting results from deviations from the average activity. The net-
work capacity as measured by the number of patterns that can be imprinted and re-
trieved actually goes up slightly, because, in effect, the patterns do not interfere with
each other as much since they involve different sets of firing neurons. However, the
overall amount of information that can be stored is diminished because each pattern
does not contain as much information. For our purposes, these are minor adjust-
ments to the results that we have already found in Chapter 2.

In order to make use of the bias in neural activity for the purpose of attention,
there must be a mechanism by which the overall activity within a particular region of
the brain is controlled. We will describe a mechanism for such control. The mecha-
nism must be independent of the neural activity and synaptic transmission that we
have been describing. Throughout the brain there are found cells whose function is
not understood. These cells,called glial cells,may have some function in maintaining
the structural integrity of the neural system. We will invest these cells with a model for
how the attention system might work, recognizing that there are other possible em-
bodiments. The essential property that we are using is that these cells are not part of
the neural representation themselves. This role could also be taken by a separate set of
neurons. The reason it appears natural that the cells involved would not actually be
neurons is that they do not require specificity of interaction with a particular neuron.
Instead they should interact more generally with a whole region of neurons. There
are, however, some classes of neurons that do this as well.
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In order to fulfill their function,the glial cells would need two capabilities: to con-
trol the overall activity of the cells and to measure their overall activity. Control over
the activity might be achieved by control over the local blood flow supplying nutri-
ents to a region of cells, or by control over the chemical contents of the blood.
Alternatively, chemicals in the intercellular fluid might be involved. The purpose of
these chemicals would be similar to that of neurotransmitters in that they inhibit or
excite neuron activity; however, they are likely to be quite different in detail,since they
have an effect on the overall level of activity rather than serving as one of many sig-
nals to a cell. Measuring the overall activity of a region of neurons may be achieved by
sensing various by-products of their electrochemical activity. This measurement
would take longer than the transmission of an individual pulse along an axon; how-
ever, the activity itself is an average over many transmission pulses.

The behavior of the glial cell then becomes similar to the behavior of a neuron,
in the sense that it has either an ON or an OFF state. In the ON state it promotes the ac-
tivity of the neuronal assembly it is in contact with;in the OFF state it suppresses it. It
acts as a metaneuron that is related to the average neuronal activity. Control over the
glial cell may then be exercised in several ways. For example, a self-consistent atten-
tion mechanism could be formed by glial cells attempting to activate the assembly of
neurons they are in contact with whenever the cells are significantly active. The glial
cell measures the activity present with respect to the expected activity. If the glial cell
is OFF, the neurons would be generally inactive. If the cells become significantly more
active than expected,the glial cell turns ON and promotes the activity of the region of
cells. If the glial cell is ON and the activity falls below that expected, then the glial cell
turns OFF. Interactions between glial cells that suppress one glial cell when another is
active would lead to an exclusive attention mechanism.

An important part of the phenomenon of attention is that it is coupled to con-
sciousness. We can implement this coupling by assuming that the conscious part of
the brain, discussed in the previous section, controls the glial cells and thus the re-
gional neural activity. We emphasize again that the term “glial cell”as used here might
be substituted by another biological analog without changing the essence of this dis-
cussion. Moreover, it should be clear that the mechanism we have described for at-
tention is not the only approach. It is one of the ways that are consistent with the spirit
of the neural network models we have been developing.

One of the interesting outcomes of this model of attention is that it provides a
mechanism for a new level of dynamics that would be related to a sequential activa-
tion of glial cells causing a sequential activation of particular regions of neurons. This
can provide a missing piece in our discussion of language in the subdivided architec-
ture. In Chapter 2 we suggested that different subdivisions of the brain are responsi-
ble for storage of distinct parts of speech. We can now suggest that a sequential firing
of glial cells results in sequential activation of different parts of speech that trigger ver-
balized speech,are triggered by hearing speech, or represent internal dialogue in the
form of organized strings of words—sentences.
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3.2.14 Summary of brain function
We have devoted this chapter to building a relationship between our neural network
models and several of the basic phenomena of brain and mind. The relationships have
not only described some of the interesting phenomena, but also created a framework
in which poorly understood concepts can at least be discussed. These include such di-
verse concepts as sleep, creativity and consciousness. To incorporate these into our
model, we expanded the basic neural network to include various additional features.
The comparison of many of these with the actual brain has yet to be performed.
However, it is helpful to have theories that can be tested both experimentally and
through simulations.
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4
Protein Folding I:
Size Scaling of Time

Conceptual Outline

The simplest question about dynamics—how long does a process take?—
becomes particularly relevant when the time may be so long that the process cannot
happen at all. A fundamental problem associated with the dynamics of protein fold-
ing is understanding how a system of many interacting elements can reach a desired
structure in a reasonable time. In this chapter, we discuss the parallel-processing
idea for resolving this problem; kinetic pathways will be considered in the next chap-
ter. Parallel processing and interdependence are at odds and must be balanced in the
design of complex systems.

We use finite-size Ising type models to explore the nature of interactions
that can allow a system to relax in a time that grows less than exponentially in the size
of the system. These models illustrate various ways to realize the parallel-processing
idea.

The simplest idealization of parallel processing is the case of completely
independent spins. We discuss a two-spin model as a first example of how such a
system relaxes.

Various homogeneous models illustrate some of the properties that enable
systems to relax in a time that grows no more than a power law in the system size.
These include ideal parallel processing, and nucleation and growth of a stable state
from a metastable state. The models also illustrate cases where exponential growth
in the relaxation time can prevent systems from relaxing.

Inhomogeneous models extend the range of possibilities for interaction ar-
chitectures that still allow a reasonable relaxation time. Among these are space and
time partitioning and preselected initial conditions. However, inhomogeneous long-
range interactions generally lead to an exponential growth of relaxation time with
system size.

❚ 4 . 5 ❚

❚ 4 . 4 ❚

❚ 4 . 3 ❚

❚ 4 . 2 ❚

❚ 4 . 1 ❚
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The Protein-Folding Problem

One of the simplest questions we can ask about the dynamics of a complex system is,
How long does a process take? In some cases this question presumes that we have an
understanding of the initial and final state of the process. In other cases we are look-
ing for a characteristic time scale of dynamic change. For a complex system,a partic-
ular process may not occur in any reasonable amount of time. The time that a dy-
namic process takes is of central importance when a system has an identifiable
function or purpose. We will consider this in the context of proteins, for which this
question is a fundamental issue in understanding molecular function in biological
cells.

We begin by describing the structure of proteins, starting from their “primary
structure.” Proteins are molecules formed out of long chains of, typically, twenty dif-
ferent kinds of amino acids. Amino acids can exist as separate molecules in water, but
are constructed so that they can be covalently bonded in a linear chain by removal of
one water molecule per bond (Fig. 4.1.1). In general,molecules formed as long chains
of molecular units are called polymers. Proteins,RNA and DNA,as well as other types
of biological molecules (e.g., polysaccharides) are polymers. In biological cells, pro-
teins are formed in a linear chain by transcription from RNA templates that are them-
selves t ranscribed from DNA. The sequence of amino acids forming the protein is
called its primary structure (Fig. 4.1.2). The active form of proteins (more specifically

4.1
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Figure 4.1.1 Illustration of the atomic
composition of an amino acid. The usual
notation for carbon (C), oxygen (O), ni-
trogen (N) and hydrogen (H) is used. R
stands for a radical that is generally a
hydrocarbon chain and may contain hy-
drocarbon rings. It is different for each
of the distinct amino acids, and is the
difference between them. The bottom
figure is a chain of amino acids formed
by removing a single water molecule
and bonding one nitrogen to the car-
bon of the next amino acid. The
sequence of amino acids is the
primary structure of the pro-
tein (see Fig. 4.1.2). ❚
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Common Amino Acids
Name Notation Name Notation
Glycine (gly, G) Cysteine (cys, C)
Alanine (ala, A) Methionine (met, M)
Valine (val, V) Asparagine (asn, N)
Leucine (leu, L) Glutamine (gln, Q)
Isoleucine (ile, I) Aspartic acid (asp, D)
Phenylalanine (phe, F) Glutamic acid (glu, E)
Tyrosine (tyr, Y) Lysine (lys, K)
Tryptophan (trp, W) Arginine (arg, R)
Serine (ser, S) Histidine (his, H)
Threonine (thr, T) Proline (pro, P)

Figure 4.1.2 Amino acid sequence of the protein acetylcholinesterase — its primary struc-
ture. A list of common amino acids and their commonly used three-letter and one-letter no-
tation is attached. ❚
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globular proteins) is, however, a tightly bound three-dimensional (3-d) structure
(Fig. 4.1.3) with active sites on the surface. The active sites serve enzymatic roles,con-
trolling chemical reactions in the cell. The transformation of the linear protein chain
to the enzymatically active 3-d structure is known as protein folding. The 3-d struc-
ture arises because of additional bonding between the amino acids of the chain. These
bonds are characteristically weaker than the covalent bonds along the chain.They in-
clude hydrogen bonds, van der Waals bonds and a few covalent sulfur-sulfur
(disulfide) bonds. The relative weakness of the bonds responsible for the 3-d struc-
ture makes the distinction between the primary and 3-d structure meaningful.

The 3-d structure of proteins can be further analyzed in terms of secondary, ter-
tiary and,sometimes, quaternary structure. These describe levels of spatial organiza-
tion between individual amino acids and the complete 3-d structure.A plot of the pro-
tein chain backbone in space (Fig. 4.1.3 (b)) generally reveals two kinds of amino acid

(a)

(b)

F i g u re 4 . 1 . 3 T h re e -
dimensional structure of
the protein acetylchol-
inesterase. The top pic-
ture is constructed using
space-filling balls that
schematically portray the
electron density of each
atom. The bottom illus-
tration is a simplified ver-
sion showing only the
backbone of the protein.
Helical segments ( -he-
lices) and regions of par-
allel chains ( -sheets)
are visible. They are illus-
trated as ribbons to dis-
tinguish them from the
connecting regions of the
chain (turns). The -he-
lices, -sheets and turns
constitute the secondary
structure of the protein.
(Rendered on a Macintosh
using RasMol [developed
by Roger Sayle] and a
National Institutes of
Health protein databank
(PDB) file) ❚

04adBARYAM_29412  3/10/02 10:37 AM  Page 423



bonding structures known as -helix and -sheet. The -helix consists of a single-
chain helix, where each amino acid forms a hydrogen bond to the fourth amino acid
along the chain. Each hydrogen bond attaches the N-H end of one amino acid with
the C-OH end of another, resulting in 3.6 amino acids per helix turn. In this structure
all such hydrogen bonds are formed, except at the ends of the helix. Thus, from the
point of view of the primary chain (and without consideration of the radicals that dis-
tinguish different amino acids),this is a low-energy structure. There is a second nat-
ural way to provide hydrogen bonding. Placing two chains, or two segments of the
same chain, parallel or antiparallel to each other allows a chain of hydrogen bonds.
This can be extended on both sides by adding chains in a two-dimensional fashion to
form a planar structure that provides complete hydrogen bonds everywhere, except at
the edges.This is the -sheet arrangement. In addition to the -helix and -sheet struc-
tu res there are also segm ents of the pro tei n ,c a ll ed tu rn s , that con n ect different - h elix
and -sheet structures. The number of amino acids along a single -helix typically
ranges between ten and twenty-five (three to seven turns), and the number in a sin-
gle strand of a -sheet is less, only five to ten. The total number of amino acids in a
region of -sheet can be as high as fifty, divided into three to eight strands. The 3-d
structure of a protein described in terms of segments of -helix and -sheet is known
as the secon d a ry stru ctu re of the pro tei n . The nu m ber of d i f ferent secon d a ry - s tru cture
elements in a protein ranges from a few up to, possibly, fifty. When there are many sec-
ondary structural elements they are further grouped into intermediate structural el-
ements. The complete 3-d structure of an individual amino acid chain is known as its
tertiary structure. Several chains may be combined together to form a larger molecu-
lar aggregate that constitutes a functioning enzyme. The collective structure of the
chains is the enzyme’s quaternary structure. This describes the hierarchically subdi-
vided structure of a protein. The number of components at each level of hierarchy is
consistent with the generalized 7±2 rule discussed in Chapter 2. This rule is expected
to apply to proteins or other complex systems that cannot be subdivided or modified
locally without significant change in their global properties.

Protein folding is the transformation of a linear protein chain to the 3-d struc-
ture. The problem of understanding protein folding has achieved a separate existence
from the problem of describing protein function in the cell. Many proteins can be un-
folded and refolded reversibly in a test tube (in vitro) separate from other molecules
that might otherwise be involved in the protein folding in the cell (in vivo). Various
additives to the solution cause the protein to unfold or refold. Protein folding has at-
tained a central significance in the effort to understand the molecular biology of the
cell, because it is a key to understanding how the linear DNA code is converted into
cellular function—as implemented by active enzymes. The 3-d structure of the pro-
tein is the form in which they perform enzymatic tasks.

Protein folding is an unsolved problem. What form will the solution of this prob-
lem take? One prospect is that it will be possible to predict the 3-d structure from a
specified amino-acid sequence. The process of prediction may result from a complete
set of rules that describe how par ticular sequences fold. Alternatively, the prediction
may require a large-scale computer simulation of the dynamical process of folding.

424 P ro t e i n  Fo l d i ng  I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 424
Title: Dynamics Complex Systems Short / Normal / Long

04adBARYAM_29412  3/10/02 10:37 AM  Page 424



Most researchers studying protein folding are concerned with determining or pre-
dicting the 3-d structure without describing the dynamics. Our concern is with the
dynamics in a generalized context that applies to many complex systems.

From early on in the discussion of the protein-folding problem, it has been pos-
sible to separate from the explicit protein-folding problem an implicit problem that
begs for a fundamental resolution. How, in principle, can protein folding occur?
Consider a system composed of elements, where each element may be found in any
of several states.A complete specification of the state of all the elements describes the
conformation of the system. The number of possible conformations of the system
grows exponentially with the number of elements. We require the system to reach a
unique conformation—the folded structure. We may presume for now that the folded
structure is the lowest energy conformation of the system. The amount of time nec-
essary for the system to explore all possible conformations to find the lowest-energy
one grows exponentially with system size. As discussed in the following paragraphs,
this is impossible. Therefore we ask, How does a protein know where to go in the space
of conformations to reach the folded structure?

We can adopt some very rough approximations to estimate how much time it
would take for a system to explore all possible conformations, when the number of
conformations grows exponentially with system size. Let us assume that there are 2N

conformations, where N is the size of the system—e.g.,the number of amino acids in
a protein. Assume further that the system spends only one atomic oscillation time in
each conformation before moving on to the next one. This is a low estimate,so our
result will be a reasonable lower bound on the exploration time.An atomic oscillation
time in a material is approximately 10−12 sec. We should increase this by at least an or-
der of magnitude, because we are talking about a whole amino acid moving rather
than a single atom. Our conclusions, however, won’t be sensitive to this distinction.
The time to relax would be 2N10−12 sec,if we assume optimistically that each possible
state is visited exactly once before the right arrangement is found.

A protein folds in, of order, 1 second. For conformation space exploration to
work, we would have to rest rict the number of amino acids to be smaller than that
given by the equation:

2N10−12 sec = 1 sec (4.1.1)

or N = 40. Real proteins are formed from chains that typically have 100 to 1000 amino
acids. Even if we were to just double our limit from 40 to 80 amino acids, we would
have a conformation exploration time of 1012 seconds or 32,000 years. The many or-
ders of magnitude that separate a reasonable result from this simple estimate suggests
that there must be something fundamentally wrong with our way of thinking about
the problem as an exploration of possible conformations.Figuring out what is a rea-
sonable picture,and providing justification for it,is the fundamental protein-folding
problem.

The fundamental protein-folding problem applies to other complex systems as
well.A complex system always has a large set of possible conformations. The dynam-
ics of a complex system takes it from one type of conformation to another type of
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conformation. By the argument presented above, the dynamics cannot explore all
possible conformations in order to reach the final conformation. This applies to the
dynamics of self-organization, adaptation or function. We can consider neural net-
works (Chapters 2 and 3) as a second example. Three relevant dynamic processes are
the dynamics by which the neural network is formed during physiological develop-
ment,the dynamics by which it adapts (is trained,learns) and the dynamics by which
it responds to external information. All of these cause the neural network to attain one
of a small set of conformations,selected from all of the possible conformations of the
system. This implies that it does not explore all alternatives before realizing its final
form. Similar constraints apply to the dynamics of other complex systems.

Because the fundamental protein-folding problem exists on a very general level,
it is reasonable to look at generic models to identify where a solution might exist. Two
concepts have been articulated as responsible for the success of biological protein
folding—parallel processing and kinetic pathways. The concept of parallel processing
suggests, quite reasonably, that more than one process of exploration may be done at
once. This can occur ifand only ifthe processes are in some sense independent. If par-
allel processing works then, naively speaking, each amino acid can do its own explo-
ration and the process will take very little time. In contrast to this picture,the idea of
kinetic pathways suggests that a protein starts from a class of conformations that nat-
urally falls down in energy directly toward the folded structure. There are large barri-
ers to other conformations and there is no complete phase space exploration. In this
picture there is no need for the folded structure to be the lowest energy conforma-
tion—it just has to be the lowest among the accessible conformations.One way to en-
visage this is as water flowing through a riverbed, confined by river banks, rather than
exploring all possible routes to the sea.

Our objective is to add to these ideas some concrete analysis of simple models
that provide an understanding of how parallel processing and kinetic pathways may
work. In this chapter we discuss the concept of parallel processing, or independent re-
laxation, by developing a series of simple models. Section 4.2 describes the approxi-
mations that will be used. Section 4.3 describes a decoupled two-variable model. The
main discussion is divided into homogeneous models in Section 4.4 and inhomoge-
neous models in Section 4.5.In the next chapter we discuss the kinetic aspects of poly-
mer collapse from an expanded to a compact structure as a first test of how kinetics
may play a role in protein folding. It is to be expected that the evolving biology of or-
ganisms will take advantage of all possible “tricks” that enable proteins to fold in ac-
ceptable time. Therefore it is likely that both parallel processing and kinetic effects do
play a role.By understanding the possible generic scenarios that enable rapid folding,
we are likely to gain insight into the mechanisms that are actually used.

As we discuss various models of parallel processing we should keep in mind that
we are not concerned with arbitrary physical systems, but rather with complex sys-
tems. As discussed in S ection 1.3, a complex system is indivisible, its parts are inter-
dependent. In the case of proteins this means that the complete primary structure—
the sequence of amino acids—is important in determining its 3-d structure. The 3-d
structure is sometimes, but not always,affected by changing a single amino acid. It is
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likely to be affected by changing two of them. The resulting modifications of the 3-d
structure are not localized at the position of the changed amino acids. Both the lack
of effect of changing one amino acid,and the various effects of changing more amino
acids suggest that the 3-d structure is determined by a strong coupling between the
amino acids, rather than b eing solely a local effect. These observations should limit
the applicability of parallel processing, because such a structural interdependence im-
plies that the dynamics of the protein cannot be separated into completely indepen-
dent parts. Thus, we recognize that the complexity of the system does not naturally
lead to an assumption of parallel processing. It is this conflict of the desire to enable
rapid dynamics through independence, with the need to promote interdependence,
which makes the question of time scale interesting. There is a natural connection be-
tween this discussion and the discussion of substructure in Chapter 2. There we
showed how functional interdependence arose from a balance between strong and
weak interactions in a hierarchy of subsystems. This balance can also be relevant to
the problem of achieving essentially parallel yet interdependent dynamics.

Before proceeding, we restate the formal protein-folding problem in a concrete
fashion:the objective is to demonstrate that protein folding is consistent with a model
where the basic scaling of the relaxation time is reduced from an exponential increase
as a function of system size, to no more than a power-law increase. As can be readily
verified, for 1000 amino acids, the relaxation time of a system where ∼ N z is not a
fundamental problem when z < 4. Our discussion of various models in this chapter
suggests a framework in which a detailed understanding of the parallel minimization
of different coordinates can be further developed. Each model is analyzed to obtain
the scaling of the dynamic relaxation (folding) time with the size of the system (chain
length).

Introduction to the Models

We will study the time scale of relaxation dynamics of various model systems as con-
ceptual prototypes of protein folding. Our analysis of the models will make use of the
formalism and concepts of Section 1.4 and Section 1.6.A review is recommended. We
assume that relaxation to equilibrium is complete and that the desired folded struc-
ture is the energy minimum (ground state) over the conformation space. The con-
formation of the protein chain is described by a set of variables {si} that are the local
relative coordinates of amino acids—specifically dihedral angles (Fig. 4.2.1). These
variables, which are continuous variables, have two or more discrete values at which
they attain a local minimum in energy. The local minima are separated by energy bar-
riers. Formal results do not depend in an essential way on the number of local min-
ima for each variable. Thus, it is assumed that each variable si is a two-state system
(Section 1.4), where the two local minima are denoted by si = ±1.

A model of protein folding using binary variables to describe the protein confor-
mation is not as farfetched as it may sound.On the other hand, one should not be con-
vinced that it is the true protein-folding problem. Protein conformational changes do
arise largely from changes in the dihedral angles between bonds (Fig. 4.2.1). The

4.2
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energy required to change the dihedral angle is small enough to be affected by the sec-
ondary bonding between amino acids. This energy is much smaller than the energy
required to change bond lengths,which are very rigid,or bond-to-bond angles, which
are less rigid than bond lengths but more rigid than dihedral angles. As shown in
Fig. 4.2.1, there are two dihedral angles that specify the relative amino acid coordi-
nates. The values taken by the dihedral angles vary along the amino acid chain. They
are different for different amino acids, and different for the same amino acid in dif-
ferent locations.

It is revealing to plot the distribution of dihedral angles found in proteins. The
scatter plot in Fig. 4.2.2 shows that the values of the dihedral angles cluster around
two pairs of values. The plot suggests that it is possible,as a first approximation, to de-
fine the conformation of the protein by which cluster a particular amino acid belongs
to. It might be suggested that the binary model is correct, by claiming that the vari-
able si only indicates that a particular pair of dihedral angles is closer to one of the two
aggregation points. However, this is not strictly correct, since it is conceivable that a
protein conformation can change significantly without changing any of the binary
variables defined in this way.

For our purposes, we will consider a specification of the variables {si} to be a
complete description of the conformation of the protein, except for the irrelevant ro-
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Figure 4.2.1 Illustration of the dihedral angles and These coordinates are largely re-
sponsible for the variation in protein chain conformation. Changing a single dihedral angle
is achieved by rotating all of the protein from one end up to a selected backbone atom. This
part of the protein is rotated around the bond that goes from the selected atom to the next
along the chain. The rotation does not affect bond lengths or bond-to-bond angles. It does
affect the relative orientation of the two bonds on either side of the bond that is the rota-
tion axis. ❚
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tational and translational degrees of freedom of the whole protein. The potential en-
ergy, E({si}), of the protein is a function of the values of all the variables. By redefin-
ing the variables si → − si , when necessary, we let the minimum energy conformation
be si = −1. Furthermore, for most of the discussion, we assume that the unfolded ini-
tial state consists of all si = +1. We could also assume that the unfolded conformation
is one of many possible disordered states obtained by randomly picking si = ±1. The
folding would then be a disorder-to-order transition.

The potential energy of the system E({si}) models the actual physical energy aris-
ing from atomic interactions, or, more properly, from the interaction between elec-
trons and nuclei, where the nuclear positions are assumed to be fixed and the elec-
trons are treated quantum mechanically. The potential energy is assumed to be
evaluated at the particular conformation specified by {si}. It is the potential energy
rather than the total energy, because the kinetic energy of atomic motion is not in-
cluded. Since a protein is in a water environment at non-zero temperature, the
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Figure 4.2.2 Scatter plot of the dihedral angle coordinates (Fig. 4.2.1) of each amino acid
found along the protein acetylcholinesterase (Figs. 4.1.2–4.1.3). This is called a
Ramachandran plot. The coordinates are seen to cluster in two groups. The clustering sug-
gests that it is reasonable to represent the coordinates of the protein using binary variables
that specify which of the two clusters a particular dihedral angle pair is found in. The two co-
ordinates correspond to -helix and -sheet regions of the protein. The more widely scattered
points typically correspond to the amino acid glycine which has a hydrogen atom as a radi-
cal and therefore has fewer constraints on its conformation. (Angles were obtained from a
PDB file using MolView [developed by Thomas J. Smith]) ❚
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potential energy is actually the free energy of the protein after various positions of wa-
ter molecules are averaged over. Nevertheless, for protein folding the energy is closely
related to the physical energy. This is unlike the energy analog that was used in
Chapter 2 for the attractor neural network, which was not directly related to the phys-
ical energy of the system.

In addition to the energy of the system, E({si}),there is also a relaxation time i

for each variable, si . The relaxation time is governed by the energy barrier EBi of each
two-state system—the barrier to switch between values of si . The value of EBi may vary
from variable to variable,and depend on the values of the other variables {sj }j≠i . The
model we have constructed is quite similar to the Ising model discussed in Section 1.6.
The primary difference is the distinct relaxation times for each coordinate. Unless
otherwise specified, we will make the assumption that the time for a single variable to
flip is small. Specifically, the relaxation times will be assumed to be bounded by a
small time that does not change with the size of the system. In this case the model is
essentially the same as an Ising model with kinetics that do not take into account the
variation in relaxation time between different coordinates. In specific cases we will
address the impact of variation in the relaxation times. However, when there is a sys-
tematic violation of the assumption that relaxation times are bounded, the behavior
is dominated by the largest barriers or the slowest kinetic processes and a different ap-
proach is necessary. Violation of this assumption is what causes the models we are
about to discuss not to apply to glasses (Section 1.4), or other quenched systems. In
such systems a variable describing the local structure does not have a small relaxation
time. The assumption of a short single-variable relaxation time is equivalent to as-
suming a temperature well above the two-state freezing transition.

Our general discussion of protein folding thus consists of assigning a model for
the energy function E({si }) and the dynamics { i} for the transition from si = +1 to
si = −1. In this general prescription there is no assumed arrangement of variables in
space, or the dimensionality of the space in which the variables are located. We will,
however, specialize to fixed spatial arrays of variables in a space of a par ticular di-
mension in many of the models. It may seem natural to assume that the variables {si}
occupy a space which is either one-dimensional because of the chain structure or
three-dimensional because of the 3-d structure of the eventual protein. Typically, we
use the dimensionality of space to distinguish between local interactions and long-
range interactions. Neither one nor three dimensions is actually correct because of the
many possible interactions that can occur between amino acids when the chain dy-
namically rearranges itself in space. In this chapter, however, our generic approach
suggests that we should not be overly concerned with this problem.

We limit ourselves to considering an expansion of the energy up to interactions
between pairs of variables.

(4.2.1)

Included is a local preference field hi determined by local properties of the system
(e.g., the structure of individual amino acids), and the pairwise interactions Jij .

E({si}) = − hisi∑ − Jij sis j∑
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Higher-order interactions between three or more variables may be included and can
be important. However, the formal discussion of the scaling of relaxation is well
served by keeping only these terms. Before proceeding we note that our assumptions
imply ∑hi < 0. This follows from the condition that the energy of the initial unfolded
state is higher than the energy of the final folded state:

(4.2.2)

Thu s , in the lower en er gy state si tends to have the same sign as hi . We wi ll adopt the
m a gn etic term i n o l ogy of the Ising model in our discussions (Secti on 1.6). The va ri-
a bles si a re call ed spins, the para m eters hi a re local va lues of the ex ternal fiel d , the in-
teracti ons are ferrom a gn etic if Jij > 0 or anti ferrom a gn etic if Jij < 0 . Two spins wi ll be
said to be align ed if t h ey have the same sign . No te that this does not imply that the ac-
tual micro s copic coord i n a tes are the same, s i n ce they have been redef i n ed so that the
l owest en er gy state corre s ponds to si = −1 . In s te ad this means that they are ei t h er bo t h
in the initial or both in the final state . Wh en conven i ent for sen ten ce stru ctu re we use
U P (↑) and DOW N (↓) to refer to si =+1 and si =−1 re s pectively. The folding tra n s i ti on
bet ween {si =+1} and {si =−1 } ,f rom U P to DOW N, is a gen era l i z a ti on of the discussion
of f i rs t - order tra n s i ti ons in Secti on 1.6. The pri m a ry differen ces are that we are inter-
e s ted in finite - s i zed sys tems (sys tems wh ere we do not assume the therm odynamic limit
of N → ∞) and we discuss a ri ch er va ri ety of m odel s , not just the ferrom a gn et .

In this chapter we restrict ourselves to considering the scaling of the relaxation
time, (N),in these Ising type models. However, it should be understood that similar
Ising models have been used to construct predictive models for the secondary struc-
ture of proteins. The approach to developing predictive models begins by relating the
state of the spins si directly to the secondary structure. The two choices for dihedral
angles generally correspond to -helix and -sheet. Thus we can choose si =+1 to cor-
respond to -helix,and si =−1 to -sheet. To build an Ising type model that describes
the formation of secondary structure,the local fields, hi , would be chosen based upon
propensities of specific amino acids to be part of -helix and -sheet structures. An
amino acid found more frequently in -helices would be assigned a positive value of
hi . The greater the bias in probability, the larger the value of hi . Conversely, for amino
acids found more frequently in -sheet structures, hi would be negative. The cooper-
ative nature of the and structures would be represented by ferromagnetic inter-
actions Jij between near neighbors. Then the minimum energy conformation for a
particular primary structure would serve as a prediction of the secondary structure.
A chain segment that is consistently UP or DOWN would be -helix or -sheet re-
spectively. A chain that alternates between UP and DOWN would be a turn. Various
models of this kind have been developed. These efforts to build predictive models have
met with some, but thus far limited, success. In order to expand this kind of model to
include the tertiary structure there would be a need to include interactions of and

structures in three dimensions. Once the minimum energy conformation is deter-
mined,this model can be converted to a relaxation time model similar to the ones we
will discuss, by redefining all of the spins so that si = −1 in the folded state.

E({si = +1}) − E({si = −1}) = −2 hi∑ > 0
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Parallel Processing in a Two-Spin Model

Our primary objective in this chapter is to elucidate the concept of parallel process-
ing in relaxation kinetics. Parallel processing describes the kinetics of independent or
essentially independent relaxation processes. To illustrate this concept in some detail
we consider a simple case of two completely independent spins—two independent
systems placed side by side. The pair of spins start in a high energy state identified as
(1,1), or s1 = s2 = 1. The low-energy state is (–1,–1), or s1 = s2 = −1. The system has
four possible states: (1,1), (1,–1), (–1, 1) and (–1, –1).

We can consider the relaxation of the two-spin system (Fig. 4.3.1) as consisting
of hops between the four points (1, 1), (1, –1), (–1,1), and (–1, –1) in a two-
dimensional plane. Or we can think about these four points as lying on a ring that is
essentially one-dimensional, with periodic boundary conditions.Starting from (1,1)
there are two possible paths that might be taken by a particular system relaxing to
(–1,–1),if we neglect the back transitions. The two paths are (1,1)→(1,–1)→( –1, –1)
and (1,1)→(–1,1)→(–1,–1). What about the possibility of both spins hopping at
once (1,1)→(–1,–1)? This is not what is meant by parallel processing. It is a separate
process,called a coherent transition. The coherent transition is unlikely unless it is en-
hanced by a lower barrier (lower ) specifically for this process along the direct path
from (1 ,1) to (–1,–1). In par ticular, the coherent process is unlikely when the two
spins are independent. When they are independent,each spin goes over its own bar-
rier without any coupling to the motion of the other. The time spent going over the
barrier is small compared to the relaxation time Thus it is not likely that both will
go over at exactly the same time.

There are several ways to describe mathematically the relaxation of the two-spin
system.One approach is to use the independence of the two systems to write the prob-
ability of each of the four states as a product of the probabilities of each spin:

P(s1, s2;t) = P(s1; t)P(s2; t) (4.3.1)

The Master equation which describes the time evolution of the probability can be
solved directly by using the solution for each of the two spins separately. We have
solved the Master equation for the time evolution of the probability of a two state (one
spin) system in Section 1.4. The probability of the spin in state s decays or grows ex-
ponentially with the time constant :

P(s ;t) = (P(s;0) − P(s ;∞))e−t / + P(s;∞) (4.3.2)

which is the same as Eq.(1.4.45). The solution of the two-spin Master equation is just
the product of the solution of each spin separately:

P(s1, s2; t) = P(s1; t)P(s2;t) (4.3.3)

For simplicity, it is assumed that the relaxation constant is the same for both. This
equation applies to each of the four possible states. If the energy difference between

= [P(s1;0)e−t / + (1− e−t / )P(s1; ∞)][P(s2; 0 )e−t / + (1− e−t / )P(s2;∞)]

4.3
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Figure 4.3.1 Illustration of a four-state (two-spin) system formed out of two independent
two-state systems. The two-dimensional energy is shown on the upper left. The coordinates
of the local energy minima are shown on the right. Below, a schematic energy of the system
is shown on a one-dimensional plot, where the horizontal axis goes around the square in the
coordinate space of the top right figure. ❚

the UP state and the DOWN state of each spin is sufficiently large,essentially all mem-
bers of the ensemble will reach the (–1, –1) state. We can determine how long this
takes by looking at the probability of the final state:

(4.3.4)

where we have used the initial and final values: P(−1;0) = 0, P(−1;∞) ≈ 1. Note that a
key part of this analysis is that we don’t care about the probability of the intermedi-
ate states. We only care about the time it takes the system to reach its final state. When
does the system arrive at its final state? A convenient way to define the relaxation time
of this system is to recognize that in a conventional exponential convergence, is the

P(−1,−1;t) = [(1− e−t / )P(−1;∞)][(1 − e−t / )P(−1;∞)] ≈ (1− e− t / )2
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time at which the system has a probability of only e−1 of being anywhere else.
Applying this condition here we can obtain the relaxation time, (2), of two indepen-
dent spins from:

(4.3.5)

or

(4.3.6)

which is slightly larger than .A plot of P(−1,−1; t) is compared to P(−1;t) in Fig. 4.3.2.
Why is the relaxation time longer for two systems? It is longer because we have to

wait until the spin that takes the longest time relaxes. Both of the spins relax with the
same time constant . However, statistically, one will take a little less time and the
other a little more time. It is the longest time that is the limiting one for the relaxation
of the two-spin system.

Where do we see the effect of parallel processing? In this case it is expressed by
the statement that we can take either one of the two paths and get to the minimum
energy conformation. If we take the path (1,1)→(1,–1)→(–1,–1), we don’t have to
make a transition to the state (–1, 1) in order to see if it is lower in energy. In the two-
spin system we have to visit three out of four conformations to get to the minimum
energy conformation. If we add more spins, however, this advantage becomes much
more significant.

There may be confusion on one important point. The ability to independently re-
lax different coordinates means that the energies of the system for different states are
correlated. For example, in the two-spin system, the energies satisfy the relationship

E(1,1) − E(1,−1) = E(−1,1) − E(−1, −1) (4.3.7)

If we were to assume instead that each of the four energies, E(±1, ±1),can be speci-
fied independently, energy minimization would immediately require a complete ex-
ploration of all conformations. Independence of the energies of different conforma-
tions for a system of N spins would require the impossible exploration of all phase

(2) = [− ln(1 − (1− e−1)1 / 2)] = 1.585

1 − P(−1,−1; (2)) = e−1 ≈ 1− (1− e− ( 2 ) / )2
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ation time is identified
with the time when the
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space. It is the existence of correlations in the energies of different conformations that
enables parallel processing to work.

Homogeneous Systems

The models we will consider for a system of N relaxing spins {si} naturally divide into
homogeneous models and inhomogeneous models. For homogeneous models a
transformation can be made that maps any spin si onto any other spin sj , where the
transformation preserves the form of the energ y. Specifically, it preserves the local
fields and the interactions between spins.A homogeneous model is loosely analogous
to assuming that all amino acids are the same. Such a polymer is called a homopoly-
mer. Boundary conditions may break the t ransformation symmetry, but their effect
can still be considered in the context of homogeneous models. In contrast, an inho-
mogeneous model is analogous to a heteropolymer where amino acids along the
chain are not all the same. Inhomogeneities are incorporated in the models by vary-
ing local fields, relaxation times or interactions between spins in a specified way, or by
assuming they arise from a specified type of quenched stochastic variable.

In the homogeneous case, all sites are equivalent, and thus the local fields hi in
Eq. (4.2.1) must all be the same. However, the interactions may not all be the same.
For example, there may be nearest-neighbor interactions, and different second-
neighbor interactions. We indicate that the interaction depends only on the relative
location of the spins by the notation Ji−j :

(4.4.1)

Ji − j is symmetric in i − j and each pair i, j appears only once in the sum. Eq. (4.2.2)
implies that h is negative.A further simplification would be to consider each spin to
interact only with z neighbors with equal interaction strength J . This would be the
conventional ferromagnet or antiferromagnet discussed in Section 1.6. When it is
convenient we will use this simpler model to illustrate properties of the more general
case. In the following sections, we systematically describe the relaxation in a number
of model homogeneous systems. The results of our investigations of the scaling be-
havior of the relaxation time are summarized in Table 4.4.1.Each of the models illus-
trates a concept relevant to our understanding of relaxation in complex systems. This
table can be referred to as the analysis proceeds.

4.4.1 Decoupled
The simplest homogeneous model is the decoupled case, where all spins are indepen-
dent. Starting from Eq. (4.4.1) we have:

(4.4.2)

This is the N spin analog of the two-spin system we considered in Section 4.3. The en-
ergetics are the same as the noninteracting Ising model. However, our interest here is
to understand the dependence of kinetics on the number of spins N. The dynamics

E = −h∑ si

    
E({si }) = −h∑ s i − ∑ J i− js is j

4.4
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are defined by the individual two-state systems, where a barrier controls the relaxation
rate. Relaxation is described by the exponential decay of the probability that each spin
is +1.

We have to distinguish between two possible cases. When we analyzed the two-
spin case we assumed that essentially all members of the ensemble reach the unique
state where al l si = −1. We have to check this assumption more carefully now. The
probability that a par ticular spin is in the +1 state in equilibrium is given by the ex-
pression (Eq. (1.4.14)):

(4.4.3)

where E+ = −2h is the (positive) energy difference between si = +1 and si = −1. If we
have N spins, the average number that are +1 in equilibrium is

(4.4.4)

Because N can be large , we do not immed i a tely assume that this nu m ber is negl i gi bl e .
However, we wi ll assume that in equ i l i brium a large majori ty of spins are DOW N. This is
true on ly wh en E+> >k T and e−E+ /k T < < 1 . In this case we can approx i m a te Eq . (4.4.4) as:

(4.4.5)

There are now two distinct possibilities depending on whether N+ is less than or
greater than one. If N+ is less than one, all of the spins are DOWN in the final state. If
N+ is greater than one,almost all, but not all, of the spins are DOWN in the final state.

In the first case,N + << 1, we proceed as with the two-spin system to consider the
growth of the probability of the final state:

(4.4.6)
Defining the relaxation time as for the two-spin case we have:

(4.4.7)1 − P({si = −1}; (N )) = e−1 ≈1 − (1 − e− (N )/ )N

P({si = −1}; t ) = [P(si = −1;0)e− t / + (1 − e−t / )P(si = −1;∞)]
i

∏ = (1 − e−t / )N

N+ = Ne− E+ / kT

N+ = Ne− E+ / kT /(1 + e− E+ / kT )

P(+1;∞) = e− E+ / kT /(1+ e− E+ / kT )
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Model Scaling

Decoupled model O(ln(N );1)
Essentially decoupled model O(ln(N );1)
Nucleation and growth—with neutral boundaries O(aN (d−1)/d

;N −1;ln(N );1)
—with nucleating boundaries O(N 1/d; ln(N);1)

Boundary-imposed ground state O(N 2/d)
Long-range interactions O(ln(N );aN 2

)

Table 4.4.1 Summary of scaling behavior of the relaxation time of the homogeneous models
discussed in Section 4.4. The notation indicates the different scaling regimes from smaller to
larger systems. ❚
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or

(4.4.8)

For large N we expand this using a1/N ∼ 1 + (1 / N)ln(a) to obtain

(4.4.9)

Neglecting the constant term, we have the result that the time scales logarithmically
with the size of the system (N) ∼ ln(N). We see the tremendous advantage of paral-
lel processing, where the relaxation time grows only logarithmically with system size
rather than exponentially.

In the second case, N >> N+ >> 1, we cannot determine the relaxation time from
the probability of a particular final state of the system. There is no unique final state.
Instead, we have to consider the growth of the probability of the set of systems that
are most likely—the equilibrium ensemble with N+ spins si = +1. We can guess the
scaling of the relaxation time from the divisibility of the system into independent
groups of spins. Since we have to wait only until a particular fraction of spins relax,
and this fraction does not change with the size of the system,the relaxation time must
be independent of the system size or (N) ∼ 1. We can show this explicitly by writing
the fraction of the remaining UP spins as:

(4.4.10)

where we use the assumption that e−E+/ kT<<1. We must now set a criterion for the re-
laxation time (N).A reasonable criterion is to set (N) to be the time when there are
not many more than the equilibrium number of excited spins,say (1 + e−1) times as
many:

(4.4.11)

This implies that:

(4.4.12)

or

(4.4.13)

This rel a x a ti on time is indepen dent of the size of the sys tem or (N) ∼ 1 ; we name it ∞.
The (N) ∼ 1 scaling we found for this case is lower than the logarithmic scaling.

We must understand more ful ly when it applies. In order for N+ (Eq. (4.4.5)) to be
greater than 1, we must have:

N > e+E+ /kT (4.4.14)

(N ) = (E+ / kT + 1) ≡ ∞

N e− (N )/ + e− E+ / kT[ ] = (1 + e−1)Ne− E+ / kT

N+ ( (N)) = (1 + e−1)N+ (∞)

N+ (t ) =
i

∑ P(si = 1;t) = [P(si = +1;0)e− t / + (1 − e−t / )P(si = +1;∞)]
i
∑

= N e−t / + (1− e −t / )e− E+ / kT[ ] ≈ N e−t / + e− E+ / kT[ ]

(N ) ~ [− ln(1− (1+ (1/ N )ln(1 − e−1)))] = [− ln(−(1/ N )ln(1− e−1))]

= [ln(N) − ln(− ln(1− e−1))] = [ln( N) + 0.7794]

(N ) = [−ln(1− (1− e−1)1/ N )]
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Thus N must be large in order for N+ to be greater than 1.It may seem surprising that
for larger systems the scaling is lower than for smaller systems. The behavior of the
scaling is illustrated schematically in Fig. 4.4.1 (see Question 4.4.1).

There is another way to estimate the relaxation time for very large systems, ∞.We
use the smaller system relaxation Eq.(4.4.9) at the point where we crossover into the
regime of Eq.(4.4.14) by setting N = e+E+ / kT. Because the relaxation time is a contin-
uous function of N, at the crossover point it should give an estimate of ∞. This gives
a similar result to that of Eq. (4.4.13):

(4.4.15)

Question 4.4.1 Combine the analysis of both cases N+ << 1 and N+ >> 1
by setting an appropriate value of N+( (N)) that can hold in both cases.

Use this to draw a plot like Fig. 4.4.1.

Solution 4.4.1 The time evo luti on of N+(t) is de s c ri bed by Eq . (4.4.10) for
ei t h er case N+ < < 1 and N+ > > 1 . The difficulty is that wh en N+ > > 1 , t h e
process stops wh en N+(t) becomes less than 1, and there is no more rel a x a ti on

∞ ~ [E+ /kT + 0.7794]
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Figure 4.4.1 Relaxation time (N) of N independent spins as a function of N. For systems
that are small enough, so that relaxation is to a unique ground state, the relaxation time
grows logarithmically with the size of the system. For larger systems, there are always some
excited spins, and the relaxation time does not change with system size. This is the thermo-
dynamic limit. The different approximations are described in the text. A unified treatment in
Question 4.4.1 gives the solid curve. In the illustrated example, the crossover occurs for a
system with about 150 independent spins. This number is given by eE+ /kT so it varies expo-
nentially with the energy difference between the two states of each spin. ❚

04adBARYAM_29412  3/10/02 10:37 AM  Page 438



to be don e . For this case we would like to iden tify the rel a x a ti on time as the
time wh en there is less than one spin not U P. So we rep l ace Eq . (4.4.11) by

where Nr is a constant we can choose which is less than 1. When N+ >> 1,the
first term will dominate and we will have the same result as Eq. (4.4.13),
when N+ << 1 the second term will dominate. Eq. (4.4.16) leads instead of
Eq. (4.4.13) to:

(N) = ln(N / Nr + e−1N+)) (4.4.17)

When N+ << 1 this reduces to:

(N) = (ln(N) − ln(Nr)) (4.4.18)

which is identical to Eq. (4.4.9) if we identify

(4.4.19)

which shows that our original definition of the relaxation time is equivalent
to our new definition if we use this value for the average number of residual
unrelaxed spins.

The plot in Fig. 4.4.1 was constructed using a value of E+ /kT = 5 and
Eqs. (4.4.9), (4.4.13), (4.4.15) and (4.4.17). ❚

The behavior for large systems satisfying Eq.(4.4.13) is just the thermodynamic
limit where intrinsic properties, including relaxation times, become independent of
the system size. In this independent spin model, the relaxation time grows logarith-
mically in system size until the thermodynamic limit is reached, and then its behav-
ior crosses over to the thermodynamic behavior and becomes constant. To summa-
rize the two regimes, we will label the scaling behavior of the independent system as
O(ln(N);1) (the O is read “order”).

While the scaling of the relaxation time in the thermodynamic limit is as low as
possible, and therefore attractive in principle for the protein-folding problem, there
is an unattractive feature—that the equilibrium state of the system is not unique.
This violates the assumption we have made that the eventual folded structure of a
protein is well defined and precisely given by {si = −1}. However, in recent years it
has been found that a small set of conformations that differ slightly from each other
constitute the equilibrium protein structure. In the context of this model, the exis-
tence of an equilibrium ensemble of the protein suggests that the protein is just at
the edge of the thermodynamic regime. In the homogeneous model there is no dis-
tinction between different spins, and all are equally likely to be excited to their
higher energy state. In the protein it is likely that the ensemble is more selective. For
essentially all models we will investigate, for large enough systems,a finite fraction of
spins must be thermally excited to a higher energy state. The crossover size depends
exponentially on the characteristic energy required for an excited state to occur. This
energy is just E+ in the independent spin model. Because the fraction of excited

Nr = − ln(1− e−1) = 0.4587 ≈ .5

N+ ( (N)) = (1 + e−1)N+ (∞) + Nr
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states also depends exponentially on the temperature, the structure of proteins is af-
fected by physical body temperature. This is one of the ways in which protein func-
tion is affected by the temperature.

Either the logarithmic or the constant scaling of the independent spin model, if
correct,is more than adequate to account for the rapid folding of proteins.Of course
we know that amino acids interact with each other. The interaction is necessary for
interdependence in the system. Is it possible to generalize this model to include some
interactions and still retain the same scaling? The answer is yes,but the necessary lim-
itations on the interactions between amino acids are still not very satisfactory.

4.4.2 Essentially decoupled
The decoupled model can be generalized without significantly affecting the scaling,
by allowing limited interactions that do not affect the relaxation of any spins. To
achieve this we must guarantee that at all times the energy of the spin si is lower when
it is DOWN than when it is UP. For a protein, this corresponds to a case where each
amino acid has a certain low-energy state regardless of the protein conformation. We
specialize the discussion to nearest-neighbor interactions between each spin and z
neighbors—a ferromagnetic or antiferromagnetic Ising model. We also assume the
same relaxation time applies to all spins at all times. The more general case is de-
ferred to Question 4.4.2.

When there are interactions,the change in energy upon flipping a particular spin
si from UP to DOWN is dependent on the condition of the other spins {sj}j ≠ i . We write
the change as:

(4.4.20)

The latter expression is for homogeneous systems. For only nearest-neighbor interac-
tions in both ferromagnet and antiferromagnet cases

(4.4.21)

where the sum is over the z nearest neighbors of si . Note that this expression depends
on the state of the neighboring spins,not on the state of si . For the spins to relax es-
sentially independently, we require that the minimum possible value of Eq. (4.4.21)

E+min = −2h − 2z |J | (4.4.22)

is greater than zero. To satisfy these requirements we must have

|h|>z|J | (4.4.23)

which means that the local field |h| is stronger than the interactions. When it is con-
venient we will also assume that E+min >>kT, so that the energy difference between UP

and DOWN states is larger than the thermal energy.
The ferromagnetic case J > 0 is the same as the kinetics of a first-order transition

(Section 1.6) when the local field is so large that nucleation is not needed and each
spin can relax separately. Remembering that h < 0,the value of E+i starts from its min-

E+i ({sj}j ≠i ) = −2h − 2J s j
nn
∑

    

E +i({s j } j≠i ) = E(s i = +1,{s j }j ≠i ) − E(si = −1,{s j } j≠i ) = −2h −2 J i− j
j≠i
∑ s j
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imum value when all of the spins (neighbors of si) are UP, sj =+1. E+i then increases as
the system relaxes until it reaches its maximum value everywhere when all the spins
(neighbors of si) are DOWN, sj = −1 (see Fig. 4.4.2). This means that initially the inter-
actions fight relaxation to the ground state,because they are promoting the alignment
of the spins that are UP. However, each spin still relaxes DOWN. The final state with all
spins DOWN is self-reinforcing, since the interactions raise the energy of isolated UP

spins. This inhibits the excitation of individual spins and reduces the probability that
the system is out of the ground state. Thus, ferromagnetic interactions lead to what is
called a cooperative ground state. In a cooperative ground state,interactions raise the
energy cost of, and thus inhibit, individual elements from switching to a higher en-
ergy state.This property appears to be characteristic of proteins in their 3-d structure.
Various interactions between amino acids act cooperatively to lower the conforma-
tion energy and reduce the likelihood of excited states.

In order to consider the relaxation time in this model, we again consider two
cases depending upon the equilibrium number of UP spins, N+. The situation is more
complicated than the decoupled model because the eventual equilibrium N+ is not
necessarily the target N+ during the relaxation. We can say that the effective N+(E+) as
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Figure 4.4.2 Illustration, for the essentially decoupled model, of the value of the single-spin
energy E+ as a function of the number of its neighbors (out of a total of z) that are UP and
DOWN. At the right all of the neighbors are UP, and at the left all of the neighbors are DOWN.
E+ measures the energy preference of the spin to be DOWN. E+ is always positive in the es-
sentially decoupled model. The relaxation process to the ground state takes the system from
right to left. For a ferromagnet, J > 0, the change reinforces the energy preference for the
spin to be DOWN. For the antiferromagnet, J < 0, the change weakens the energy preference
for the spin to be DOWN. Implications for the time scale of relaxation are described in the
text. ❚
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given by Eq. (4.4.5) changes over time. Because E+ starts out small, it may not be
enough to guarantee that all spins will be DOWN in the final state. But the increase in
E+ may be sufficient to guarantee that all spins will be DOWN at the end.

The situation is simplest if there is complete relaxation toward the ground state
at all times. This means:

(4.4.24)

In this case, the relaxation time scaling is bounded by the scaling of the decoupled
model. We can show this by going back to the equation for the dynamics of a single
relaxing two-state system, as written in Eq. (1.4.43):

(4.4.25)

The difficulty in solving this equation is that P(1;∞) (Eq. (4.4.3)) is no longer a con-
stant. It varies between spins and over time because it depends on the value of E+.
Nevertheless, Eq. (4.4.25) is valid at any particular moment with the instantaneous
value of P(1;∞). When Eq.(4.4.24) holds, P(1;∞)<1/N is always negligible compared
to P(1; t), even when all the spins are relaxed, so we can simplify Eq. (4.4.24) to be:

(4.4.26)

This equation is completely independent of E+. It is therefore the same as for the de-
coupled model. We can integrate to obtain:

P(1;t) = e−t / (4.4.27)

Thus each spin relaxes as a decoupled system,and so does the whole system with a re-
laxation time scaling of O(ln(N)).

When Eq. (4.4.24) is not true, the difficulty is that we can no longer neglect
P(1;∞) in Eq. (4.4.25). This means that while the spins are relaxing, they are not re-
laxing to the equilibrium probability. There are two possibilities. The first is that the
equilibrium state of the system includes a small fraction of excited spins. Since the
fraction of the excited spins does not change with system size,the relaxation time does
not change with system size and is O(1).

The other possibility is that initially the relaxation allows a small fraction of spins
to be excited. Then as the relaxation proceeds, the energy differences E+i({sj }j ≠ i) in-
crease. This increase in energy differences then causes all of the spins to relax. How
does the scaling behave in this case? Since each of the spins relaxes independently, in
O(1) time all except a small fraction N will relax. The remaining fraction consists of
spins that are in no particular relationship to each other; they are therefore indepen-
dent because the range of the interaction is short. Thus,they relax in O(ln( N)) time
to the ground state.The total relaxation time would be the sum of a constant term and
a logarithmic term that we could write as O(ln( N)+1), which is not greater than
O(ln(N)). This concludes the discussion of the ferromagnetic case.

For the antiferromagnetic case, the situation is actually simpler. Since J < 0, re-
membering that h < 0,the value of E+ starts from its maximum value when all sj =+1,
and reaches its minimum value when all sj =−1 (see Fig. 4.4.2). Thus N+(E+) is largest
in the ground state.Once again,if there is a nonzero fraction of spins at the end that

˙ P (1; t) = −P(1; t )/

˙ P (1; t) = (P(1; ∞) − P(1; t ) ) /

N < e+ E+ min / kT
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are UP then the relaxation must be independent of system size, O(1). If there are no
residual UP spins in equilibrium,then in Eq.(4.4.25) P(1;∞)<1/N always,and the re-
laxation reduces directly to the independent case O(ln(N)).

The ferromagnetic case is essentially different from the antiferromagnetic case
because we can continue to consider stronger values of the ferromagnetic interaction
without changing the ground state. However, if we consider stronger antiferromag-
netic interactions,the ground state will consist of alternating UP and DOWN spins and
this is inconsistent with our assumptions (we would have redefined the spin vari-
ables). Thus,nearest-neighbor antiferromagnetic interactions,as long as they do not
lead to an antiferromagnetic ground state, do not affect the relaxation behavior.

When there are spin-spin interactions, we would also expect the relaxation times

i to be affected by the interactions. The relaxation time depends on the barrier to re-
laxation, EBi , as shown in the energy curve of the two-state system Fig. 1.4.1. When
the energy difference E+ is higher, we might expect that the barrier to relaxation of the
two-state system will become lower. This would be the case if we raise E+ without rais-
ing the energy at the top of the barrier. On the other hand,if the energy surface is mul-
tiplied by a uniform factor to increase E+, then the barrier would increase. These dif-
ferences in the barrier show up in the relaxation times i . In the former case the
relaxation is faster, and in the latter case the relaxation is slower. For the nearest-
neighbor Ising model, there would be only a few different relaxation times corre-
sponding to the different possible states of the neighboring spins.We can place a limit
on the relaxation time (N) of the whole system by replacing all the different spin re-
laxation times with the maximum possible spin relaxation time. As far as the scaling
of (N) with system size,this will have no effect. The scaling remains the same as in
the noninteracting case, O(ln(N);1).

Question 4.4.2 Consider the more general case of a homogeneous model
with interactions that may include more than just nearest-neighbor in-

teractions. Restricting the interactions not to affect the minimum energy of
a spin,argue that the relaxation time scaling of the system is the same as the
decoupled model. Assume that the interactions have a limited range and the
system size is much larger than the range of the interactions.

Solution 4.4.2 As in Eq. (4.4.20), the change in energy on flipping a par-
ticular spin is dependent on the conditions of the other spins {sj}j ≠ i .

(4.4.28)

We assume that E+i({sj}j ≠ i ) is always positive. Moreover, for relaxation to oc-
cur, the energy difference must be greater than kT. Thus the energy must be
bounded by a minimum energy E+min satisfying:

E+i({sj}j ≠ i) > E+min >> kT (4.4.29)

This implies that the interactions do not change the lowest energy state of
each spin si . For the energy of Eq. (4.4.1), E+min can be written

    

E +i({s j } j≠i ) = −2h − 2 Ji −j
j ≠i
∑ s j
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(4.4.30)

Interactions may also affect the relaxation time of each spin i{sj}j ≠ i, so we
also assume that relaxation times are bounded to be less than a relaxation
time max .

We assume that the parameters max and E+min do not change with sys-
tem size. This will be satisfied, for example,if the interactions have a limited
range and the system size is larger than the range of the interactions.

Together, the assumption of a bound on the energy differences and a
bound on the relaxation times suggest that the equilibration time is bounded
by that of a system of decoupled spins with −2h = E+min and = max. There
is one catch. We have to consider again the possibility of incomplete relax-
ation to the ground state. The scenario follows the same possibilities as the
nearest-neighbor model. The situation is simplest if there is complete relax-
ation to the ground state at all times. This means:

(4.4.31)

which is a more stringent condition than Eq.(4.4.29). In this case the bound
on (N) is straightforward because each spin is relaxing to the ground state
faster than in the original case. Again using Eq. (1.4.43):

(4.4.32)

This equation applies at any particular moment, with the time-dependent
values of P(1;∞; t) and (t), where the time dependence of these quantities is
explicitly written. Since P(1;∞;t) is always negligible compared to P(1; t),
when Eq. (4.4.31) applies, this is

(4.4.33)

We can integrate to obtain:

(4.4.34)

The inequality follows from the assumption that the relaxation time of each
spin is always smaller than max. Each spin relaxes faster than the decoupled
system,and so does the whole system. The scaling behavior O(ln(N)) of the
decoupled system is a bound for the increase in the relaxation time of the
coupled system.

When Eq. (4.4.31) is not true, we can no longer neglect P(1;∞;t) in
Eq.(4.4.32). This means that while the spins are relaxing faster, they are not
relaxing to the equilibrium probability. There are two possibilities. The first
is that the equilibrium state of the system includes a small fraction of excited
spins. Since the range of the interactions is smaller than the system size, the

    P(1;t) = e
− dt

(t)
0

t

∫
< e −t / max

˙ P (1; t) = −P(1; t )/ (t )

˙ P (1; t) = (P(1; ∞;t ) − P(1; t) ) / (t)

N < e+ E+ min / kT

E+ min = −2h − 2 | Ji− j
j ≠i
∑ |
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fraction of the excited spins does not change with system size and the relax-
ation time does not change with system size.The other possibility is that ini-
tially the values of E+i({sj}j ≠ i) do not satisfy Eq.(4.4.31) and so allow a small
fraction of spins to be excited. Then as the relaxation proceeds, the energy
differences E+i ({sj}j ≠ i) increase. This increase in energy differences then
causes all of the spins to relax. The relaxation time will not be larger than
O(ln(N)) as long as E+min >> kT (Eq.(4.4.29)) holds. Because of this condi-
tion,each of the spins will almost always relax,and in O(1) time all except a
small fraction N will relax. The remaining fraction consists of spins that are
in no particular relationship to each other; they are therefore independent,
because the range of the interaction is short, and will relax in at most
O(ln( N )) time to the ground state. The total relaxation time would be the
sum of a constant term and a logarithmic term that we could write as
O(ln( N )+1), which is not greater than O(ln(N )). ❚

We have treated carefully the decoupled and the almost decoupled models to
distinguish b etween O(ln(N )) and O(1) scaling. One reason to devote such atten-
tion to these simple models is that they are the ideal case of parallel processing. It
should be understood, however, that the difference between O(ln(N )) and O(1)
scaling is not usually significant. For 1000 amino acids in a protein, the difference is
only a factor of 7, which is not significant if the individual amino acid relaxation
time is microscopic.

One of the points that we learned about interactions from the almost decoupled
model is that the ferromagnetic interactions J > 0 cause the most problem for relax-
ation. This is because they reinforce the initial state before the effect of the field h acts
to change the conformation. In the almost decoupled model, however, the field h
dominates the interactions J. In the next model this is not the case.

The almost decoupled model is not satisfactory in describing protein folding be-
cause the interactions between amino acids can affect which conformation they are
in. The next model allows this possibility. The result is a new scaling of the relaxation
with system size, but only under particular circumstances.

4.4.3 Nucleation and growth: relaxation by driven diffusion
The next homogenous model results from assuming that the interactions are strong
enough to affect the minimum energy conformation for a particular spin:

E+min < 0 (4.4.35)

From Eqs.(4.4.20) and (4.4.21) we see that this implies that the total value of the in-
teractions exceeds the local preference as determined by the field h. Eventually, it is h
that ensures that all of the spins are DOWN in the ground state. However, initially
when all of the spins are UP, due to the interactions the spins have their lowest energy
UP rather than DOWN. During relaxation, when some are UP and some are DOWN, a
particular spin may have its lowest energy either UP or DOWN. The effect of both the
external field and the interactions together leads to an effective field, h + ∑

j

Ji−j sj , that
determines the preference for the spin orientation at a particular time.
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The simplest model that illustrates this case is the Ising ferromagnet in a 
d-dimensional space (Section 1.6). The interactions are all positive,and the spins try
to align with each other. Initially the local preference is for the spins to remain UP; the
global minimum of energy is for all of the spins to be DOWN. The resolution of this
problem occurs when enough of the spins in a particular region flip DOWN using
thermal energy, to create a critical nucleus. A critical nucleus is a cluster o f DOWN

spins that is sufficiently large so that further growth of the cluster lowers the energy
of the system. This happens when the energy lowering from flipping additional spins
is larger than the increase in boundary energy between the DOWN cluster and the UP

surrounding region.Once a critical nucleus forms in an infinite system,the region of
down spins grows until it encounters other such regions and merges with them to
form the equilibrium state. In a finite system there may be only one critical nucleus
that is formed, and it grows until it consumes the whole system.

The nucleation and growth model of first-order transitions is valid for quite ar-
bitrary interactions when there are two phases, one which is metastable and one
which is stable,if there is a well-defined boundary between them when they occur side
by side. This applies to a large class of models with finite length interactions. For ex-
ample, there could be positive nearest-neighbor interactions and negative second-
neighbor interactions. As long as the identity of the g round state is not disturbed,
varying the interactions affects the value of the boundary energy, but not the overall
behavior of the metastable region or the stable region. We do not consider here the
case where the boundaries become poorly defined. In our models, the metastable
phase consists of UP spins and the stable phase consists of DOWN spins.A system with
only nearest-neighbor antiferromagnetic interactions on a bipartite lattice is not in-
cluded in this section. For J < 0 on a bipartite lattice, when Eq.(4.4.35) is satisfied,the
ground state is antiferromagnetic (alternating si = ±1),and we would have redefined
the spins to take this into consideration.

The dynamics of relaxation for nucleation and growth are controlled by the rate
of nucleation and by the rate of diffusion of the boundary between the two phases.
Because of the energy difference of the two phases,a flat boundary between them will
move at constant velocity toward the metastable phase,converting UP spins to DOWN

spins. This process is essentially that of driven diffusion down a washboard potential
as illustrated in Fig . 1.4.5. The velocity of the boundary, v, can be measured in units
of interspin separation per unit time.

During relaxation, once a critical nucleus of the stable phase forms, it grows by
driven diffusion and by merging with other clusters. The number of spins in a partic-
ular region of the stable phase grows with time as (vt)d. This rate of growth occurs be-
cause the region of the stable phase grows uniformly in all directions with velocity v.
Every part of the boundary diffuses like a flat boundary (Fig. 4.4.3). This follows our
assumption that the boundary is well defined. There are two parts to this assumption.
The first is that the thickness of the boundary is small compared to the size of the crit-
ical nucleus. The second is that it becomes smooth, not rough, over time. When these
assumptions are satisfied, the stable region expands with velocity v in all directions.
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There are several cases that must be considered in order to discuss the scaling of
the relaxation time of a finite system of N spins.First we must distinguish three dif-
ferent ranges for the system size. The system may be smaller than the size of a critical
nucleus, Nc 0. If the system is larger than a critical nucleus,then it may be smaller than
the typical distance between critical nuclei. Third,it may be larger than this distance.
Finally, we must also consider the properties of the boundary of the system, specifi-
cally whether or not it promotes nucleation.

Nonnucleating boundary
We start by considering the three system sizes when the boundary of the system is ei-
ther neutral or suppresses nucleation. Under these circumstances, we can neglect the
effect of the boundary because relaxation depends upon nucleation and growth from
the interior. The spins near the boundary join the stable phase when it reaches them.
We assume throughout that the number of spins in the boundary is negligible com-
pared to the number in the interior.

The case of the system being smaller than the size of the critical nucleus,N < Nc 0,
is special because the energy barrier to relaxation grows as the system size increases.
The energy may be seen schematically in Fig. 4.4.4 (or Fig. 1.6.10) as a function of
cluster size. The washboard-like energy rises in the region below the critical nucleus
size. When the system is smaller than the size of a critical nucleus, the energy neces-
sary to form a region of DOWN spins of roughly the size of the system controls the rate
of relaxation. Because the energy barrier to forming this region increases roughly lin-
early with system size, the relaxation time grows exponentially with system size. We
can be more precise by using an expression for how the barrier energy grows with sys-
tem size. The energy of a cluster in an infinite system grows with the number of spins
in the cluster as (see also Question 1.6.14):

Ec(Nc) = 2hNc + bNc
(d −1) / d (4.4.36)
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Figure 4.4.3 When a critical nu-
cleus of a stable phase has formed in
a metastable phase, the nucleus
grows by driven diffusion. The mo-
tion of the boundary increases the
volume of the equilibrium phase at
the expense of the metastable
phase. Each part of the boundary
moves at a constant average velocity
v. Thus, every dimension of the equi-
librium phase grows at a constant
rate. The number of spins in the
equilibrium phase grows as (vt)d

where d is the dimensionality of the
space. ❚
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The first term is the bulk energy of the DOWN spins in the cluster as compared to
metastable UP spins. The second term is the boundary energy, where b is a measure of
the boundary energy per unit length. This expression is reasonable if the critical nu-
cleus is large compared to the boundary width—the boundary is well defined. The
critical nucleus for an infinite system is determined by the maximum value of Ec(Nc).
This is obtained setting its derivative with respect to Nc to zero. Aside from a factor of
(d − 1)/d, this means that both terms are equal in magnitude for the critical nucleus.
If the system is smaller than the critical nucleus size, then the boundary energy must
dominate the bulk energy of a cluster for all possible cluster sizes. Thus for a system
with N < Nc 0 we can neglect the first term in Ec(Nc), leaving us with the energy
Ec(Nc) ≈ bNc

(d−1) / d.
For a system with N < Nc 0 that has periodic boundary conditions,the boundary

of a cluster grows only as long as the cluster contains less than one-half of the spins in
the system. Beyond this point, the boundary of the cluster shrinks. So the maximum
cluster energy is reached when Nc is N /2. This is still true for a fixed boundary if the
boundary is neutral. The relevant cluster may be identified by bisecting the system
with UP spins on one side and DOWN spins on the other. If the boundary suppresses
nucleation, then the maximum value of Nc may be greater than N / 2, but it is not
larger than N. As long as the maximum value of Nc is proportional to N, the results
given below are essentially unaffected.
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Figure 4.4.4 Schematic illustration of the energy of a cluster of DOWN spins in a metastable
background of UP spins as a function of the number of spins in the cluster Nc. The corruga-
tion of the line indicates the energy barrier as each spin flips from UP to DOWN. The dashed
line illustrates the energy Ec(Nc) of the cluster in an infinite system. The energy increases un-
til it reaches the size of a critical nucleus Nc0 and decreases thereafter as the cluster grows
to become the stable phase. The solid line indicates the energy in a finite system of size
N < Nc0. In this case the maximum energy, which is the barrier to relaxation, is located in the
vicinity of N/2, as indicated. ❚
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The cluster energy we have calculated is the energy at the bottom of a particular
well in Fig. 4.4.4. It does not include the height of the corrugation EB0 which is the en-
ergy barrier to flipping a single spin. The energy barrier for nucleation in the system
with N < Nc 0 is thus given by

EB(N) = Ec(N / 2) + EB0 = b(N /2)(d −1) / d + EB0 (4.4.37)

The relaxation time is given approximately by the probability that the system will
reach this barrier energy, as given by a Boltzmann factor of the energy. More specifi-
cally, it is given by Eq. (1.4.44), which gives the relaxation of a two-state system with
the same barrier (we neglect the back transition rate):

(4.4.38)

This shows the exponential dependence of the relaxation time on system size in this
small system limit when N < Nc 0. We note that we have neglected to consider the many
possible ways there are to form a cluster of a particular size, which may also affect the
scaling of the relaxation time.

The existence of a region of exponential growth of the relaxation time should be
understood in a context where we compare the nucleation time with the observation
time. If the nucleation time is long compared to the observation time, we would not
expect to see relaxation to the ground state.

If the size of the system is much larger than the size of a critical nucleus, N >> Nc 0,
we can consider each nucleus to be essentially a point object of no size,when it forms.
A nucleus forms at a particular site according to a local relaxation process with a time
constant we denote c 0—the nucleation time. The nuclei then grow, as discussed pre-
viously, with a constant velocity v in each direction. During the relaxation we either
have one or many nuclei that form.Only one nucleus forms when the typical time for
forming a nucleus in the system is longer than the time a single nucleus takes to con-
sume the whole system. As soon as one nucleus forms, its growth is so rapid that no
other nuclei form during the time it grows to the size of the whole system
(Fig. 4.4.5(a)). The relaxation time is determined by the time that passes until the first
nucleation event occurs in the system. For larger systems,the number of possible nu-
cleation sites increases in direct proportion to N. Thus the time till the first nucleation
event decreases, and the relaxation time actually decreases with system size. We will
derive the result that (N) ~ N −1. To determine when this scaling applies we must find
expressions for the nucleation time, and the time a nucleus takes to grow to the size
of the system. Independent nuclei can form on every Nc 0 sites. The typical time to
form a critical nucleus anywhere in the system, c N , where c N << c 0, is the time it
takes any one of the possible N /Nc 0 sites to form a single critical nucleus:

(4.4.39)

expanding the exponential using cN / c 0 << 1 gives

(4.4.40)cN = c0 Nc0 / N

(N / Nc0)e− cN / c0 = N / Nc0 −1

(N ) = −1e EB (N )/ kT = −1e(E B0 +bN
(d −1)/ d

/ 2
( d−1)/ d

)/ kT = ebN
(d−1)/ d

/ 2
(d−1)/ d

/ kT
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This result says that the time to form a single nucleus is inversely proportional to the
size of the system. The time for a single nucleus to grow to the size of the system, v ,
is given by

(4.4.41)

or

(4.4.42)

We are neglecting numerical factors that reflect different possible locations the nu-
cleus may form and their relationship to the boundary of the system.

The condition that a single nucleus will form cN v is given by combining Eq.
(4.4.40) and Eq. (4.4.41) to obtain

(4.4.43)

where we have also repeated our assumption that the size of the system is larger than
the critical nucleus. Eq.(4.4.43) describes the bounds on the system size so that only
one nucleus is important. Under these circumstances the relaxation time actually de-
creases with system size, because as the size of the system increases so do the oppor-
tunities for forming critical nuclei. The relaxation time is given by the sum of the nu-

  (v c 0Nc 0 )d /(d+1) > N >> Nc 0

  v = N 1/ d / v

  (v v )d
= N
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F i g u re 4 . 4 . 5 S e v e ra l
cases of the relaxation of
systems by driven diffu-
sion are illustrated. See
the text for a detailed dis-
cussion. In (a) the system
is larger than the size of a
critical nucleus but small
enough so that only one
nucleation event occurs in
the system. The boundary
is nonnucleating. In (b)
the system is large enough
so that several nucleation
events occur during the re-
laxation; the boundary is
nonnucleating. In (c) the
boundary nucleates the
equilibrium phase. ❚
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cleation time and the time for consumption of the whole system. The latter has been
assumed to be small compared to the former:

(4.4.44)

Thus the scaling of the relaxation time is O(N −1).

If the system is large enough so that more than one nucleation event occurs
(Fig. 4.4.5(b)),then different regions of the material may be treated as essentially de-
coupled. We expect from the analysis of independent systems that the scaling of the
relaxation time is logarithmic.A more detailed analysis given as Question 4.4.3 shows
the scaling is O(ln(N)1/(d +1)). While the analysis in Question 4.4.3 has interesting fea-
tures, the difference between this and O(1) or O(ln(N)) scaling is unlikely to be sig-
nificant.Finally, as with the independent spin model,the relaxation time is indepen-
dent of N if N+ is greater than 1. For convenience we assume that this occurs after the
transition between the regime o f Fig. 4.4.5(a) and Fig. 4.4.5(b), i.e., for systems in
which there are many nucleation events.

Question 4.4.3 Calculate the scaling of the relaxation time when there
are many nuclei formed in a system with N spins with boundaries that

do not affect the nucleation. Assume that all spins are DOWN at the end of
the relaxation. Numerical factors that do not affect the dependence of (N)
on N may be neglected.

Solution 4.4.3 Nucleation sites occur randomly through the system and
then grow and merge together. In order to find the time at which the whole
system will become DOWN, we calculate the probability that a spin at a par-
ticular site will remain UP. A particular spin si is UP at time t only if there has
been no nucleation event in its vicinity that would have grown enough to
reach its site.

The probability that no critical nucleus formed at a position rj with re-
spect to the site si until the time t is given by the probability of a two-state
system with a time constant c 0 remaining in its high energy state or

e−t / c0 (4.4.45)

If we are looking at the spin si at time t , we must ask whether there was
formed a nucleus at a distance r away prior to t ′=t − rj /v . If the nucleus
formed before t ′ then the nucleus would arrive before time t at the site si . The
maximum distance that can affect the spin si is rmax = min(vt,R), where
R∝N 1/d is the size of the system. When there are many nuclei in the system,
then each nucleus is much smaller than the system and R >> vt, so that
rmax = vt. The probability that no nucleus formed within this radius at an
early enough time is given by:

(4.4.46)

  rj

rmax

∏ e
−( t− rj / v )/ c0 = e

− (t− rj / v) / c 0∑

      (N ) = cN + v ≈ cN = c0N c0 / N
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where the product and the sum are over all possible nucleation sites within
a distance rmax.

The sum can be directly evaluated to give:

(4.4.47)

where we divided by the volume of a nucleation site and neglected constants.
The number of sites that remain UP is given by N times Eq.(4.4.46) with Eq.
(4.4.47) substituted in:

(4.4.48)

The coefficient accounts for the numerical prefactors we have neglected.
Requiring that this is a number less than 1 when t = (N) gives the relaxation
time (N) ~ ln(N)1/(d+1) as indicated in the text.

If we consider this same derivation but do not substitute for rmax in Eq.
(4.4.47) then we arrive at the expression:

(4.4.49)

and

(4.4.50)

This more general expression also contains the behavior when we have only
one nucleation event. We can recover this case by substituting a constant
value of rmax = R∝N 1/d. Then the time dependence of N+ is given by the
simple exponential dependence with the relaxation constant (N) =

c 0Nc 0 / r d
max∝1/N. ❚

Nucleating boundary
If the boundary of the system promotes nucleation,the nucleus formed at the bound-
ary will increase by driven diffusion. If there are no other nucleation events
(Fig. 4.4.5(c)) then the relaxation-time scales as (N)~ N 1/d. Since the critical nucleus
forms at the boundary, the system does not have to be larger than a critical nucleus
for this to occur. If the system is large enough so that there are many nucleation
events,then the behavior of the boundary is irrelevant and the same scaling found be-
fore applies.

We have found an anomaly in the intermediate regime characterized by
Eq. (4.4.43). In this regime the relaxation time of a system with a nonnucleating
boundary decreases, while that with a nucleating boundary increases. It should be un-
derstood that for the same microscopic parameters (except at the boundaries),the re-
laxation time is longer in the former case than in the latter.

      N + = Ne− (t −(d d+1)rmax /v)rmax
d

/( c0 N c0 )

      

(t −rj /v)
j

∑ ∝
1

N c 0
(t − r /v)r d−1dr

0

rmax

∫ ∝(t − (d d + 1)rmax /v)rmax
d / N c0

      N + = Ne− (v t )
d +1

/(v c 0N c 0 )

      

(t −rj /v)
j

∑ ∝
1

N c 0
(t − r /v)r d−1dr

0

rmax =vt

∫ ∝(vt)d +1 /(vN c0)
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Summary
In summary, a system of finite size with a driven-diffusion relaxation has a scaling of
the relaxation time with system size as O(aN (d−1)/d

,N − 1; ln(N); 1) for a nonnucleating
boundary, and O(N 1 / d; ln(N);1) for a nucleating boundary. The results are illus-
trated in Fig. 4.4.6.

One interesting conclusion from the results in this section is that we do not have
to create a very complicated model in order to find a relaxation time that grows ex-
ponentially with system size.A ferromagnetic Ising model with a large critical nucleus
is sufficient. What is the significance of this result? The size of the critical nucleus Nc 0

and the nucleation time c 0 are both controlled by the magnitude of h compared to
the interaction strength J. When h is large the critical nucleus is small and the nucle-
ation time is small. In this model h is the driving force for the relaxation; when this
driving force is weak, the relaxation may take arbitrarily long.
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Figure 4.4.6 Schematic plot of the relaxation-time behavior for a system that equilibrates
by driven diffusion (see Figs. 4.4.3–4.4.5). Two cases are shown, the solid line is for a sys-
tem with a boundary that nucleates the stable phase; the dashed line is for a system with a
nonnucleating boundary. When the boundary nucleates the stable phase, the stable phase
grows by driven diffusion. It consumes the whole system in a time that scales with system
size as N1 /d. For this plot, d is taken to be 3. When the boundary does not nucleate the sta-
ble phase, nucleation becomes harder as the system increases in size until it reaches the size
of a critical nucleus. For larger systems, the relaxation time decreases because it becomes eas-
ier to form a critical nucleus somewhere. Independent of the boundary behavior, when a sys-
tem becomes so large that the nucleation time, cN, becomes equal to the time it takes for
driven diffusion to travel the distance between one nucleus and another, v, then the system
reaches the large size (thermodynamic) limit and the relaxation time becomes constant.
Logarithmic corrections that may arise in this regime have been neglected in the figure. ❚
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Our assumption that the relaxation time of an individual spin is rapid should be
discussed in this context. We have seen that the nucleation time can become longer
than the experimental time. In overcoming the nucleation barrier, the formation of a
nucleus is like the relaxation of a two-state system. What we have done,in effect,is to
group together a region of spins that is the size of a critical nucleus,and treat them as
if they were a single spin. This is a process of renormalization as discussed in
Section 1.10. The nucleation time becomes the effective local relaxation time.Thus we
see that if the field h is small enough,the effective local relaxation time increases.Even
though the ultimate behavior of the system is that of growth by driven diffusion of
the stable phase, the relaxation is inhibited locally. This leads to the persistence of the
metastable phase.One example of a system where equilibration is inhibited by a long
local relaxation time is diamond. Diamond is a metastable phase under standard con-
ditions. The stable phase is graphite.

The second intere s ting con clu s i on is the import a n ce of the bo u n d a ry con d i ti on s
for the scaling beh avi or. It is parti c u l a rly intere s ting that the new scaling beh avi or,N 1/ d,
a rises on ly for the case of nu cl e a ti on by the bo u n d a ry of the sys tem . The scaling be-
h avi or of a sys tem with non nu cl e a ting bo u n d a ries is qu i te differen t , as discussed above .

The model of nucleation and growth of the stable phase has played an important
role in conceptual discussions of protein folding. Various theoretical and experimen-
tal efforts have been directed at identifying how nucleation and growth of secondary
and tertiary structure of proteins might occur. Of particular significance is that it al-
lows interdependence through interactions, and yet can allow relaxation to proceed
in a reasonable time. From our discussion it is apparent that nucleating boundaries
are beneficial. Our treatment of nucleating boundaries is a mechanism for including
the effect of certain system inhomogeneities. While we will consider nucleation and
growth more generally in the context o f inhomogeneous systems, we will not gain
much further insight. The central point is that when there are predetermined nucle-
ation sites, at a boundary or internally in the system, the relaxation of a system into
the stable state can proceed rapidly through driven diffusion. This behavior occurs
when the interactions in the system are cooperative,so that locally they reinforce both
the metastable and stable phases. It is easy to imagine particular amino acids or amino
acid combinations serving as nucleation sites around which the 3-d structure of the
protein forms. In particular, the formation of an -helix or -sheet structure may nu-
cleate at a particular location and grow from there.

Our discussion of nucleation and growth takes care of almost all cases of relax-
ation in homogeneous systems when the interactions are short-ranged and there is a
well-defined ground state in the bulk—away from the boundaries. We can,however,
have a well-defined ground state of the system even if the bulk ground state is not
well-defined,if the boundary conditions impose the ground state. This is the subject
of the next section.

4.4.4 Boundary-imposed relaxation
We have been careful to consider cases in which the energy of the state with all spins
DOWN, {si = −1}, is lower in energy than any other state,and in particular of the ini-
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tial state with all spins UP, {si = +1}. In a system with ferromagnetic interactions,if the
energies of the initial and final states are equal, then there are two ground states. In
the homogeneous model this is the case where h = 0. In general, the existence of two
ground states is counter to our assumptions about relaxation to a unique ground
state. However, we can still have a unique ground state if the boundaries impose 
si = −1. Such boundaries mean that the ground state is uniquely determined to be
{si = −1}, even though h = 0.

In the absence of additional nucleation events, such a system would equilibrate
by inward diffusion of the interface between the UP interior and the DOWN border, as
in Fig . 4.4.5(c). There is no bulk driving force that locally causes the UP region to
shrink. The only driving force is the interface energy (surface tension) that causes the
interface to shrink. We can treat the system as performing a driven random walk in
the number of UP spins. However, we must treat each part of the boundary as mov-
ing essentially independently. The rate of change of the average number of UP spins
N+(t) is given by the boundary velocity times the boundary length:

(4.4.51)

The velocity of a driven random walk is (from Eq. (1.4.58) and (1.4.60))

(4.4.52)

From Fig. 1.4.5 we can see that (∆E+ − ∆E−) is the energy difference between steps. A
single step changes the number of UP spins by one, so

(4.4.53)

where E(N+(t)) ∝ N+(t)(d −1) /d is the average surface energy for a cluster with N+(t) UP

spins. Since the single-step energy difference decreases with the number of UP spins,
we can assume it is small compared to kT. We can then expand the exponential inside
the parenthesis in Eq.(4.4.52) and substitute the resulting expression for the velocity
into Eq. (4.4.51) to obtain

(4.4.54)

The negative sign is consistent with the decreasing size of the region of UP spins. We
integrate Eq.(4.4.54) to find the dependence of the relaxation time on the size of the
system:

(4.4.55)

The final expression is valid even in one dimension, where the boundary executes a
random walk because there is no local preference of the boundary to move in one di-
rection or the other and (N) ∝ N 2.

(N ) ∝ −
N

0

∫ N+ (t) (2 −d) /d dN+ (t) = N 2/ d

    

dN+ (t)

dt
≈ −

a

kT
e −∆E + / kT (∆E + − ∆E− )N +(t)(d−1)/ d ∝ −N + (t)−(d−2)/d

    
(∆E + − ∆E− ) = E(N +(t)) − E(N +(t) −1) ≈

dE(N +(t))

d(N +(t))
∝N +(t)−1/ d

      v = a (e − ∆E+ /kT − e −∆E− /kT ) = a e −∆E + /kT(1 −e (∆E +− ∆E− )/kT )

      

dN+ (t)

dt
∝vN +(t)(d−1)/ d
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In this discussion we have ignored the possible effect of the nucleation of regions
of DOWN spins away from the boundary of the system.One way to understand this is
to note that the size of a critical nucleus is infinite when h = 0. Nucleation may only
change the relaxation behavior when the interface between UP and DOWN spins is not
well-defined. Otherwise, nucleation does not help the relaxation, since any region of
DOWN spins inside the region of UP spins will shrink. Thus, for the case where the
boundary determines the ground state, the relaxation is O(N 2/d).

It is also possible to consider the case where h is positive and the bulk preference
is to have all of the spins UP. However, the boundary imposes all si =−1,and the com-
petition between the bulk and boundary energies still results in all of the spins in the
ground state being DOWN. This occurs for systems where h is much smaller than J > 0,
so that the influence of the boundary can extend throughout the system. The energy
at the interface is bN+(t)d /d + 1 where b ∝ J is a local measure of the boundary energy.
The bulk energy is −2hN+(t)d. The latter must be smaller in magnitude than the for-
mer. As N+(t) becomes smaller, the bulk energy becomes still smaller compared to the
interface energy. Thus we can neglect the bulk energy in calculating the relaxation
time, which scales with N as if h = 0.

4.4.5 Long-range interactions
When interactions have a range comparable to the system size,the possibility of defin-
ing interior and exterior to a domain does not generally exist. If we assume a long-
range ferromagnetic interaction between spins so that Jij = J, for all i and j, the energy
of the system is

(4.4.56)

There is a difficulty with this expression because the energy is no longer extensive
(proportional to N) since the second term grows as N 2 when all the spins are aligned.
As discussed in Section 1.6, for many calculations the long-range interactions are
scaled to decrease with system size, J ~ 1 /N, so that the energy is extensive. However,
it is not obvious that this scaling should be used for finite systems. If we keep h and J
fixed as the system size increases,then,as shown below, one term or the other domi-
nates in the energy expression.

We can solve Eq. (4.4.56) directly by defining the collective variable

(4.4.57)

Substituting this into the energy gives:

(4.4.58)

The term NJ /2 , wh i ch is indepen dent of M, accounts for the missing i = j terms in
Eq .( 4 . 4 . 5 6 ) . It does not affect any of the re sults and can be negl ected . Adding the en tro-
pic con tri buti on from Secti on 1.6 to obtain the free en er gy as a functi on of M we obt a i n

E({si}) = −hM − 1
2 JM 2 + NJ / 2

M = si
i

∑

E({si}) = −h si
i

∑ − J 1
2 sis j

i≠ j
∑
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(4.4.59)

(4.4.60)

The exact substitution of the collective variable M for the many variables si indicates
that this system reduces to a single-variable system. The maximum value of M in-
creases linearly with N. In the following we show self-consistently that M itself grows
linearly with N, and obtain the relaxation-time scaling.

Assuming that M grows linearly with N, the first and third terms in the free en-
ergy grow linearly with N. The second term 1

2 JM 2, describing interactions, grows qua-
dratically with N. For small enough N the interaction term will be insignificant com-
pared to the other terms, and the system will become essentially decoupled. For a
decoupled system M must grow linearly with N. The relaxation time is also the same
as the relaxation time of a decoupled system.

For N larger than a certain value,the terms that are linear in N become negligi-
ble. Only the interaction term is important. All of the spins must be either UP or
DOWN in order to minimize the free energy. This also implies M grows linearly with
N. There is a small energy difference between UP and DOWN that is controlled by the
value of h. However, to switch between them the system must pass through a confor-
mation where half of the spins are UP and half are DOWN. The energy barrier,
F(M = 0) − F(M = N) = JM 2 /2,scales as N 2. Because the barrier grows as N 2 the re-
laxation time grows as eN 2

. Thus the system is frozen into one state or the other. We
can still consider raising the temperature high enough to cause the system to flip over
the barrier. In this case, however, the difference in energy between UP and DOWN is
not enough to force the system into the lower energy state.

Including the small system regime, where the long-range interactions are not rel-
evant, and the large system regime, gives a relaxation-time scaling of O(ln(N),eN 2

).
We see that even simple models with long-range interactions have a relaxation time
that scales exponentially with system size. Another conclusion from this section is that
in the presence of long-range interactions, the relaxation-time scaling does not de-
crease as the system size increases. This behavior was characteristic of systems that
have short-range interactions.

It is interesting to consider what would happen if we scale the interactions
J ~ 1/N. Since all the energies are now extensive, the free-energy barrier would grow
linearly in the size of the system and the relaxation time would grow exponentially
with the size of the system.Starting from all of the spins UP, the system would rapidly
relax to a metastable state consisting of most of the spins UP and a fraction of DOWN

spins as determined by the local minimum of the free energy. This relaxation is fast
and does not scale with the system size.However, to flip to the ground state with most
of the spins DOWN would require an O(eN) relaxation time.

We could also consider decaying interactions of the form

(4.4.61)

(4.4.62)J(x) ∝ x p

    
E({si }) = −h∑ s i − ∑ J(|ri −rj |)s is j

s0 (x) = k{ln(2) − 1
2 (1+ x)ln(1 + x) + (1 − x)ln(1 − x)}

F(M) = −hM − 1
2 JM 2 − TNs0(M / N)

Homo g eneo us  s y s t e m s 457

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 457
Title: Dynamics Complex Systems Short / Normal / Long

04adBARYAM_29412  3/10/02 10:37 AM  Page 457



For p <−1 this is essentially the same as short-range interactions, where there is a well-
defined boundary and driven diffusion relaxation. For p > 1 this is essentially the same
as long-range interactions with exponential relaxation time. p = 1 is a crossover case
that we do not address here.

Inhomogeneous Systems

In the general inhomogeneous case, each spin has its own preference for orientation
UP or DOWN, determined by its local field, hi , which may be positive or negative. This
preference may also be overruled by the interactions with other spins. We begin,how-
ever, by reconsidering the decoupled or essential ly decoupled model for inhomoge-
neous local fields and relaxation times.

4.5.1 Decoupled model—barrier and energy 
difference variation

There are two ways in which inhomogeneity affects the decoupled model. Both the
spin relaxation time, i , and the energy difference E+i = −2hi , may vary between spins.
Analogous to Eq. (4.4.10), the average number of UP spins is given by:

(4.5.1)

For a distribution of relaxation times P( ) this can be written as:

(4.5.2)

We are assuming that P( ) does not depend on the number of spins N. The relaxation
time of the system is defined so that all spins relax to their ground state. It might seem
natural to define the system relaxation time (N) as before by Eq. (4.4.11) or
Eq. (4.4.16):

(4.5.3)

However, allowing an additional factor of e −1 spins that are unrelaxed can cause prob-
lems in the inhomogeneous model that were not present in the homogeneous case.
When there is only one microscopic relaxation time,the existence of nonequilibrium
residual UP spins can be considered as a small perturbation on the structure, if they
are a smaller fraction of spins than the equilibrium UP spins. There is no special iden-
tity to the spins that have not yet relaxed. In the present case, however, the spins with
longest relaxation times are the last to relax. It is best not to assume that the structure
of the system is relaxed when there are specific spins that have not relaxed. This leads
us to adopt a more stringent condition on relaxation by leaving out the e−1 i n
Eq .( 4 . 5 . 3 ) , N+( (N)) = N+(∞) + Nr . Combining this with Eq. (4.5.2) we have:

(4.5.4)
    
N r = N d P( )∫ e − (N )/

N+ ( (N)) = (1 + e−1)N+ (∞) + Nr

N+ (t ) = N d P( )∫ e−t / + N+ (∞)

N+ (t ) =
i

∑ P(si = −1;t) ≈
i

∑ e−t / i + e−E +i / kT[ ] =
i

∑ e−t / i + N+ (∞)

4.5

458 P ro t e i n  Fo l d i ng  I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 458
Title: Dynamics Complex Systems Short / Normal / Long

04adBARYAM_29412  3/10/02 10:37 AM  Page 458



where Nr is a number that should be less than one, or for definiteness we can take
Nr ≈ 0.5, as in Eq. (4.4.19).

One way to understand Eq.(4.5.4) is to let all of the spins except one have a re-
laxation time 1. The last one has a relaxation time of 2. We ask how does the relax-
ation time of the final spin affect the relaxation time of the whole system. The relax-
ation of the spins with 1 is given by the usual relaxation time of a system of N spins
(Eq. (4.4.17)). If the relaxation time of the final spin is shorter than this, it does not
affect the system relaxation time. If it is longer, then the system relaxation time will be
determined by 2. Thus spins with long relaxation times,almost as long as the relax-
ation of the whole system,can exist and not effect the relaxation time of the system.
The conclusion is more general than the decoupled model.A realization of this in pro-
tein folding is the amino acid proline. Experimental studies indicate that proline has
two conformations that correspond to cis and trans isomers. The conversion of one
form to the other has been found to limit the time of folding of particular proteins.
We note that the temperature at which the folding is done can play a role in the rela-
tive importance of a single long relaxation time as compared to the relaxation of the
rest of the system. When a single relaxation time is large in comparison to the relax-
ation of other spins,it becomes proportionately even larger as temperature is lowered
(Question 4.5.1). The existence of the long proline relaxation time is consistent with
a rule of thumb that nature takes advantage of all possibilities. Since it is possible for
such a long relaxation time to exist, it does.

Question 4.5.1 Assume all of the spins in a system except one have a re-
laxation time of 1 and the last one has a relaxation time of 2. Show that

if the last spin has the same relaxation time as the rest of the spins together,
at a particular temperature,then it is slower at lower temperatures and faster
at higher temperatures.

Solution 4.5.1 The key point is that the relaxation times depend exponen-
tially on the temperature and the large relaxation time will change more
rapidly with temperature than the smaller one. The ratio of relaxation times
of individual spins as a function of temperature is given by:

(4.5.5)

where EB1 and EB2 are the barrier energies for the respective relaxation
processes. In order for the relaxation time of the last spin to be relevant we
must have EB2 > EB1. As a function of temperature,the ratio increases expo-
nentially with decreasing temperature:

(4.5.6)

where T0 is a reference temperature.
We are interested in comparing the relaxation time of N − 1 ≈ N spins

whose individual relaxation time is 1(T), with the relaxation of one spin

2 (T ) / 1 (T ) = 2 (T0 )/ 1(T0)( )T0 T

2 (T ) / 1 (T ) = e−E B2 / kT / e−E B1 / kT = e−(EB2 −E B1) /kT
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whose individual relaxation time is 2(T). Thus we are concerned with the
quantity:

(4.5.7)

where we write 1(T,N), as the relaxation time of N spins whose individual
relaxation time is 1. We have used the expression for this relaxation time ob-
tained from the decoupled spin model of Section 4.4.1. This is not essential;
as discussed below the result really only depends on having 2(T0)/ 1(T0)
>> 1.

Since we are given that the last spin has the same relaxation time as
the rest of the spins together at the reference temperature T0 , i.e.,

2(T0)/ 1(T0,N) = 1 evaluating Eq. (4.5.7) at T = T0 we have that:

(4.5.8)

Considering this relaxation time ratio as an expression for ln(N), we substi-
tute Eq. (4.5.8) and Eq. (4.5.6) into Eq. (4.5.7) to find that:

(4.5.9)

which implies the desired result.For T > T0 this ratio is less than one,and for
T < T0 this ratio is greater than one.

For the decoupled mo del, because the relaxation time increases only
slowly with the number of spins,the ratio of the relaxation times in Eq.(4.5.8)
is not very large, so that the temperature dependence of the ratio of relax-
ation times will also not be strong, even though it is exponential. However,
Eq. (4.5.9) is more general. We can understand this by allowing the rest of
the system to interact, except for the individual spin.Our conclusions hold
as long as the relaxation of the interacting spins depends on a large number
of hops over barriers. These interacting spins give rise to a relaxation time

1(T, N) that depends on the number of spins as some function of N. The
consequence in the above equations would only be to replace ln(N) with this
function of N. Eq. (4.5.9) would be unaffected. The ratio of individual spin
relaxation times at a reference temperature, ( 2(T0)/ 1(T0)), could even be
determined empirically. Moreover, if a single barrier has a relaxation time of
the same duration as the rest of the protein, the conclusion is immediate.
Since microscopic relaxation times of a single degree of freedom can be as
small as 10−10 seconds,and that of the protein is of order 1 second,the ratio
between the two relaxation times is large and Eq.(4.5.9) would imply a rapid
dependence of the relaxation time ratio with temperature. ❚

The more general case of an arbitrary distribution of individual spin relaxation
times P( ) in Eq.(4.5.4) can lead to arbitrary scaling of the total relaxation time with
the number of spins. Intuitively, there appears to be a problem with this statement,
since the spins are independent. How can the relaxation time grow arbitrarily if we

2 (T ) / 1 (T, N ) = 2 (T0 ) / 1(T0 )( )(T0 T )−1

2(T0 ) / 1(T0 )( ) = ln(N )

2 (T ) / 1 (T, N ) ≈ 2 (T )/( 1(T)ln( N ))
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only, say, double the system size? The reason that the relaxation time can grow arbi-
trarily is that when we increase the system size,there is a greater chance for spins with
longer relaxation times to occur. It is the addition of spins in the tail of the distribu-
tion of probabilities P( ) that controls the scaling of the relaxation time of the system.
However, if we only have a few different relaxation times corresponding to a limited
number of types of amino acids,then increasing the system size cannot change the re-
laxation time more than logarithmically with the system size.Thus,if the distribution
of spin relaxation barriers is relatively narrow or is composed of a number N of nar-
row dist ributions, where N << N, then we will still have the characteristic scaling
O(ln(N ); 1). This will be assumed for the remaining inhomogeneous models.

From Eq . (4.5.4) we see that va ri a ti ons in E+i , while keeping i f i xed , do not affect
the scaling of the rel a x a ti on time in the deco u p l ed model . If we retu rn to a con s i dera-
ti on of the basic properties of rel a x a ti on there are two points that imply this con clu-
s i on . The first is the ef fect of E+i on the rel a x a ti on ra te of an indivi dual spin. The re-
l a x a ti on ra te of an indivi dual spin can be affected on ly if the differen ce in en er gy
bet ween the two states becomes very small . Even in this case, the ch a n ge can be at most
a factor of 2 (see Eq .( 1 . 4 . 4 4 ) ) . A factor of 2 is not parti c u l a rly important wh en we con-
s i der rel a x a ti on - time scaling. The second point is that in gen eral we do not all ow the
va lue of E+i to become very small because of our assu m pti on that almost all of the spins
relax to their ground state . Thus the impact of va ri a ti ons in E+i should be negl i gi bl e .

Our discussion in this secti on of the ef fect of va ri a ti ons in i and E+i is valid also
in the case of the essen ti a lly deco u p l ed model , wh ere interacti ons are all owed bet ween
spins as long as the interacti ons do not affect wh i ch of the states of a particular spin is
the lowest en er gy. In ad d i ti on to all owing va ri a ti ons in i and E+i , we can also all ow in-
h om ogen eous interacti ons bet ween spins. In Secti on 4.4.2, in the hom ogen eous case,
it was natu ral to assume that the para m eters m a x and E+m i n do not ch a n ge with sys tem
s i ze . In the inhom ogen eous case this assu m pti on is less natu ra l . However, on ce this as-
su m pti on is made , the arguments pre s en ted in Questi on 4.4.2 proceed as before .

More significant for our interests is that the inhomogeneous case provides new
models that retain the same relaxation-time scaling as the decoupled model.
Specifically, it is possible for interactions to affect the minimum energy conformation
of particular spins without changing the relaxation-time scaling. This is the topic of
the next section.

4.5.2 Space and time partition (decoration of the 
decoupled model)

The next inhomogeneous model includes interactions that change the minimum en-
ergy state of particular spins. In the homogeneous case this led immediately to mod-
els with relaxation controlled by nucleation and growth. In the inhomogeneous case
there is a richer analysis.Our first objective is to construct a generalization of the de-
coupled model that still relaxes with the same scaling. This can happen because, even
if a few spins start out with their local equilibrium being UP, as long as the other spins
have their equilibrium as DOWN the few spins will relax DOWN once the rest have. We
can generalize this systematically. The idea that we will develop in this section is that
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an inhomogeneous system may be constructed so that it can be partitioned in space
and time. The partitioning results in a finite collection of subsystems. We can then
relate the relaxation of the whole system to the relaxation of each of the subsystems,
and to the behavior of the subsystems as N increases. Partitioning the system in space
and time is closely related to the discussion of subnetworks in Chapter 2. Partitioning
in space is directly related to the discussion of subdivision in attractor networks, while
partitioning in time is more loosely analogous to the discussion of feedforward
networks.

It is useful to consider again the conceptual framework of renormalization dis-
cussed in Section 1.10. In essence the subsystems that we will construct are decoupled
relaxing variables. They act like individual spins in a decoupled model. We can think
about renormalizing the system by grouping together all of the spins in each subsys-
tem.Each subsystem is then replaced by a single spin, with a relaxation time equal to
the relaxation time of the original subsystem. The result of the renormalization is a
decoupled system of spins. Another way to think about this is to invert the process of
renormalization. This inverse process is called decoration. Starting from the d ecou-
pled model, we decorate it by replacing each spin with a subsystem formed out of
many spins.

Space partitioning is the separation of the whole system into subsystems. We im-
pose a much more stringent form of separation than that in Chapter 2. Within each
subsystem the values of the spins may affect each other’s minimum energy state but
they do not affect the minimum energy state of spins in other subsystems. This does
not mean that there are no interactions between spins in different subsystems, only
that they are not strong enough to matter. The whole system then relaxes according
to the combination of relaxation times of each subsystem combined as in the decou-
pled case, specifically Eq. (4.5.4). However, the distribution of relaxation times P( )
may now depend directly upon N.

As N increases, either the number of subsystems or the size of subsystems
grows. If the size of the subsystems does not grow with N, the internal behavior of
each subsystem does not affect the scaling of the relaxation time of the whole sys-
tem. The relaxation of the system depends only on the distribution of relaxation
times of the subsystems, exactly as Eq.(4.5.4) describes the relaxation in terms of in-
dividual spins. If the number of subsystems does not change and the subsystems
grow linearly with N, then the relaxation-time scaling of the whole system follows
the relaxation-time scaling of the subsystem with the longest relaxation time. Unless
special circumstances apply, this would correspond to the highest scaling. There are
other possible ways for the growth of the system with N to be distributed between
subsystem growth and growth of the number of subsystems. They can be analyzed
in a similar manner.

Time partitioning implies that some spins know their equilibrium conformation
from the start. When they are equilibrated,their effect on the remainder causes some
of the remaining spins to relax. Then a third set of spins relax. The dynamics is like a
row of dominoes. This can be illustrated first by considering only two subsystems. Let
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(4.5.10)

Thus, W2 is the set of si such that E+i({sj}j ≠ i ) can be negative. If all si in W2 are in
some sense independent of each other, then the relaxation of the system will still
scale as O(ln(N);1). This is because the spins in W1 relax first, then the spins in W2

relax. The condition of independence of spins in W2 that we ne ed to impose has to
do with which spins can affect the sign of their energy E+i({sj}j ≠ i). Specifically, the
spins whose state can affect the sign of E+i({sj}j ≠ i) must all be in W1, not W2. This
implies that only relatively weak interactions exist between two spins in W2. If this is
true, then consider all spins in W1. These spins satisfy the conditions of the essen-
tially independent model, so their relaxation takes at most O(ln(N);1) time. Once
these have flipped DOWN, the remaining UP spins, all of which must be in W2, are
decoupled and therefore must satisfy E+i ({sj}j ≠ i)>0. Since they satisfy the conditions
of the essentially independent model, they also relax in O(ln(N); 1). The total relax-
ation is (at most) the sum of these relaxation times and so is also O(ln(N);1). In
summary, the relaxation scaling does not depend on spins that prefer to be UP for
some arrangements of their neighbors, if none of their neighbors have this property
at the same time as they do.

The partitioning of the system into two subsystems that relax sequentially can
be generalized to a finite number of subsystems. If the spins of a system can be
partitioned into a finite set of subsystems {Wk}, such that for a spin si of set
Wk , E+i({sj}j ≠ i)>0 when all the sj = −1 in sets W1,. ..,Wk−1, then the system relaxes in
O(ln(N);1). This follows because the subsystems relax sequentially, each in
O(ln(N);1).One may think about the subsystems as illustrated in Fig. 4.5.1.Each suc-
cessive circle denotes the boundary of a subsystem. The smallest region relaxes first,
followed by the next larger one. The scaling O(ln(N);1) for the whole system follows
from the scaling of each subsystem in O(ln(N);1), when the number of subsystems is
assumed to be independent of N. It is also possible to construct models where the
number of subsystems grows with N. For specific assumptions about how the num-
ber of subsystems changes with N, the relaxation-time scaling can be determined.

A better way to describe the partitioned model uses a concept of the neighbor-
hood of a spin. (The definition of “neighborhood” used in this section does not sat-
isfy the conditions necessary to give a topology on the space.) For statistical fields,
the physical distance is not particularly significant; it is the magnitude of the inter-
action between spins that determines the effective proximity. For the nearest-
neighbor Ising models in Section 1.6, we determine interactions by using a spatial
arrangement of spins and assign equal interactions to the nearest neighbors. For a
cubic lattice, the number of nearest neighbors is directly related to the dimensional-
ity (z = 2d). Other lattices give different numbers of neighbors. More generally, we
can define the neighbors of a spin si as the spins sj that can change the minimum en-
ergy state of the spin si .

    W2 = {s i min(E+ i({s j } j≠i ))≤ 0}

    W1 = {s i min(E +i ({s j} j≠i )) > 0}
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Let a neighbor sj of a spin si be a spin that can affect the minimum energy con-
formation of si . Let the neighborhood Ui of si be the set of its neighbors. Then the
neighborhood of an arbitrary set of spins is the union of the neighborhoods of all its
members. We can summarize the results of time partitioning by recognizing that the
definition of Wk implies that a spin si in Wk must have all of its neighbors in the
subsystems W1,. . .,Wk–1. Thus, time partitioning corresponds to a set of subsystems
Wk such that the neighborhood of Wk is contained entirely in W1,. . .,Wk–1. For such a
system the relaxation time is O(ln(N);1).

We follow a chain of seemingly natural definitions. The interior W I of a set W is
the set of spins whose neighborhoods are entirely contained in W. The exterior W E of
a set W is the set of spins whose neighborhoods do not intersect W. The boundary W B

of a set W is the set of spins that are not in its interior or exterior (spins whose neigh-
borhoods intersect but are not entirely contained withinW ). For the time-partitioned
model,all subsystems Wk are contained in their own exterior, Wk⊂ W k

E. This unusual
conclusion points to the difference between our neighborhoods and the usual con-
cept of neighborhood. It is rooted in a fundamental asymmetry in our definition of
“neighbor”.

Time partitioning depends on an asymmetric neighbor relationship. If sj is a
neighbor of si, then si does not have to be a neighbor of sj . This arises through inho-
mogeneity of the local fields hi that make Jij have a different significance for si than for
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sj . The spins with the largest values of hi tend to be in Wk with lower values of k. A spin
in W1 must have a large enough hi so that it dominates all of the interactions and there
are no spins in its neighborhood.

The definition of “neighborhoods” enables us also to summarize space parti-
tioning. The partitioning of space corresponds to a partitioning of the system into
disjoint neighborhoods. The neighborhood of each subsystem does not intersect any
other subsystem. Thus,in this case, we can say that each subsystem is the same set of
spins as its own interior. Space partitioning can result from both inhomogeneous in-
teractions and fields.

The model of decorated independent relaxation with both spatial and temporal
subsystems is attractive as a model of the relaxation in protein folding. The existence
of secondary structure, with limitations on the size of secondary-structure elements,
suggests that secondary-structure elements may form first. Moreover, each of them
may form essential ly independently of the others. This would correspond to space
partitioning. Each set of coordinates that change and cause the formation of a partic-
ular secondary-structure element would be a single subsystem. All of these together
would be included in the same time partition. Then there is a second stage of relax-
ation that forms the tertiary structure. The coordinates that control the formation of
the tertiary structure would constitute the second time partition. It is possible, how-
ever, and even likely, that during the second stage in which tertiary structure is
formed, some of the secondary structure also changes.

4.5.3 Nucleation and growth in inhomogeneous fields
Diffusive equilibration can be generalized to the inhomogeneous case. General con-
clusions can be reached by relatively simple considerations;a complete analysis is dif-
ficult. Nucleation and growth is a model that applies when nucleation is a relatively
rare event, so that only one critical nucleus forms in a large region. After the critical
nucleus is formed, the region of the stable phase grows by driven diffusion of the
boundary between the stable and metastable phases. In order to have a diffusive in-
homogeneous system,the interactions between spins Jij must be important compared
to the variation in the local field, hi , and the interactions must be essentially local and
uniform. Inhomogeneities tend to enhance nucleation and inhibit diffusion of the
boundaries between stable and metastable phases.Thus,increasing the inhomogene-
ity tends to reduce the relevance of nucleation and growth. We will discuss more
specifically the effect of variations in hi and Jij , and then the effect of inhomogeneity
in general, on the scaling of the relaxation time.

Inhomogeneities of the local fields hi cause variations in the local strength of
preference for the stable and metastable phases. Regions that have a larger average
negative hi will tend to nucleate before regions of a smaller average negative hi. Since
the problem is to form a nucleus somewhere, in contrast to the rare nucleation in a
homogeneous system, this variation increases the rate of nucleation. The eff ect of
variation in hi on diffusion of a boundary between stable and metastable phases oc-
curs through local variation in the driving force. Sites that have a larger than average
negative hi tend to increase the boundary velocity v, while sites of lower than average
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negative hi tend to decrease the boundary velocity. The boundary must sweep through
every site. Moreover, there is no bound on how long the boundary can be delayed,so
the sites that slow it tend to trap it. Thus, on average the velocity is reduced.

Inhomogeneities of the interactions Jij cause similar variations in nucleation and
diffusion. Smaller values of Jij make nucleation easier and the boundary diffusion
slower. Conversely, larger values of Jij make nucleation harder and the boundary
diffusion faster. Since nucleation can occur anywhere while diffusion must sweep
through everywhere, again the nucleation rate is increased while the diffusion rate is
reduced.

For the case of nonnucleating boundaries,the effect on relaxation time is partic-
ularly significant. The time necessary to form a critical nucleus is apparent in the
relaxation-time scaling behavior as a peak in Fig. 4.4.6. With the introduction of in-
homogeneities, the peak will decrease in height. For the case of nucleating bound-
aries,the relaxation time is controlled by the diffusion rate and so the relaxation time
will increase. For both cases,the transition to the thermodynamic limit, where the re-
laxation time is independent of N, will occur at smaller system sizes. This occurs be-
cause the increasing nucleation rate and decreasing diffusion rate causes the typical
size to which one nucleus grows—which is the size of independently relaxing parts of
the system—to decrease.

Another consideration in the discussion of diffusive relaxation in inhomoge-
neous fields is the structure of the boundary. In the presence of inhomogeneities,the
moving boundary becomes rougher due to the inhomogeneities that slow and speed
its motion. As long as the bulk energy dominates the boundary energy, it will remain
smooth;however, when the variation in boundary energy becomes large enough,the
boundary will become rough and the dynamic behavior of the system will change.
Since we have limited ourselves to considering smooth boundaries, our discussion
does not apply to this regime.

As briefly discussed in Section 4.4.3, the model of diffusion in variable fields is
likely to be of relevance to understanding the local properties of protein folding in the
nucleation and growth of the secondary structure. If this applies locally to each of the
segments of secondary structure separately, then the scaling of this relaxation is not
necessarily relevant to the folding as a whole. However, it is relevant to our under-
standing of the local kinetics by which secondary structural elements are formed.

4.5.4 Spin glass
There have been some efforts to describe the problem of protein folding in terms of a
spin glass model and spin glass dynamics. Spin glasses are treated using models that
have long-range random interactions between all spins (Section 1.6.6):

(4.5.11)

The difficulty with this model is that many of the properties of spin glasses do not ap-
ply to proteins.Spin glasses have many degenerate ground states,the number of which
grows with the size of the system. This means that there is no unique conformation

E[{si}] = −
1

2N
J ij sis j

ij
∑
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that can be identified with the folded state of the protein. Choose any conformation,
the system will spend much more time in dramatically different conformations be-
cause of the essential degeneracy of ground states. Moreover, the barriers between
low-lying states also grow with the size of the system. Thus, the relaxation time be-
tween any of the low-lying states grows exponentially with system size. Even the con-
cept of equilibration must be redefined for a low temperature spin glass, since true
equilibration is not possible. What is possible is a descent into one of the many low-
lying energy states. If we model a particular set of interactions Jij as being specified by
the primary structure of a protein, there would be no correlation between low-lying
states reached by different proteins with the same primary structure. This is in direct
contrast to protein folding, where a unique (functional) structure of the protein must
be reached.

Despite the great discrepancy between the phenomenology of spin glasses and
the protein-folding problem,there are reasons for considering this model. The use of
a spin glass model for protein folding is based on the understanding that many pos-
sible bonding arrangements between amino acids are possible. For a sufficiently long
chain there are many compact conformations of the chain where different bonding
arrangements are found. There is always an inherent frustration in the competition
between different possible bonding arrangements of the amino acids. This frustra-
tion is similar to the frustration that is found in a spin glass. Because of this, in the
very long chain limit, the spin glass model should become relevant. In this limit the
frustration and multiple ground states are likely to be the correct description of the
chain.

However, as discussed in Section 4.4.5, even when there are long-range interac-
tions, the local fields, hi, can be more important than the interactions, Jij , for small
enough systems. In an inhomogeneous system we can expand the term “local field” to
include the effect of local interactions:

(4.5.12)

where the second sum describes the near-neighbor interactions and the third de-
scribes the long-range interactions. Long-range interactions that give rise to frustra-
tion may not dominate over local interactions. There are many different energies in
the problem of protein folding. The analog of local interactions in Eq.(4.5.12) are the
interactions between amino acids near each other along the chain, not interactions
that are local in space. Hydrogen bonding between different parts of the chain, even
though it is local in space,can give rise to frustration. Note that the -helix structure
is constructed entirely out of short-range interactions, while the -sheet structure is
formed out of a combination of short-range and long-range interactions.

There is a difference between bonding between different parts of the amino acid
chain and long-range interactions in an Ising model. Although there are many possi-
ble hydrogen bond interactions between amino acids,these interactions are quite re-
stricted. The number of amino acids that can interact with a particular amino acid at
any one time is limited. Moreover, the chain structure restricts which combinations

    

E({si }) = − hi si∑ −
1

2
J ij sis j

<ij>
∑ −

1

2
′ J ijs is j

ij
∑
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of amino acids can interact at one time. These limitations do not eliminate the prob-
lem of frustration for very long chains. They do, however, increase the chain length at
which crossover occurs,from the regime in which local interactions dominate, to the
regime in which long-range interactions dominate. It is the latter regime which is a
candidate for the spin glass model.

Our discussion implies that pro teins are fundamen t a lly re s tri cted in thei r
l en g t h , and that a tre a tm ent of t h eir dynamics should inclu de this finite len g t h
re s tri cti on . From ex peri m ent we know that each el em ent of the secon d a ry stru c-
tu re has a limited nu m ber of amino ac i d s , and the nu m ber of s econ d a ry - s tru c-
tu re el em ents in the pro tein is also limited . These ob s erved limitati ons on pro tei n
s i ze are con s i s tent with our discussion of the rel a tive import a n ce of l ocal fiel d s
and lon g - ra n ge interacti on s .S tru ctu ral fru s tra ti on due to lon g - ra n ge interacti on s
must limit the size of pro teins to the regime in wh i ch local fiel d s , or more gen er-
a lly local interacti on en er gi e s , a re import a n t . It should be assu m ed that pro tei n s
ex tend up to their maximal po s s i ble size . Thu s , the largest pro teins are likely to be
at the cro s s over point wh en both short - ra n ge and lon g - ra n ge interacti ons com-
pete . This com peti ti on should then play an important role in the rel a x a ti on - ti m e
s c a l i n g.

The assumption of frustration in the long-range interactions appears to be the
opposite of the cooperative bonding that has been found in proteins. Cooperative
bonding is equivalent to long-range ferromagnetic interactions that enhance the sta-
bility of the ground state.Frustration implies that different bonds are competing with
each other. It is possible to argue that the low-energy states of the spin glass represent
cooperative action of many bonds and therefore constitute cooperative bonding. On
the other hand, proteins are engineered, so that we would expect that bonds are de-
signed to reinforce each other and cooperatively lower the energy of the folded state
to increase its stability. This is unlike the random spin glass model. This notion of en-
gineered cooperativity leads us to consider the engineered spin glass, which is more
typically used as a model of neural network memory.

4.5.5 Engineered spin glass—neural network
Neural networks (Chapter 2) have been modeled as engineered spin glass systems (the
attractor network) where energy minima of the system are specified. This might be
considered to be analogous to the engineering of the 3-d structure of a folded protein
by selection of the amino acid sequence. In the attractor network, the interactions Jij

determine the minimum energy states. In our discussion of protein folding in this
chapter, it is largely the local fields hi that determine the minimum energy state.One
of the differences is that the attractor network cannot have a unique ground state—
the inverse of a state has the same energy.

The simplest way to model the engineered spin glass is through the Mattis model
(Question 1.6.12). In this model a particular state is determined to be a ground state
using only interactions Jij and no local fields hi. We can redefine all of the spins in the
ground state to be si = −1. Then the Mattis model is equivalent to the long-range fer-
romagnetic Ising model with no external field, h = 0,and all Jij = J. Since it is the in-
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teractions that determine the ground state, both si = −1 and its inverse si = +1 are
ground states.

Under these circumstances we cannot consider the folding transition to be from
si = +1 to si = −1. We can recognize, however, that the essential point of this model is
to consider the impact of the initial conditions. We therefore abandon our insistence
on starting from a state where all of the spins are UP. The system will relax to the de-
sired ground state if the initial conditions are favorable, specifically, if more of the
spins in the initial state are DOWN than are UP.

One way to think about this is to look at the transition in terms of changing sud-
denly the interaction parameters. Indeed, this is a physically meaningful analogy,
since the actual folding of proteins is achieved by changing the interaction energies of
the real system. Fig. 4.5.2 illustrates several different transitions on a phase diagram
of the ferromagnet that includes both the interaction J and the field h. The transition
we have been considering thus far in this chapter is the transition across the first-order
transition boundary shown as (A). In this section we are considering the disorder-to-
order transition that is represented by (B). As long as there are a majority of DOWN
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(A)

(B)

(C)

Figure 4.5.2 Illustration of transitions in a ferromagnetic Ising model that start with differ-
ent initial conditions. The transitions, indicated by arrows, are superimposed on the Ising
model phase diagram. The final state in each case corresponds to having all spins DOWN. (A)
is a first-order transition starting from all spins UP. (B) and (C) both start from a largely ran-
dom arrangement of spins but (B) starts from a majority of DOWN spins. (C) starts from a ma-
jority of UP spins. ❚
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spins in the initial state,there is no need for the process of nucleation and growth to
occur. The relaxation is local, and the system reduces to the decoupled model.

We can generalize the Mattis model to the attractor neural network models dis-
cussed in Chapter 2. In these models, there may be more than one energy minimum.
As with the random spin glass,an arbitrary initial condition leads to any one of these
low-energy states. Therefore, we cannot talk about a unique folded state in equilib-
rium. However, there is a difference in this case. The neural network can be designed
to have only a limited number of low-energy states. Each energy state has a basin of
attraction that consists of all of the states of the system that will naturally fall toward
the low-energy state. The basin of attraction of a particular minimum energy state
consists of initial states that have more than a certain overlap with the minimum en-
ergy state.Within this basin of attraction,the dynamics that updates the spins reaches
the ground state in a finite number of steps. This can be seen to be equivalent to the
time-partitioned decoupled model (Section 4.5.2). The spins that flip in a particular
update correspond to a particular subsystem. The time scale for relaxation is again
O(ln(N);1).

To make use of the neural network model for protein folding, we can choose an
initial conformation that has a finite fraction of spins overlapping with the desired
ground state. There is a lesson to be learned from this model regarding the impor-
tance of the initial conformation in protein folding. Recently there have been sugges-
tions that the initial conformation is not arbitrary, but instead assumes one of a re-
stricted family of conformations that are either partially folded or are related in some
way to the eventual folded conformation. This would be consistent with the concept
of a basin of attraction. The introduction of a limited phase space exploration, where
the protein does not explore all possible conformations but is restricted from the be-
ginning to the basin of attraction of the folded conformation,also brings us to the sec-
ond mechanism for reducing the relaxation time—kinetic effects. We will discuss ki-
netic effects more generally in the next chapter.

The attractor neural network model may also be useful for understanding more
complex protein dynamics than just protein folding. Proteins act as enzymes.
However, their enzymatic efficiency may be influenced by chemical or other influ-
ences that control their function.One mechanism for this control is a change in con-
formation that affects the active enzymatic site. Thus a protein may respond to a va-
riety of controlling influences by changing its conformation. This suggests that there
may be two or more well-defined folded conformations that are each relevant under
particular external conditions. If a change in conformation due to a particular exter-
nal influence is maintained for some time after the external influence is removed,then
a description of the protein in terms of multiple minimum energy conformations
may become useful.

Missing from attractor neural networks is the incorporation of propagative
structures, specifically, interactions that can support driven diffusion or diffusion.
Thus, the equilibration of neural network spin glass systems corresponds to the de-
coupled model and not to any of the models that include driven diffusion or diffu-
sion. The absence of propagative structures is not realistic either for protein folding
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or for the general description of neural networks. Feedforward networks are a simple
approach to incorporating propagation in neural networks. More complex propaga-
tive structures are likely both in proteins and the brain.

Conclusions

In this chapter we have considered a variety of models that display a range of scaling
behavior of the relaxation time with system size. There are diverse individual features
of these models that can be related to properties observed in protein-folding experi-
ments. The models also provide some insight into the nature of the relaxation time
and its relationship to inter-amino-acid interactions. All of these models,however, are
missing the chain structure and its relaxation in space. When a chain is spread out in
space,there is an inherent scaling of the relaxation time with chain length, due to the
travel time of amino acids through the space before they can bond with other amino
acids. In the following chapter we show that this travel time leads to a characteristic
relaxation time that scales approximately as N 2 for an expanded chain.

While the models in this chapter are general enough that they cannot be used di-
rectly as models of the kinetics of protein folding, this investigation does allow us to
relate our findings to other complex systems. There are some general conclusions that
can be made. First, it is not difficult to design models that cannot relax in any rea-
sonable time. Long-range interactions,in particular, lead to exponential scaling of the
relaxation time. A weak driving force for the transition may also cause problems.
There are, however, systematic approaches to interactions that give rise to relaxation
in a time that scales as a low power of the size of the system.One approach is parti-
tioning in space and time; another is diffusion or driven diffusion of boundaries; a
third is predisposing the system by its initial state; a fourth is dominance of local in-
teractions. All of these are likely to occur in protein folding as well as in the dynamics
of other complex systems. It should be apparent that creating a complex system where
interactions cause interdependence and yet allow dynamics to proceed in a reasonable
time requires a careful design. Complex systems have specific properties that are not
generic to physical systems. The issues of how complex systems arise will be discussed
in Chapter 6.

4.6
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5
Protein Folding II:
Kinetic Pathways

Conceptual Outline

When kinetics limits the domain of phase space explored by a system, the
scaling of the relaxation time (N) may be smaller than exponential. Polymers in a liq-
uid can be in an expanded or compact form. The transition between the two—poly-
mer collapse—is a prototype of protein folding. Using simulations, we will explore
possible origins of kinetic limitations in the phase space exploration of long polymers
during collapse.

Before we study collapse, we must understand the properties of polymers
in their expanded state in good solvent. Simple arguments can tell us the scaling of
polymer size, R (N) ~ N . The time scale of relaxation of a polymer from one confor-
mation to another follows either Rouse (N ) ~ N2 +1 or Zimm (N ) ~ N 3 scaling, de-
pending on the assumptions used.

Polymer simulations can be constructed in various forms. As long as they
respect polymer connectivity and excluded volume, the behavior of long polymers is
correctly reproduced. A two-space model where monomers alternate between
spaces along the chain is a simple and convenient cellular automaton algorithm.

During polymer collapse monomers bond and aggregate. Simulations of
collapse and scaling arguments suggest that the aggregation occurs primarily at the
ends of the polymer because of the greater flexibility of polymer-end motion. Thus the
aggregates at the end appear to diffuse along the polymer contour accreting
monomers and smaller aggregates until they meet in the middle. This results in an ag-
gregation process that is systematically ordered by the kinetics. The end-dominated
collapse-time scales linearly with polymer length, which is faster than the usual poly-
mer relaxation. The orderly formation of bonds in end-dominated collapse also sug-
gests that kinetics may constrain the possible monomer-monomer bonds that are
formed and thus limit the domain of phase space that is explored in protein folding.

❚ 5 . 4 ❚

❚ 5 . 3 ❚

❚ 5 . 2 ❚

❚ 5 . 1 ❚
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Phase Space Channels as Kinetic Pathways

In Chapter 4 we introduced the problem of time scale: How can a system composed
out of many elements reach a desired structure in a reasonable amount of time? The
ability of proteins to fold into a well-defined compact structure exemplified this trait.
For our first answer we assumed that the desired structure was the equilibrium state
of the system. We then studied various energy functions that would enable relaxation
to the equilibrium state. All of these energy functions embodied some variation on
the idea of parallel processing. In this chapter we consider the possible influence of ki-
netics on the time scale for reaching a final structure. Considering kinetic pathways as
a mechanism that enables a system to reach a desired structure is a qualitatively dif-
ferent idea from parallel processing. In this approach, a system follows a particular
pathway through the phase space to the final desired structure. The pathway may not
be unique, but it is severely limited compared to the space of possible paths in the
whole space. As a result, there is no reason to expect that the system reaches the ab-
solute minimum energy equilibrium conformation. It does, however, reach a confor-
mation that is low in energy compared to any of the accessible conformations.
Because the system only visits a limited set of conformations along the path from its
initial to final state,our expectation is that the relaxation time—the time to reach the
final conformation—will scale less than exponentially with the size of the system.
There are a number of ways that such kinetic pathways can arise.We will discuss a few
of these in this section and describe a strategy for considering the effect of kinetics in
protein folding.

The simplest form of kinetic pathway can be il lustrated using the model of two
independent two-state systems introduced in Section 4.2. Each of the two-state sys-
tems (spins) has two states si = ±1, for i = 1, 2. Relaxation of each spin o ccurs inde-
pendently from +1 to −1. Let the relaxation time of the first spin be extremely long
compared to the second spin, 1 >> 2. If 1 is long compared to relevant times (e.g.,
years) then only s2 relaxes. The system starts from the state (1, 1). It makes a single
transition to the state (1, −1) and is stuck there. The ground state (−1, −1) is never
reached. This,however, is fine if (1, −1) is the desired state. It actually doesn’t matter
whether (1, −1) or (−1, −1) is the ground state. The long relaxation time 1 corre-
sponds to a large barrier to the transition of s1. The accessible domain of phase space
includes only states that have s1 = 1. More generally, this form of kinetic pathway as-
sumes that there are energy barriers that partition phase space so that some regions
are inaccessible. These regions play no role during the relaxation. For the case of pro-
tein folding, this means that certain conformations would be completely inaccessible
in a transition from the initial unfolded to the final folded conformation.

An example where energy barriers limit the space of conformations during pro-
tein folding is the preservation of primary structure. The bonds between amino acids
along the chain are strong bonds that have a low probability of breaking and reform-
ing. Thus, during folding, the protein does not explore the possible arrangements of
amino acids along the chain and all of their conformations. The breaking of the chain

5.1
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is prevented by kinetics, even though there may be other orderings of the amino acids
that have lower energy structures. Breaking the protein chain would enter a different
domain of phase space. It is interesting that there are specific examples where the
chain is broken during protein folding (proteolytic reactions). This is done by en-
zymes that break the amino acid chain in specific places. The subchains that result are
then formed into the final folded protein structure.

The next step is to consider how kinetic pathways might affect the space of con-
formations of a chain with a particular amino acid sequence. Starting from an un-
folded conformation, there do not appear to be any strong bonds or energy barriers
that would prevent it from reaching a large number of compact polymer conforma-
tions. The number of such compact conformations grows exponentially with the size
of the polymer. Thus energy barriers do not appear to be relevant in explaining the
ability of a protein to reach a definite structure. However, the kinetic barriers need not
exist in the initial conformation. It is enough for them to arise during the process it-
self. During protein folding, new bonds form. These bonds might restrict the domain
of space that is explored.A pictorial illustration of the formation of barriers is shown
in Fig. 5.1.1. It shows the emergence of barriers during the kinetic process. These bar-

Figure 5.1.1 The simplest concept of a kinetic pathway is a path bounded by energy barri-
ers that prevent departure from the path and thus prevent an exhaustive search of all con-
formations. In this figure we see that barriers may not exist initially; they may, however, de-
velop as the relaxation proceeds. The illustration should be read as an energy landscape.
Horizontal lines are plots of the energy in the horizontal direction. A vertical bias in the en-
ergy is assumed so that progressively lower lines are lower in energy. The conformation of a
protein is a point in the plane of the page. A possible trajectory is illustrated. From the start-
ing point, it appears that all three of the possible low-energy conformations at the bottom
of the illustration are accessible. However, once the relaxation begins there are barriers that
prevent the conformation from switching from one of the vertical channels to the other. In
order for the correct final state to be chosen, the initial state must be restricted to be close
to the channel that leads to the desired conformation. This conformation may or may not be
the lowest-energy conformation. ❚
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riers do not prevent the protein from folding into an undesirable structure. However,
the conjunction of a particular initial configuration and the barriers that arise serve
to limit the exploration of space and determine the ultimate conformation.

The picture of strong bonds causing large barriers that form kinetic pathways is
not complete. Kinetic restrictions that limit the domain of phase space that is explored
during folding arise also from entropic bottlenecks. An entropic bottleneck
(Fig.5.1.2(a)) is a narrow channel between one part of phase space and another.Because
the channel is narrow, it is unlikely that the system will move from one part to the
other. Thus a whole region of conformations may not arise. Another way in which en-
tropy can be relevant is illustrated in Fig. 5.1.2(b). In this case, entropy differences in
the inlets to kinetic pathways reduce the sensitivity of the final conformation to the

(a)

(b)

Figure 5.1.2 Entropy can play more than one role in the properties of kinetic pathways, as
shown in (a) and (b). (a) illustrates an entropy bottleneck that prevents exploration of all
conformations. Two regions of conformations with different energy minima are connected by
a channel that is very narrow; like two valleys connected by a narrow mountain pass. It is un-
likely that the system will go through the channel, because it will rarely be found by random
motion, even if there is no energy barrier in the channel. A different effect of entropy is shown
in (b). A wide inlet to a particular kinetic pathway causes it to be preferentially selected over
a channel with a narrow inlet. This picture explains how kinetic pathways may lead to a pre-
dictable final conformation independent of the initial conformation. Such predictability
would be necessary for kinetic pathways to be relevant to protein folding. ❚
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initial conformation. Compare this picture with the picture illustrated in Fig. 5.1.1.
For our study of protein folding, Fig. 5.1.2(b) will turn out to be relevant. Certain
bonds are likely to form during the initial stages of folding. These bonds then inhibit
the exploration of all conformations.

Considering energy barriers or entropic bottlenecks to the exploration of phase
space are both part of a thermodynamic approach. They are relevant when diffusion
dominates the kinetics. Diffusion is a random-walk process that occurs when a sys-
tem is coupled to a thermal reservoir (Section 1.4.4 and Section 7.2.3). Diffusion is
not important in a system that is far from equilibrium and not coupled to a thermal
reservoir. The system then follows ballistic motion along a path that is determined by
Newtonian equations of motion. This can give rise to other kinetic effects because a
system follows a specific trajectory rather than an exploration process. Proteins are,
however, embedded in a liquid that serves as a thermal reservoir. The kinetic energy
is dissipated, and stochastic diffusive motion dominates. Thus, for proteins, we are
amply justified in limiting ourselves to consider diffusive motion. More generally, in
order for a stable final conformation to be reached, there must be dissipation of ki-
netic energy. This suggests that diffusion is important, but does not imply that ballis-
tic motion plays no role.

In the previous chapter we adopted a series of models that ignored the spatial
structure of polymers in favor of abstract representations in terms of Ising spin vari-
ables. This approach was helpful in developing an understanding of the issues and
concepts of parallel processing for protein folding. However, in order to address ki-
netic limitations that may select pathways for folding, we must build a model of the
polymer in space and its dynamics.Our objective is to establish the possible existence
of a specific sequence of events in protein folding. Such a sequence of events would
result from a particular order in which amino acids encounter each other. The en-
counters can then result in specific bonds being formed. To determine if a particular
sequence of encounters occurs, we can consider a simplified polymer model that re-
tains its spatial structure but does not represent the details of amino acid structure.
This approach implies that we are interested in the very first part of the folding
process, which might extend no more than a microsecond out of the typically one-
second folding time. The potential impact of this initial time is to set the stage for later
processes by forming bonds that limit the subsequent exploration of conformations,
and by placing the system conformation in the vicinity of its eventual stable state.

In contrast to our studies in Chapter 4 which were essential ly analytic, in this
chapter we will focus on simulations (Section 1.7) as a tool for investigating the be-
havior of complex systems. Nevertheless, we begin in Section 5.2 by describing an an-
alytic theory of the kinetics of long polymers. This analytic theory sets the tone for
our investigations. It shows that many of the properties that are of interest do not de-
pend on the specific microscopic structure of the polymer, but rather on the general
behavior of a long chain and its many conformations in space.

To further develop an understanding of polymer kinetics,particularly the kinet-
ics of polymer collapse, we will turn to Monte Carlo simulations. In Section 5.3 we
construct a lattice Monte Carlo model of polymer dynamics. This simple model of
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polymer dynamics is constructed to be in the form of a cellular automaton
(Section 1.5). The model dynamics serves as a simulation tool. Over many steps, the
motion of the model polymer is consistent with the expected behavior of long poly-
mers for relaxation or diffusion. This is ensured by the Monte Carlo method because
only local steps in the space of polymer conformations are taken. In Section 5.4, us-
ing this model for polymer dynamics, we simulate polymer collapse and find evi-
dence for specific kinetic pathways dictated by a preferential ordering of encounters
between parts o f the polymer chain. Motivated by the results of the simulations, we
develop an analytic scaling theory that describes the kinetics of the t ransition of a
polymer from an expanded to a collapsed state. This generalizes and reinforces the
conclusions from the simulations.Finally, we consider a number of variations of the
simulations to test the scaling theory and explore the domain of its applicability to
physical polymers.

Before we proceed, we point out an example of relaxation that does not illustrate
kinetic pathways, even though it appears to. The concept of a kinetic pathway implies
a well-defined sequence of intermediate protein structures between the initial and the
final conformation. However, the converse is not true. The existence of a well-defined
sequence of intermediate protein conformations does not necessarily mean that the
system is kinetically limited to this pathway. Another mechanism that may cause a
well-defined pathway is the inhomogeneous decoupled model discussed in Section
4.5.1. In that model, certain degrees of freedom relax before others. If the degrees of
freedom can be grouped into sets with well-separated relaxation time,then after each
set of degrees of freedom relaxes,a well-defined structure arises. Kinetics does play a
role because of the degrees of freedom that are frozen at any time. However, by the
end of the relaxation, all degrees of freedom can and do relax. This is counter to the
assumption of kinetic pathways.

Polymer Dynamics: Scaling Theory

Polymers are molecules formed out of long chains of atoms that are generally recog-
nizable as a sequence of units (monomers) like amino acids. Biological polymers in-
clude proteins, DNA, and polysaccharides. Artificial polymers include polystyrene
and polyethylene. Polymers whose monomers are all the same are known as ho-
mopolymers. Polymers that have more than one kind of monomer are called het-
eropolymers. Homopolymers are simpler to model, and we will concentrate on de-
scribing their dynamics, though many of the results also apply to heteropolymers.
Polymers are found dissolved in liquids or embedded in composite materials. When
they are dissolved in liquids, there are essentially two possible structures. Either the
polymer collapses into a compact structure or the polymer is expanded. Which of
these occurs depends on whether the effective interaction between monomers is at-
tractive or repulsive. The effective interaction includes both the hard core repulsion
between atoms and the longer-range attraction or repulsion. Entropy favors the ex-
panded polymer structure over the compact structure because of the greater number
of expanded conformations. However, this is generally a weaker effect than that of the
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energy of attraction or repulsion. In a solution with many polymers, compact poly-
mers often aggregate to each other and precipitate. We will focus on the dynamics of
a single polymer, not on polymer-polymer interactions.

When a protein is folded and unfolded in solution,it is crossing the line between
compact and expanded structures. The transition may be driven by changes in tem-
perature. However, the more usual approach is to add a chemical to the solution that
affects the monomer-monomer attraction. What is relevant is the affinity of the
monomers for each other compared to their affinity for the solvent. Because of the
importance of the solvent for the transition,a polymer in its expanded state is said to
be in a good solvent.A compact polymer is said to be in a poor solvent. The transi-
tion is called the θ-point. In this section we are concerned with the properties of a
polymer in a good solvent. It is essential to understand the structure and dynamics of
this state before we can study the dynamics of transition from the expanded to the
compact state. We will be concerned with the scaling behavior of the properties of
long polymers as a function of polymer length N. This is similar to Chapter 4 where
we considered the scaling of relaxation with system size.

The scaling of the structure and dynamics of long polymers should not depend
greatly on their chemical composition. The scaling theory of polymers is one of the
great successes of simple concepts in understanding complex systems. A book by de
Gennes, who received the 1991 Nobel Prize in physics, contains many of the elegant
arguments that describe polymers simply and successfully.

A long polymer in a liquid has a local structure that is more or less flexible. The
bonding of adjacent monomers controls the local polymer structure. For a specific
pair of monomers,there may be several possible bonding configurations or there may
be only one allowed configuration. However, a long enough polymer is always flexi-
ble,so we can start by considering it to be a random walk in space with N steps. When
a polymer is modeled as a random walk,the size of a step is understood to depend on
the polymer flexibility, with stiff polymers having many monomers per step and flex-
ible polymers having few monomers per step. For convenience, we can redefine our
monomers so that each step is between the new effective monomers.

Polymers are generally found in three-dimensional space. However, we general-
ize our discussion to d-dimensions. In d-dimensions a random walk is performed in-
dependently in each dimension. The average distance traveled along the polymer
from one end to the other is called the polymer end-to-end distance R0 . We use to
represent the root mean square distance traveled in a random walk in a single di-
mension. The random walk in one dimension satisfies (Section 1.2):

(5.2.1)

where xN and x1 are the x coordinates of the last and first monomers respectively.
More generally, xi is the x coordinate of the i th monomer. The third equality follows
from the independence of the steps. a is the distance of an elementary step in one di-

= < ( xN − x1)2 > = <( (x i+1 − xi )
i

∑ )2 > = < (xi+1 − xi )2 >
i

∑ = Na
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mension—the average distance between coordinates of adjacent monomers. Since the
random walk in each dimension is independent,the end-to-end polymer length, R0,
is given by a similar expression:

(5.2.2)

where ri is the d-dimensional vector position of monomer i. The result follows from
the existence of dN independent terms in the sum. It could also be written as R0 =
√Na′, where a′ = √da is the monomer-monomer distance.

A polymer is a thermodynamic system whose equilibrium size is determined by
its free energy. When we consider the polymer as a random walk, we assume that all
of the possible configurations have the same energy. The size is then determined by
the entropic part of the free energy. As discussed in Section 1.4, the probability of a
particular end-to-end polymer distance R can be found using the relationship:

P(R,N) = e−F(R, N )/kT/Z = e−(E(R, N )−TS(R, N))/kT/Z = eS(R, N)/k/Z (5.2.3)

F(R,N) is the free energy, E(R,N) and S(R,N) are the energy and entropy respectively,
and Z is a normalization constant. The final expression only applies when the energy
can be neglected. We have already essentially calculated the probability P(R,N) when
we counted the number of random walks of a particular length in Section 1.2. From
Eq. (1.2.39), the probability distribution for the distance traveled in a one-
dimensional random walk is a Gaussian. In d-dimensions we take a product of the
Gaussian probability in each dimension to obtain the probability for a particular end-
to-end vector R:

(5.2.4)

where R is the magnitude of R. To obtain the probability of a particular end-to-end
distance, R, this must be multiplied by the d − 1 dimensional surface area of a sphere.
It turns out that none of this detail is important for what follows; however, for com-
pleteness we can write the surface area as a constant d −1 times Rd −1.

(5.2.5)

From Eq . ( 5 . 2 . 3 ) , the free en er gy of a particular en d - to - end distance is given by
the loga rithm of the prob a bi l i ty of a particular length times the norm a l i z a ti on
constant Z:

(5.2.6)Frandom −walk (R, N) = −kT ln ZP(R, N )( ) = F0 +
dkTR2

2R0
2

P(R, N) =
d−1Rd−1

2 R0 / d1 / 2( )d / 2 e−dR
2

/ 2R0
2

      

P(R, N) =
1

2( )d / 2
e −R

2
/2

2

=
1

2 R0 /d1/ 2( )d / 2
e −dR

2
/ 2R0

2

      

R0 = < (rN − r1)2 > = <( (ri+1 − ri )
i

∑ )2 > = < (ri +1 − ri )2 >
i

∑ = dNa
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where we have neglected the logarithmic terms in R and N. Since only free-energy dif-
ferences matter, the constant F0 could also be neglected.

There is something unusual about this expression for the free energy. The free en-
ergy minimum does not occur at the end-to-end distance R0 that was found before.
It occurs instead at R = 0. Part of this problem arises because we neglected the loga-
rithmic term (d − 1)lnR. However, even when we include this term,the minimum oc-
curs at √((d −1)/d)R0 rather than R0. This system does not satisfy the usual property
of a macroscopic system, that the probability distribution becomes sharp as the sys-
tem becomes large. In the usual case we can identify the expected value of a system
property as the value that maximizes the free energy. For the random walk, the free
energy has the more general interpretation,discussed in Section 1.4,as the logarithm
of the probability. If we were to use the free energy to evaluate the value of the aver-
age radius, we would still have to calculate the average over the probability distribu-
tion. After calculating the average we would recover the value R0. This discussion
shows the connection between the entropy, free energy and the characteristic size of
a polymer. When we need to add additional terms to the free energy, such as the
monomer-monomer interactions, we can recalculate the polymer size using the same
expressions.

Our discussion of the random walk in Section 1.2 included a proof of the central
limit theorem that allows us with some confidence to consider various random walks
to have a Gaussian probability distribution. However, the polymer differs in an es-
sential way from the random walks that were discussed there. The difference is that
the steps are not uncorrelated. The stiffness of a polymer would tend to make a poly-
mer continue in the same direction. More generally, the bonding and interactions be-
tween monomers near each other along the contour cause constraints between neigh-
boring steps. This turns out not to be an essential problem, because the coupling
between steps along a polymer decays exponentially. There is a characteristic distance
along the chain after which the constraints become negligible. This means we can
choose to label our polymer with random steps as long as the steps are larger than the
correlation distance (persistence length). The number of these steps becomes our ef-
fective monomer number N. When we have many of them, then, and only then,can
we consider the polymer to be long. Proteins in their expanded form turn out to be
quite flexible and so the correlation length is short,approximately a single amino acid.
On the other hand, DNA is quite stiff. For a single strand of DNA the persistence
length is roughly 200 to 400 monomers. For a double strand helix, the persistence
length is approximately 2,000 monomers (base pairs).

We are, however, still missing an important aspect of the interaction between
monomers. This is the contact interaction between any two monomers that en-
counter each other. We have argued that we do not need to consider the interactions
of monomers near to each other along the chain, because the correlations disappear
for long enough polymers. However, the interactions that occur between any two
monomers still must be considered. Since the monomers are repelling each other
when the polymer is in a good solvent, we can represent the interaction between them
as an excluded volume—a volume around each monomer that other monomers can-
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not enter. In Section 1.10 we discussed the use of renormalization theory to under-
stand the relevance of parameters in the macroscopic limit. It is possible to show that
for isolated polymers in good solvent,the only relevant parameters in the long length
limit are the length of the polymer and the excluded volume. This simplifies our con-
siderations and guarantees that our results apply to any polymer, if it is long enough.
Our task is to identify the properties of a polymer that has an excluded volume. Such
abstract polymers are called self-avoiding random walks. Self avoiding walks should
be larger than random walks because of the repulsive interactions between the
monomers.

There is a scaling argument for the size of a self-avoiding random walk con-
structed by Flory. The argument is based on the competition between the repulsive
energy of the excluded volume that tries to expand the polymer, and the tension due
to ent ropy r eduction when the polymer chain is stretched. Assume that we have a
polymer that occupies a volume Rd. The density of the monomers in this volume is
given by:

(5.2.7)

In this expression, and throughout, we avoid numerical coefficients,since the objec-
tive is only to understand the scaling. The energy of the monomer-monomer interac-
tions is given by the probability that two monomers encounter each other. On aver-
age, an encounter costs an amount of energy characteristic of the thermal kinetic
energy of the monomers, kT. Once two monomers approach each other close enough
to cost this amount of energy, they cannot approach any closer. If we neglect the struc-
ture of the polymer, then we can calculate the probability of an encounter. We think
of the monomers as distributed with uniform probability in the volume Rd. We imag-
ine placing each of the monomers at random in this volume. Each monomer has an
excluded volume V. The number of monomer-monomer overlaps (interactions) is
then proportional to the square of the concentration. More specifically, it is given by
the number of monomers times the fraction of the volume occupied by monomers.
The energy associated with the excluded volume is thus:

(5.2.8)

where kT gives the units of energy. The neglect of the polymer structure is a neglect
of correlations between monomer positions. This is characteristic of a mean field ap-
proach (see Section 1.6). Thus this equation is a kind of mean field treatment of
monomer interactions.

The excluded volume energy in Eq.(5.2.8) is smaller for larger R. To this energy
we add the free energy for the random walk, Eq. (5.2.6), that neglected the excluded
volume. We obtain the free-energy expression:

(5.2.9)F(R, N ) = F0 +
dkTR2

2R0
2 + kTV

N 2

Rd

Fexcluded −volume (R, N) = kTN
NV

Rd = kTV
N 2

Rd

c =
N

Rd
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We minimize this expression to obtain the typical size of the polymer. We can do this
as long as the result is not zero. Neglecting all coefficients we obtain:

(5.2.10)

From Eq. (5.2.2) we have R0
2 ∝ N, so:

Rg ∼ N (5.2.11)

where the exponent is given by the expression

(5.2.12)

The tilde, ∼, is used to indicate that the result only holds in the asymptotic regime,i.e.,
for long enough polymers. The result we have obtained is remarkable. It is exact in
one dimension where = 1, because the excluded volume walk is a straight line. It has
been shown to be exact in two dimensions where = 0.75. In three dimensions,where

= 0.6,it is in reasonable agreement with both experiment and numerical simulation.
In four dimensions, it gives the random walk result = 0.5. In higher than four di-
mensions,this must continue to be the result,since it indicates that the excluded vol-
ume is irrelevant. This has also been proven to be correct. The reason that the random
walk becomes correct in four or higher dimensions is that the free energy due to
monomer-monomer interactions for a random walk decreases with the length of the
chain (see Question 5.2.1). Thus this simple mean field scaling argument appears to
give the exact result in all dimensions. Why does the mean field approach give an ex-
act result in all dimensions? Unlike the mean field treatment of the Ising model, which
was exact only in four or higher dimensions,the mean field treatment of polymers ap-
pears to benefit from a cancellation of errors.

The alert reader may note that we actually made what might seem an unreason-
able step in combining the free-energy expressions in Eq.(5.2.6) and Eq.(5.2.8) to ob-
tain Eq.(5.2.9). The definition of R used to obtain Eq.(5.2.6) was the end-to-end dis-
tance of the polymer. The definition of R used to derive the form o f the excluded
volume energy in Eq. (5.2.8) was the characteristic spatial size of the polymer. In ef-
fect, we assumed that all characteristic linear dimensions of the polymer behave in the
same way. This is a simplification that is a reasonable first assumption to be made in
constructing a scaling theory.

Question 5.2.1 Show in more than four dimensions that the monomer-
monomer interactions have decreasing importance and are therefore ir-

relevant in the long polymer limit. However, for fewer than four dimensions
they are not irrelevant.

Solution 5.2.1 In order to see whether the excluded volume is relevant, we
evaluate its effect on the polymer free energy. We do so assuming the poly-
mer has a volume given by the random walk without excluded volume. This

=
3

d + 2

    

R g

R0
2

=
N 2

Rg
d +1
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is the maximum effect the excluded volume can have. Using the value of the
polymer end-to-end distance for a random walk,the excluded volume term
in the free energy scales as:

(5.2.13)

The random-walk term in the free energy is independent of polymer length.
Thus for any dimension greater than four, the excluded volume interaction
has decreasing relative importance with length of the polymer and will not
significantly affect the asymptotic behavior of the polymer size. For fewer
than four dimensions,the excluded volume term in the free energy increases
with the size of the polymer and therefore is relevant. ❚

The dynamics of an isolated polymer consists of diffusion of the whole polymer
and internal relaxation of its conformation. Diffusion describes the motion of the
polymer center of mass. The internal relaxation of a polymer describes how the poly-
mer changes from one conformation to another. We think of this as a relaxation
process because if we know the conformation of a polymer at one time,then the en-
semble of this polymer consists of many replicas of the same conformation. However,
the random motions of the liquid will cause the ensemble over time to forget the ini-
tial conformation and become indistinguishable from an ensemble that started from
any other conformation. This is the equilibrium ensemble. The process of relaxation
to the equilibrium ensemble resembles the exponential relaxation in a two-state sys-
tem in Section 1.4. The characteristic relaxation time (N) depends on the length of
the polymer. Our objective is to determine the scaling of the relaxation time with
polymer length. Dynamic scaling is generally more difficult and less universal than
scaling of static quantities like the size of a polymer. Of particular significance when
we consider the dynamics of polymers is our treatment of the fluid. This was not rel-
evant when we considered the static structure of the polymer.

There are two established estimates for the scaling of the relaxation time with
polymer length (N). The Rouse relaxation time describes the dynamics of a polymer
assuming that the motion of a monomer is not correlated to the motion of monomers
that are far away along the polymer chain.However, the motion of the fluid,described
by hydrodynamics, couples the motion of one monomer to another when they are
near each other, no matter how far apart they are along the chain. When a monomer
moves, it causes a flow of fluid that in turn moves other monomers. Also, a flow of
fluid that moves one monomer has a spatial extent that can move other monomers at
the same time. This coupling is taken into consideration in the Zimm relaxation time.
We discuss first the Rouse and then the Zimm relaxation.

The dynamics of a polymer becomes slower as the polymer length increases.The
relaxation time,therefore,is controlled by the dynamics of the longest length scale—
the movement of half of the polymer from one place to another. We first illustrate this
using a simple elastic string model. Using this model, we derive the Rouse relaxation
for a random walk that neglects the excluded volume. In the elastic string model, we

    
Fexcluded−volume = kTV

N 2

R0
d

∝N 2−d / 2
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assume that the distance between adjacent monomers has the same distribution as the
end-to-end distance of a polymer. This means that the Gaussian distribution applies
already to the intermonomer separation. We can assume this for a very long polymer
because we can always relabel our monomers to be farther apart along the chain. For
example, we can label every tenth or every hundredth monomer as a new “monomer.”
We call the chain between the new monomers “the bond” between them. Since this
only changes the number of monomers by a constant factor, it will not change the
scaling of properties of the polymer. However, by relabeling the monomers,the bond
between two of our new monomers itself acts like a long polymer. The relabeling idea
only works when we neglect excluded volume.

The free energy of the elastic string depends on the intermonomer separation as
given in Eq.(5.2.6). This is the equation for a spring where the energy is proportional
to the square of the distance. The force between two adjacent monomers is then pro-
portional to the distance between them. We can write the total force on the ith
monomer as:

(5.2.14)

where K is the spring constant. On the right we have taken a continuum limit with i
the position along the contour of the polymer. We assume that the motion of a
monomer in the fluid is overdamped, which means that the velocity of a monomer is
proportional to the force upon it. Multiplying the force times the mobility of a
monomer gives the velocity:

(5.2.15)

The solution of this equation is given by exponential relaxation of spatial waves:

(5.2.16)

where k = 2 / is the wave vector of the oscillation of the elastic string. The bound-
ary conditions at the ends restrict the wavelength to be no greater than the string
length N. By inserting the solution into the differential equation we see that the re-
laxation time for a particular wavelength is given by

k = 2/ K(2 )2 (5.2.17)

Neglecting all the numerical coefficients gives us the longest relaxation time 
( ∝ N) as:

(N) ∼ N 2 (5.2.18)

This is the Rouse rel a x a ti on time wh en exclu ded vo lume is negl ected . It applies mu ch
m ore gen era lly than its deriva ti on for the el a s tic string model would indicate . The main
re a s on for this gen era l i ty is that the lon gest rel a x a ti on time invo lves moti on of e s s en ti a lly
the whole po lym er, and therefore does not depend on the local po lym er properti e s .

ri (t) ≈ Acos(ki)e−t / k + Bsin(ki)e− t / k

dr

dt
≈ K

d2r

di2

K[(ri +1 − ri ) + (ri −1 − ri )] ≈ K
d2r

di2
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We take a different approach in order to incorporate the excluded volume and the
effect of hydrodynamics in the scaling of the relaxation time. This approach relates
polymer relaxation to the polymer diffusion constant. Relaxation of a polymer occurs
when a significant part of the polymer (say half) is able to diffuse in a random walk
across the whole volume occupied by the polymer. This means that we may write the
relaxation time using a random-walk expression by assuming the distance traveled is
the diameter of the polymer:

R(N)2 ∼ D(N) (N) (5.2.19)

This is the usual relationship of distance traveled to the diffusion constant and the
time (e.g., Eq. (1.4.56)). We have used the diffusion constant of the whole polymer
D(N) rather than D(N /2) because their scaling dependence on N is the same. R(N)
is a characteristic length, such as the diameter or radius of the polymer.

Since we already know the size scaling of the polymer, we must derive an expres-
sion for the diffusion constant of a polymer. The diffusion of the polymer is given by
the displacement of the center of mass of the polymer. In an interval of time ∆t, the
center of mass of the polymer rcm changes according to:

(5.2.20)

Assuming a mean field treatment, we neglect monomer-monomer correlations.
Accordingly, the movement o f each monomer is uncorrelated to other monomers.
Each term in the sum ∆ri is an independent random number. The sum in Eq.(5.2.20)
is like a random walk with N steps. Thus the sum over all the independent displace-
ments of the monomers is proportional to N1/ 2. The center of mass displacement is
given by:

∆rcm ∼ N −1/2 (5.2.21)

The scaling of the diffusion constant is obtained by setting this distance to be the re-
sult of a random walk of the center of mass:

D = ∆rcm
2 /∆t ∼ N −1 (5.2.22)

where ∆t, the time for monomers to take the steps ∆ri , is independent of the polymer
length.

Using this diffusion constant, we obtain the relaxation time from Eq.(5.2.19) as
the time for diffusion of the polymer across its own radius:

(N) = R(N)2/D(N) ∼ N2 +1 (5.2.23)

This is the generalization of Rouse dynamics to self-avoiding random walks. For two
dimensions (three dimensions), it gives an exponent of 2.5 (2.2). Without excluded
volume, = 1/ 2, it reduces to the previous result.

In order to describe the relaxation of a polymer including hydrodynamics of the
solvent, we start from the Navier-Stokes equation. We will not need to solve this

    
∆rcm = ∆ <ri > =

1

N
∆ri∑
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equation;however, we do need to know what parameters are involved in order to con-
struct a scaling argument. The standard complete set of hydrodynamic equations

(5.2.24)

describe the macroscopic behavior of the motion of an incompressible fluid. In these
equations v is the velocity of the fluid, P is the local pressure, is the density which is
essentially constant in an incompressible fluid, and is the viscosity. We do not de-
rive these equations here, but we review the origin of each term. The top equation
(Navier-Stokes equation), is Newton’s law dv /dt = F/m applied at a particular loca-
tion in the fluid. The left side of the equation is the acceleration of a fluid element.
The second term accounts for the displacement of the accelerated fluid element. The
right side of the equation is the force divided by the mass. This has two parts,the force
due to the pressure gradient and the force due to the effects of shear. The second equa-
tion is the absence of a divergence of velocity (outflow of matter from a point) in an
incompressible fluid.There are four equations,the three components of the top equa-
tion and the bottom equation,and four unknowns,the three components of the ve-
locity and the pressure (divided by the density) (v,P / ).

The underlying assumption of our treatment of a polymer in a hydrodynamic
fluid is that the polymer moves with the fluid in which it is located. Thus we think
about the motion of the polymer as the motion of a spherical volume Rd of the fluid.
Like the other mean field treatment, this approximation neglects the effects of
monomer-monomer bonding on polymer motion. In order to obtain the diffusion
constant of the polymer, we need to know which parameters it may depend on. A scal-
ing argument follows from dimensional constraints. We imagine the diffusion of a
spherical volume of fluid. At any instant,the velocity and pressure fields are solutions
of the Navier-Stokes equations. There is one piece of information not contained in the
Navier-Stokes equation—the size of the random thermal motion of the sphere of
fluid. This is given by the thermodynamic expression for the average velocity of a par-
ticle at temperature T (Eq. (1.3.83)):

< v2 > ∝ kT /m = kT / Rd (5.2.25)

The ex pre s s i on used for the mass of the flu i d , m = Rd, n egl ects the small mass of t h e
po lym er distri buted within it. In ad d i ti on to the ch a racteri s tic vel oc i ty, t h ere are on ly two
o t h er para m eters that are rel evant to the moti on . One is the size , R, of the fluid vo lu m e
that is movi n g. The other is the vi s co s i ty, , wh i ch ch a racteri zes the flu i d . The vi s co s i ty
on ly appe a rs in the Navi er- S to kes equ a ti on in com bi n a ti on with the den s i ty as / .

The diffusion constant must be a function of only three parameters; (< v2 >,
R, / ). The diffusion constant is related to the thermal velocity by the relationship:

D ∝ < v2 > ′ (5.2.26)

This relationship is derived later in Section 7.2.3. The time ′ is not the relaxation
time of the polymer. It is the characteristic time between changes in velocity of the
sphere of fluid. In effect,it is the time between collisions of the sphere with the rest of

      

v

t
+(v ⋅ ∇)v = −∇ P + ∇2v

∇ ⋅v = 0
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the fluid.This time depends only on the remaining two parameters (R, / ). By look-
ing at Eq. (5.2.24) the dimensions of / can be seen to be length2/time. The only
combination of / and R that has the dimensions of time is R 2 / , which must
therefore be proportional to ′. Inserting this into Eq. (5.2.26) we have:

(5.2.27)

This is call ed Sto ke s’l aw. To con c reti ze this re sult we give the diffusion constant of a sph ere
in three dimen s i on s , wh i ch can be obt a i n ed by solving the Navi er- S to kes equ a ti on :

(5.2.28)

Eq.(5.2.28) is in agreement with Eq.(5.2.27) in three dimensions,and it provides the
numerical prefactor for the specific case of a sphere.

Th ere is a probl em with the re sult of Eq . (5.2.27) for two - d i m en s i onal sys-
tem s . Th ere are two aspects to this probl em . The first issue is the re sult itsel f . In
t wo dimen s i on s , according to Eq . ( 5 . 2 . 2 7 ) , t h ere is no depen den ce of the diffu-
s i on constant on the size , R, of the sys tem . It tu rns out that a more careful tre a t-
m ent yi elds a loga rithmic correcti on , wh i ch is non a n a lyti c . The second issue is
the natu re of the two - d i m en s i onal sys tem that is being model ed . Any two - d i m en-
s i onal sys tem that we en co u n ter is em bed ded into a three - d i m en s i onal univers e .
A two - d i m en s i onal Navi er- S to kes equ a ti on assumes one of t wo scen a ri o s . Th e
f i rst scen a rio is that we have a sys tem form ed out of very long cyl i n ders . For a
po lym er this would corre s pond to having mon om ers that are very ex ten ded in
one dimen s i on . The directi on in wh i ch the mon om ers are ex ten ded is perpen-
dicular to the directi on in wh i ch the mon om ers are bon ded to each other. It is
also perpendicular to the two dimen s i ons in wh i ch the mon om ers can move .
Al tern a tively, the two - d i m en s i onal equ a ti on would corre s pond to having a po ly-
m er in a solvent bet ween two solid plates whose sep a ra ti on is no gre a ter than the
width of a mon om er. These plates all ow the po lym er to diffuse wi t h o ut sti ck i n g.
Nei t h er of these scen a rios are easy to con s tru ct . It is more rel evant to con s i der a
t wo - d i m en s i onal probl em wh ere a po lym er is tra pped at an interf ace . The inter-
f ace might be a bo u n d a ry bet ween two liqu i d s . In this case the po lym er occ u p i e s
a space like that of a flat disk in the two - d i m en s i onal interf ace . The Navi er- S to ke s
equ a ti on we would solve to de s c ri be the moti on of the disk is a three - d i m en-
s i onal equ a ti on . Even though the po lym er on ly moves in two dimen s i on s , the dif-
f u s i on constant scales the same as in three dimen s i on s .

In order to see this we must embellish our scaling argument slightly. R would play
the role of an overall scale factor of the disk shape. The radius would be given by R,
and the height of the disk would be given by R, where is a small dimensionless
number. All of the scaling statements would hold as before for three dimensions lead-
ing to Eq.(5.2.27) for d = 3. We are not yet done, because we assumed that the height
of the disk changes with the radius, which is not true for a pol ymer at an interface.
However, for a thin disk,the interaction between the fluid and the disk only occurs at

D =
kT

6 R
∝

1

R

      
D ∝< v

2 > R2 / ∝
kTR 2

Rd
=

kT

Rd−2
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the faces of the disk. The height is irrelevant, and we can use the same scaling for a
disk whose height does not change. Thus, as in Eq. (5.2.27), the scaling of the diffu-
sion constant is inversely proportional to the disk radius (polymer radius), D ∝ 1/R,
in the two-dimensional space. Later when we want to show a simulation of two-
dimensional polymer collapse, we will choose this scaling dependence both because
of its similarity to the properties of three-dimensional collapse and because it is a
model of the dynamics of a polymer at an interface.

The diffusion constant of a polymer is given by either Eq.(5.2.27) or Eq.(5.2.28)
with the radius given by Eq.(5.2.11). Inserting Eq.(5.2.27) into Eq.(5.2.19) gives the
Zimm relaxation time:

∼ Rd ∼ Nd (5.2.29)

or for our modified scaling using Eq. (5.2.28) in both two dimensions and three
dimensions:

∼ R3 ∼ N 3 (5.2.30)

The Zimm rel a x a ti on scaling in three dimen s i ons is 3 = 1 . 8 , wh i ch is small er than
the Rouse rel a x a ti on re sult 2.2. In two dimen s i ons it is ei t h er 2 = 1.5 according to
Eq . ( 5 . 2 . 2 9 ) , or  3 = 2.25 according to Eq . ( 5 . 2 . 3 0 ) . For mu ch of our discussion
the differen ces bet ween the va rious rel a x a ti on - time scaling ex pon ents wi ll not be
s i gn i f i c a n t .

This concludes our study of the structure and dynamics of polymers in good sol-
vent. The next step is to introduce techniques for the simulation of polymers that en-
able us to investigate the properties of polymer collapse. We will return to scaling ar-
guments for the same problem in Section 5.4.3.

Polymer Dynamics: Simulations

5.3.1 Introduction to simulations of polymer dynamics
In this section we describe several methods for simulating polymers that are both cel-
lular automata (Section 1.5) and Monte Carlo algorithms (Section 1.7). They also il-
lustrate the technique of space partitioning that can be used generally for parallel pro-
cessing of spatially distributed systems. From a theoretical point of view, one of the
most interesting features of these algorithms is that they allow Monte Carlo simula-
tions of extended objects but are inherently parallel.With the advent of massively par-
allel computers,including cellular automaton machines,inherent parallelism can also
be a practical advantage. The algorithms are also quite simple and they illustrate how
a simple cellular automaton algorithm can be designed.Simplicity often makes it eas-
ier to work with and reason about models.A simple algorithm leads to small,fast pro-
grams,and small programs are easier to write, debug, optimize, execute,maintain and
modify. One of the algorithms,the two-space algorithm,is particularly convenient and
efficient and will form the basis of our simulations of polymer collapse in Section 5.4.

In general, polymer simulations,like other simulations,use either molecular dy-
namics or Monte Carlo dynamics (Section 1.7). Molecular dynamics simulations are

5.3
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suggestive of Newtonian dynamics and are implemented by moving all atoms with
small steps (no more than 10−2 of a characteristic interatomic distance) according to
forces calculated from modeled interatomic forces. Monte Carlo simulations repre-
sent the dynamics of an ensemble of polymers by steps that take into account transi-
tion probabilities required by thermodynamics. Both of these simulation methodolo-
gies give the same results for equilibrium ensemble properties like the polymer
end-to-end distance or other average structural properties. They also give the same
results for dynamical properties that involve motions on a scale that is large compared
to a step of an individual monomer. Large-scale motions include polymer conforma-
tional change, relaxation and diffusion. All atoms can be moved in parallel (at the
same time) in molecular dynamics, which therefore appears to be ideally suited for
parallel processing. However, with a processor attached to each atom, calculation of
the forces requires a large number of communications between processors.Each atom
must communicate to every other atom its position.Connections between processors
are the limiting feature of parallel computers. Monte Carlo simulations have a funda-
mental advantage in that movements of monomers can be much larger and there is
no need to specify forces. It is sufficient to specify the energy for a simple model poly-
mer system. Monte Carlo simulations also can take into consideration the thermal
reservoir effect of the fluid without simulating the fluid itself. Hydrodynamics, how-
ever, is not included. We will focus on the Monte Carlo method, describe why the
straightforward approach to parallelization does not work,and then construct a par-
allel cellular automaton algorithm that does.

In Monte Carlo simulations of polymers, a long chain of monomers is repre-
sented by the coordinates of each monomer. There are many different methods for de-
scribing the monomer-monomer interactions,the local structure of the polymer and
the process of each move. Just as for real polymers,the local polymer structure should
not affect the characteristic properties of long polymers, such as the scaling of the size,
R(N), or relaxation time, (N).

An example,illustrated in Fig. 5.3.1,is the ball-and-string model. The monomers
are rigid balls of radius r0 that are attached to nearest-neighbor monomers by strings
of length d0 that have no elasticity. The rigid balls are not allowed to overlap—the en-
ergy is infinite if they do. The strings are not allowed to break and simply prevent ad-
jacent monomers from separating further than a distance d0 apart. Smaller distances
down to d0 − 2r0 are possible. To construct a Monte Carlo dynamics for this model we
must specify the nature of a move (the matrix in Eq. (1.7.19)). The easiest specifi-
cation is to allow one monomer at a time to move anywhere within a distance rm from
its current location. Then a single step of the Monte Carlo consists of two parts: (1)
selecting a move,and (2) accepting or rejecting the move. Selecting a move consists of
selecting at random one of the monomers,and selecting a direction and a distance to
move the monomer with equal probability within the ball of radius rm around its
original location. The process of accepting or rejecting the move is explained as fol-
lows. There are two possibilities, either the final conformation is allowed or it is not
allowed. It is allowed if two conditions are satisfied: there is no overlap of the
monomer we chose with any other monomer, and the move did not take the
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monomer further than d0 away from the neighbors to which it is attached by strings.
It is not allowed if either of these conditions is violated. For any monomer move that
is allowed,the energy of the polymer is unchanged. For any move that is not allowed,
the energy increases to infinity. Because the energy change is either zero or infinite,
the temperature of the simulation does not matter. Allowed moves are accepted,
moves that are not allowed are rejected.

We construct below several different ways of simulating long polymers. In all of
them a simulation step consists of selecting a monomer, monomer i, from the poly-
mer chain and performing a move subject to the following constraints:
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rm
2r0

Figure 5.3.1 Illustration of an abstract polymer composed of monomers that are connected
to neighbors and do not overlap “excluded” volumes. This is called the ball-and-string model.
The motion of monomers is restricted so that they do not separate further than the string
length, d0, from monomers they are bonded to. Monomers have a ball radius r0 and any two
are prevented from overlapping. The strings act only as limits to the separation between
monomers, and have no other physical existence. In order to ensure that the polymer cannot
cross through itself, d0 should be less than 2√2r0. As illustrated on the lower left, for a larger
d0 the polymer crosses through itself when two bonded monomers at opposite corners of the
square move up out of the page and the other two bonded monomers move down into the
page. In two dimensions it is enough that d0 < 4r0, preventing a monomer from passing be-
tween two other monomers.

This model polymer can be conveniently simulated using Monte Carlo displacements of
individual monomers. A monomer is moved (lower right) to a randomly selected position
within a radius rm around its original position, but only if it does not then violate the struc-
tural constraints. Unlike molecular dynamics simulations, however, there are problems in mov-
ing monomers in parallel. Moving two bonded monomers might break their bond, and moving
any two monomers at the same time can lead to inadvertent overlap. ❚
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1. The move does not “break” the polymer connectivity—monomer i does not dis-
sociate itself from its nearest neighbors along the chain.

2. The move does not violate excluded volume—monomer i does not overlap the
volume of any other monomer j.

These two constraints, connectivity and excluded volume,are sufficient to guarantee
that the structural properties of a long polymer will be found.

In order to study the dynamics of a polymer, we must also guarantee that the
steps taken are local steps in the space of polymer conformations. This is generally sat-
isfied when monomer steps themselves are local. However, we must also be sure that
the polymer cannot cross through itself. For the ball-and-string model,this limits the
size of d0 (see Fig. 5.3.1). For the types of models we will use,it is easy to verify that a
polymer cannot pass through itself.

In naive parallel processing, a set of processors would be assigned one-to-one to
perform the movement of a set of the monomers.A processor does not know the out-
come of the movement of the other monomers; it can only know their position be-
fore the current step. With the two constraints (1) and (2) it would be impossible to
perform parallel processing in this way, since moving different monomers at the same
time is likely to lead to dissociation or overlap. Dissociation only restricts the parallel
motion of nearest neighbors. However, the excluded volume constraint restricts the
parallel motion of any two monomers, presenting a fundamental difficulty for paral-
lel processing.

5.3.2 Cellular automata for polymer simulations
The idea of a cellular automaton is to think about simulating the space rather than the
objects that are in it. This is useful for parallel simulation of polymers because,as long
as there are no long-range interactions, the motion of monomers that are far apart
must be independent of each other. Thus we can assign parallel processors to sepa-
rated regions of space. When this concept is applied to a continuous space, we call the
methodology space partitioning.

Space partitioning could be applied to the ball-and-string model. As shown in
Fig. 5.3.2, the space would be partitioned into regions. For Monte Carlo simulations
of the ball-and-string model,we could move at the same time monomers selected from
regions separated by more than a distance of 2rm + 2r0. At this distance,two monomers
moving toward each other at the same time would not enter each other’s excluded vol-
ume. This approach can work for other polymer models as well. However, it is sim-
plest to implement and simulate for a cellular space of binary variables where the pres-
ence or absence of a monomer is indicated by a cell being ON or OFF.

To construct a polymer in a cellular space we could make a polymer model very
similar to the ball-and-string model. Instead of a continuum of positions, the loca-
tions of monomers would be specified on a lattice. There is an algorithm, the bond-
fluctuation algorithm,that implements such a ball-and-string model. However, in the
design of a cellular automaton there is an additional feature to keep in mind. We
would like to know which monomers are attached to each other solely by their relative
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location in space. This is unlike the ball-and-string model where neighbors attached
by strings can be farther apart from each other (up to a distance of d0) than two
monomers not attached by strings. All monomers, bonded or not bonded, can ap-
proach each other to a smaller distance of 2r0. Because of this, we have to keep track
of which monomers are bonded to which monomers by labeling the monomers. For
a single polymer, the label might be the monomer sequence number along the poly-
mer, which would tell us which monomers are neighbors along the chain and which
are not. This labeling would not be convenient in a cellular automaton. The idea of a
cellular automaton is that the dynamics only depends on the local spatial conforma-
tion. Bonds should be specified only by the relative position of the monomers. Thus
we think about a bonded neighbor as a monomer that is closer than a certain distance,
and any other monomer has to be farther away. We call the space around a monomer
in which its bonded neighbors are located the bonding neighborhood. We note that,
since monomers that are not bonded cannot be closer to each other than bonded
monomers, in any such model, the polymer chain cannot pass through itself.

A polymer model that implements this in two dimensions is shown in Fig. 5.3.3.
In this model,monomers are bonded ifthey are adjacent either horizontally, vertically
or diagonally. The bonding neighborhood is a 3 × 3 region around a monomer. In
three dimensions, we could use a 3 × 3 × 3 cube as a bonding neighborhood. Any
monomer except those that are bonded must be excluded from occupying any of these
sites. We can think about this as an excluded volume that is larger than a single cell,as
illustrated in Fig. 5.3.4. This excluded volume applies to all monomers, except the
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F i g u re 5 . 3 . 2 F o r t he
ball-and-string model of
Fig. 5.3.1, or other poly-
mer models without
long range interactions,
monomers sufficiently
far apart may be moved
independently and in
parallel. The figure illus-
trates the use of space
partitioning. If one
monomer is selected
from each shaded re-
gion, the selected
monomers can be moved
at the same time with-
out chance of overlap.
The location of the
shaded regions should
then be shifted so that
all monomers can be
moved. ❚
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bonded neighbors. Bonded neighbors are prevented from occupying the same site,
but can be adjacent. As with other variations of local polymer structure,this is not im-
portant for the structure of long polymers. If anything, this is a more realistic model
for the bonding of real polymers. Bonds in real polymers are also specified by relative
location of monomers—not by a labeling scheme.

The cellular space model in Fig. 5.3.3 could be simulated just like other Monte
Carlo models by choosing a monomer, choosing one of the compass directions
NSEW, and moving the monomer if the move does not violate either connectivity or
excluded volume constraints. We can,however, turn it into a cellular automaton using
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F i g u re 5 . 3 . 3 I l l u s t ra-
tion of a cellular (lattice)
polymer model. In this
model, monomers are
considered bonded to
each other if they are
touching at either faces
or corners. Other non-
bonded monomers are
not allowed to approach
this close. This enables
us to distinguish bonded
neighbors from other
monomers just by the rel-
ative location of the
monomers. This property
is not satisfied by the
ball-and-string model. ❚

(a) (b)

Figure 5.3.4 (a) shows the size of the effective excluded volume for the model of Fig. 5.3.3.
The excluded volume is larger than a single cell. It only applies to nonbonded neighbors and
prevents them from approaching the adjacent lattice sites. Note that the excluded volume il-
lustrated does not apply to bonded neighbors which have only a one-cell excluded volume
with respect to each other. (b) shows the possible moves of a monomer selected for a Monte
Carlo update. There is nothing special about this choice of possible moves. We could allow
diagonal moves, but the choice of possible moves must be made once and for all for a
simulation. ❚
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the Margolus dynamics approach of updating plaquettes (see Section 1.5.6). This is
necessary because we need to conserve various quantities in this dynamics: the exis-
tence of the monomers and their bonding and excluded volume constraints.
Updating plaquettes enables the implementation of conservation laws and con-
straints in a natural way. A Margolus dynamics for this model uses a partition of the
space into plaquettes that are 3 × 3 regions with an additional one-cell buffer between
plaquettes (Fig. 5.3.5). This enables us to move monomers around in each of the pla-
quettes independently of other plaquettes in the space. The easiest way to do this is to
move only monomers at the central sites of the plaquettes. Choosing a direction for
each monomer at a central site,we move it if the constraints allow. Fig. 5.3.6 illustrates
the monomer moves that are possible and the moves that are not allowed.

After updating each of the plaquettes, we shift the plaquettes around in the space
so that we can move all the monomers. We must keep in mind that even as a cellular
automaton this is still a Monte Carlo algorithm. In order for the Monte Carlo algo-
rithm to satisfy detailed balance,it is important to pick the location of the plaquettes
at random. Specifically, it is necessary to allow the same location of the plaquettes to
be chosen in the next time step as well. This guarantees that a particular move can be
reversed. More correctly, detailed balance requires that all possible moves have the
same probability of occurrence in every time step, and the random selection of a lo-
cation for the plaquettes guarantees this. The complete Monte Carlo algorithm con-
sists of selecting a location for the plaquettes, selecting a direction from NSEW for
each monomer at the center of a plaquette,and moving the monomer if the move is
allowed.
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Figure 5.3.5 In order to
convert the lattice Monte
Carlo algorithm to a cel-
lular automaton we use a
Margolus dynamics that
consists of 3x3 plaque-
ttes with buffer regions
a si l l u s t ra t e d. Within each
of the plaquettes, we
c a n move the mo no me r s
a ro u nd without int e r f e r-
i ng with other plaquettes.
T he simplest way to per-
form moves in the 3x3
plaquettes is given in
F ig . 5.3.6. The perio d ic i t y
of this partition of space
is 4x4. ❚
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We note that the parallel version of the Monte Carlo algorithm is not, strictly
speaking, a Metropolis Monte Carlo algorithm,since the parallel moves do not satisfy
Eq.(1.7.19). However, it can be readily shown that a move consisting of a number of
parallel independent moves, where each one of them is of the Metropolis form,satis-
fies detailed balance,Eq.(1.7.17). This is true because the transition matrix factors,as
does the equilibrium probability distribution.

The cellular automaton model for polymer dynamics we have constructed can be
readily simulated. However, it has a problem that suggests we continue to develop bet-
ter algorithms. The problem is that the polymer is locally very rigid and the possible
local motions of monomers are limited.One way to think about this problem is that
for very long polymers, there are two types of motion that are possible: motion of
monomers perpendicular to the contour of the polymer and motion along the poly-
mer contour. The latter includes a local stretching or compression of the polymer. For
our model, the local motion is always perpendicular to the polymer contour. If we
take a long enough polymer, there will be various small folds of the polymer, and mo-
tion along the large-scale polymer contour would be possible. However, this means
that in order to see the dynamics of very long polymers, we need a very long chain of
monomers. Since our objective is to simulate long polymer behavior using as little
computation time as possible, we would be better off to have a polymer model that
reproduces the long polymer behavior for short polymer chains.

One way to solve this problem is to generalize the cellular automaton model by
allowing the monomers that are bonded to each other to separate by one lattice space.
Bonded monomers would be located in a larger bonding neighborhood—a 5 × 5
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Figure 5.3.6 In the sim-
plest implementation of
the cellular automaton of
Fig. 5.3.5, we use the
usual Monte Carlo process
to update a monomer lo-
cated at the central site
of each plaquette. As il-
lustrated, moves are con-
sidered only in plaque-
ttes with monomers in
the middle cell of the 3x3
plaquette. Moves that
are not allowed due to
connectivity or excluded
volume constraints are
marked by an X in the tar-
get square. ❚
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region in two dimensions, or a 5 × 5 × 5 region in three dimensions. This choice of
bonding neighborhood is convenient, but others could be specified as well. As before,
we do not allow monomers to violate excluded volume by entering a bonding neigh-
borhood, and we do not allow monomers to break a bond by leaving. A monomer
move is accepted ifmonomers are not removed from nor added to the bonding neigh-
borhood by the move. The larger bonding neighborhood allows more flexibility to the
motion because adjacent monomers can move toward and away from each other, en-
abling local contraction and expansion of the polymer. We call this algorithm the one-
space algorithm in order to contrast it with the two-space algorithm discussed next.

The problem of polymer flexibility also has a second solution—the two-space al-
gorithm—that has some additional advantages. The simplest way to describe the two-
space algorithm in two dimensions is to consider a polymer on two parallel planes
(Fig. 5.3.7). The monomers alternate between the planes so that odd-numbered
monomers are on one plane and even-numbered monomers are on the other. The
neighbors of every monomer reside in the opposite space. We define a 3 × 3 region of
cells around each monomer in the opposite space as its bonding neighborhood. This
is the region of cells in which its neighbors reside and no other monomers are allowed
to enter. To construct a polymer we place successive monomers so that each monomer
has its nearest neighbors along the contour in its bonding neighborhood. The dy-
namics is defined, as before, by requiring that the motion of a monomer be allowed
only if its movement to a new position (selected at random from NSEW directions)
does not add or remove monomers from its bonding neighborhood. This preserves
both connectivity, preventing loss of a neighbor, and excluded volume,preventing the
addition of a neighbor (Fig. 5.3.8).
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Figure 5.3.7 Schematic illustration of a two-space polymer. In two dimensions, the two
spaces are parallel planes. Monomers on the upper plane are shown as circles with dark shad-
ing; monomers on the lower plane are shown as circles with light shading. Along the poly-
mer, the monomers alternate spaces so that odd monomers are in one space (the light space)
and even monomers in the other space (the dark space). Bonds are indicated by line segments
between monomers. Monomers are bonded only to monomers in the other space. The “bond-
ing neighborhood” of each monomer is a 3x3 region of cells located in the opposite plane.
The bonding neighborhood of the dark monomer marked with a white dot is shown by the re-
gion with a double border. The two neighbors of this monomer, both light monomers, are lo-
cated in the bonding neighborhood. ❚
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Using this model an additional flexibility is achieved, because neighboring
monomers can be “on top of each other,” so that even the 3 × 3 bonding neighbor-
hood allows local expansion and contraction. Even more interesting, it is possible in
this dynamics to move all of the monomers in one space at the same time without
concern for interference, because both connectivity and excluded volume are imple-
mented through interactions with the other space. This allows 1/2 of the monomers
to be updated in parallel. The simple parallelism of the two-space algorithm lends it
to implementation on a variety of computer architectures. Because we can update 1/2
of the polymer at a time,there are two different ways to implement parallelism:space
partitioning and polymer par titioning. Space partitioning is the usual cellular au-
tomaton assignment of processors to different regions of space. Polymer partitioning
is the assignment of processors to different parts of the polymer. Spatial assignment
is particularly convenient when a simulation is performed with a high density of
monomers. For example, there is considerable interest in simulations of entangled
polymers at high densities (polymer melts). Polymer assignment is convenient when
the polymer occupies only a small fraction of the space. This is the case for expanded
isolated polymers, or problems that might include a polymer moving in a static
matrix.

To show that all the monomers in one space can be moved independently, we
must show that their motion cannot result in either breaking the polymer or violat-
ing excluded volume. Since each monomer move preserves its bonded neighbors, the
polymer cannot be broken. Excluded volume is different for two monomers within a
space and for two monomers in opposite spaces. For two monomers in opposite
spaces, the excluded volume is implemented by preventing monomers from entering
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Connectivity Excluded
Volume

Figure 5.3.8 Illustration of the movement of a monomer in the two-space polymer algorithm.
The movement of a light monomer requires checking connectivity and excluded volume in the
dark space. The picture illustrates a move where the light monomer is to be moved to the
right. To ensure that connectivity is not broken, we check that no monomers are left behind.
This is equivalent to checking that there are no dark monomers in the three cells marked with
Xs on the left. To ensure that excluded volume is not violated is equivalent to checking that
there are no dark monomers in the three cells marked with Xs on the right. If there are no
monomers in these cells, then no monomers are removed from or added to the bonding neigh-
borhood of the light monomer as a result of the move. In the picture the move is allowed. ❚
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each other’s bonding neighborhood. The excluded volume between nonbonded
monomers is the same as that shown for the first cellular automaton in Fig. 5.3.2. For
bonded neighbors there is no excluded volume.For two monomers in the same space,
excluded volume is just the requirement that two monomers do not move onto the
same site.They can be adjacent,since they are not within each other’s bonding neigh-
borhood. In a proof by contradiction that two monomers cannot move onto the same
site, assume that two monomers were to move to the same site. In this state they will
have the same bonded neighbors. Since they start with different bonded neighbors
and our algorithm explicitly prevents any two monomers from changing their bonded
neighbors, this can not happen. There is only one exception, which we may simply
avoid (or treat specially). For a polymer of length three,the two end monomers both
have the same neighbor and they are not prevented by the algorithm from landing on
the same site.

How do we choose the next monomer to move in the two-space dynamics? In or-
der to preserve detailed balance, we must choose which of the two spaces to update at
random. This ensures that all possible moves have equal probability in each step.
Alternating spaces would not satisfy detailed balance. The order of updates of
monomers within one of the spaces does not matter and may be done sequentially
rather than randomly.

The two-space algorithm may be implemented in three dimensions by consider-
ing the polymer to be in a double space with a 3 × 3 × 3 bonding neighborhood, and
a similar generalization of possible monomer moves. If it was desired, we could also
remap all of the monomers into a single space with an unusual implementation of ex-
cluded volume. As before,the local properties do not affect the long polymer scaling.

To test the algorithm, we can implement and simulate it and measure various
structural properties as a function of time. The simulations we perform for these tests
are in two dimensions. Rather than measuring the polymer end-to-end distance, we
choose to measure the characteristic size of the polymer as given by the radius of gy-
ration Rg(N ;t):

(5.3.1)

This is just the standard deviation of monomer positions in space. As indicated, the
averages are over monomers rather than over time. To initialize the simulation, we
start from a straight stretched polymer that alternates from space to space. This is the
easiest way to lay out a polymer initially. Simulating the polymer dynamics then re-
sults in Fig. 5.3.9. We see that after some number of steps, the polymer relaxes and
fluctuates around an average polymer size that we can calculate as a time average. The
value of the time average, Rg(N), is indicated on Fig. 5.3.9. It is better to leave out the
first part of the simulation in calculating this average in order to eliminate the effect
of the improbable first configuration. For a long enough simulation, this correction
is unimportant.
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In order to see the scaling properties of Rg(N ) we calculate the avera ge rad ius of
gyra ti on for po lym ers of d i f ferent len g t h s . On a log - l og plot (Fig. 5.3.10) the rad ius of
gyra ti on is a stra i ght line for large N. This means that it fo ll ows a power- l aw beh avi or
wh ere the slope of the line is the va lue of the ex pon en t . The va lue of the ex pon ent is in
a greem ent with the ex pected scaling re sult Rg(N ) ∼ N 0 . 7 5 f rom Eq . (5.2.12) in two di-
m en s i on s . We note that ra t h er than plot Rg(N ) as a functi on of the nu m ber of
m on om ers N, the hori zontal axis of the plot is N − 1 , wh i ch is the con tour length of t h e
po lym er. For long po lym ers , the differen ce is not sign i f i c a n t . For short po lym ers , t h i s
causes the re sults to fo ll ow more cl o s ely the lon g - po lym er scaling beh avi or. The lon g -
po lym er beh avi or is re ach ed for rem a rk a bly small po lym er chains of on ly a few
m on om ers . Si n ce our obj ective is to simu l a te long po lym ers , this is a de s i ra ble re su l t .

The second test is to evaluate the dynamics of relaxation of the polymer. We can
see from Fig. 5.3.9 that there is a characteristic time over which the polymer forgets
the value of its radius of gyration.Values of Rg(N;t) fluctuate with a characteristic time

Po l y me r  dy na mi c s :  S i m u l a t i o n s 499

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 499
Title: Dynamics Complex Systems Short / Normal / Long

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000

Rg(t)

t/1200

Figure 5.3.9 Plot of the characteristic polymer size, the radius of gyration, Rg(t), as a func-
tion of time in a Monte Carlo simulation of the two-space algorithm. The two-dimensional
polymer simulated has N = 140 monomers. The simulation starts from a completely straight
conformation which has an unusually large size. After relaxation, the radius of gyration fluc-
tuates around the average value, Rg = 18.39, indicated by the horizontal dashed line. The
characteristic time over which the polymer conformation relaxes is the correlation time of
the radius of gyration indicated by the horizontal bar. The values plotted of the radius of gy-
ration are sampled every 1200 plane updates. There are about 50 samples in a relaxation
time. ❚
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shown by the horizontal bar on the plot. Over shorter times than this, values of
Rg(N;t) are correlated. Over longer times,they are essentially independent. This char-
acteristic time is the relaxation time, (N). To find a value for the relaxation time we
study the correlation over time of Rg(N;t) (for simplicity the dependence on N is not
indicated):

(5.3.2)

This correlation function measures the relationship between the value of Rg(t) and
Rg(t +∆ t),and is a function of ∆t. The averages are over time. The overall behavior of
the correlation function can be readily understood. For ∆t = 0 it is normalized to 1.
For large ∆t, where the value of Rg(t + ∆t) is independent of Rg(t),the average of the
product in the numerator would be the product of the averages of the two factors per-
formed independently. Since the average of either factor is zero, the value of the cor-

    

A[Rg (t)](∆t) =
<(Rg (t + ∆t) − Rg )(R g (t) − R g ) >

< (R g (t) − Rg )2 >

R g = < R g (t) >
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Figure 5.3.10 Plot of the average (root mean square) radius of gyration as a function of poly-
mer length for the two-space algorithm in two dimensions. The average values are obtained
by simulations like that shown in Fig. 5.3.9 using 100,000 samples and without including the
first 100 samples. The horizontal axis is the number of links, N − 1, in the chain. The line in
the figure is fitted to the data above N = 10 and has a slope of 0.756. This is close to the ex-
act asymptotic scaling exponent for long polymers, = 0.75. ❚
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relation function is zero. A plot of the correlation as a function of time is shown in
Fig. 5.3.11. If the relaxation of the polymer were simple, the value of the correlation
function would be an exponential in time. Since Fig. 5.3.11 is a semilog plot,it would
appear as a straight line. The plot is somewhat curved,indicating that it is not a sim-
ple exponential decay. Our objective is limited to finding a characteristic relaxation
time, (N). We can do this by finding the time at which the correlation falls to 1/e of
its initial value. However, a better way to measure (N), which reduces the effect of
statistical errors,is to integrate the correlation function. If we integrate out to a value
A0 ≈ 1/e then we can estimate the relaxation time using

(5.3.3)

where ∆t(A0) is the time interval at which A[Rg](∆t) = A0. This formula would be ex-
act if the correlation were exponential and without statistical error.

    
≈

d(∆t)
0

∆t A0( )

∫ A[Rg ](∆ t)

(1− A0)
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Figure 5.3.11 Plot of the autocorrelation function of the radius of gyration for a polymer of
length N = 140. The correlation decays approximately exponentially, so the logarithm of the
autocorrelation function is roughly linear in time. As in Fig. 5.3.9, the horizontal axis is
marked in units of samples taken. The correlation time, , is the time at which the autocor-
relation function drops to the value 1/e. Using the integral method described in the text, the
correlation time is = 49.09 samples of 1200 updates each, or = 58900 updates. Only the
first 50 values shown of the autocorrelation function determine the relaxation time. ❚
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A plot of the characteristic relaxation time (N) as a function of the polymer
length is shown in Fig. 5.3.12. We see that (N) increases with length, and for long
enough polymers it agrees with the Rouse power law prediction, (N) ∼ N2.5. Since
we have not included hydrodynamics, the Rouse scaling is to be expected, not the
Zimm scaling. Short polymers do not have this behavior, but the asymptotic scaling
of long polymers is satisfied for polymers longer than approximately 50 monomers.
This is still quite short for a polymer, and it suggests that we can effectively simulate
long polymer behavior using this algorithm. This concludes our tests of the scaling
behavior of the two-space algorithm. In order to apply it to the simulation of polymer
collapse, we have to modify it so that monomer-monomer aggregation can occur.

A different Monte Carlo algorithm that enables the study of the radius of gyra-
tion or other static properties, but not the dynamics of polymers, is described in
Question 5.3.1.

Question 5.3.1 In Section 1.7 we discussed the possibility of consider-
ing Monte Carlo algorithms that were nonlocal.These algorithms would

provide the correct equilibrium ensemble, but the dynamics would be dif-

502 P r o t e in  F o l d i ng  I I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 502
Title: Dynamics Complex Systems Short / Normal / Long

0.1

1

10

100

1000

10000

100000

1 10 100 1000N-1

(N-1)

Figure 5.3.12 Plot of the relaxation time of polymers as a function of the number of links
N − 1 for the two-space algorithm in two dimensions. The line in the figure is fitted to the
last four points that are relaxation times for polymers longer than N = 100. The slope of this
line is 2.51, which is close to the asymptotic scaling exponent expected for Rouse relaxation,
2 + 1 = 2.5. ❚
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ferent from that of local Monte Carlo algorithms. There is an interesting non-
local algorithm for polymer simulations. It can be used for various polymer
models,including both the one- and two-space polymers.A step of the non-
local Monte Carlo moves a monomer from one end of the polymer to the
other. To achieve such a change in conformation of the polymer by local
monomer steps would require many steps. However, the final conformation
is allowed,and so in a Monte Carlo process we can enable this transition. A
complete specification of the algorithm is: Select one of the two polymer
ends. Delete the end monomer. Select one of the possible neighboring loca-
tions of the monomer at the opposite end at random. If the addition does
not violate excluded volume constraints, accept the move. Otherwise reject
it.Convince yourselfthat this algorithm satisfies the requirements of a Monte
Carlo process. Program and simulate it and see that the radius of gyration
does satisfy the standard scaling behavior, but the relaxation does not. ❚

Polymer Collapse

5.4.1 Introduction to polymer collapse
The objective of this section is to develop an understanding of the kinetics of collapse.
We do this first through simulations, then a scaling argument, then some more sim-
ulations.One of the goals we achieve is to obtain the scaling of the collapse time of a
polymer as a function of polymer length.Our primary objective,however, is achieved
when we find that the kinetic process of collapse can systematically and reproducibly
restrict the possible conformations that are explored. This implies that kinetics of col-
lapse may reproducibly lead to a desired folded conformation without exploring all
of the possible conformations of the polymer.

The collapse of a polymer is controlled by the difference of the temperature
∆T = θ − T from the θ-point temperature. The lower the temperature the more rapid
the collapse and the more important the kinetic effects. This, it may be noted, could
be used in experiments to determine the significance of kinetic effects during collapse.
If kinetics play an important constructive role, then collapse that occurs too close to
the θ-point might not result in properly folded conformations.Of course,the collapse
under these circumstances is also slower.

The process of collapse involves many encounters between monomers that form
weak bonds to each other, like hydrogen bonds. Some of these bonds might break and
others form instead. The bonds that are formed build larger and larger aggregates. If
we are concerned about the kinetic effects,then we don’t have to be overly concerned
about the bonds that are broken; we can focus only on the formation of bonds. We
then imagine a process of irreversible sticking of monomers.One way to think about
this is that the key to kinetic effects for polymers is the process of first encounter—
those monomers that find each other first.A second way to think about this is that we
are considering only large values of ∆T, where the energy of a single bond becomes
large compared to the temperature T and the chance of breaking it is small. This pic-
ture becomes increasingly valid for longer polymers. For long polymers, we can think

5.4
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about a coarse graining process that groups monomers and bonds together. The local
formation and breaking of a single bond is less relevant than the formation of clus-
ters. The possibility of breaking up a cluster becomes less and less likely for larger and
larger clusters because the bonding energy is larger and larger. It is possible to prove
that for long polymers we can always think about the process of collapse as if it occurs
for large values of ∆T. This is demonstrated formally in the following paragraph.

We can discuss the thermodynamics of polymer collapse using arguments simi-
lar to those in Section 5.2, by including an additional term in the free energy that de-
scribes the interaction of the polymer with the solvent. The energy of polymer-solvent
interaction is given by the energy of a monomer-solvent interaction times the num-
ber of such interactions. In a mean field picture where correlations are ignored, this
would be written as:

(5.4.1)

The prefactor kT gives the energy of interaction of monomer with adjacent solvent.
The rest is the number of monomers times (in parenthesis) the probability that sol-
vent is found adjacent to a monomer. This probability is 1 minus the volume fraction
of the solution occupied by monomers. Adding Eq. (5.4.1) to Eq. (5.2.9) we have

(5.4.2)

We see that the interaction with the solvent acts to change the effective monomer-
monomer interaction. If the coefficient is negative, then the polymer self-attracts
and collapses. When this happens,the free energy we have written down is not suffi-
cient, because it has no terms that stop the radius from decreasing to a point. We
need to add a term that increases with increasing monomer concentration and can
stop the collapse. To do this we treat the free energy as an expansion in the concen-
tration and add a positive term with one higher power of the concentration
c = N /Rd:

(5.4.3)

where f is known as the third virial coefficient. It is convenient to rewrite this in terms
of the ratio of the radius to the random-walk radius y = R /R0 giving

(5.4.4)

To find the expected value of y, we take the derivative and set the result equal to zero
to obtain an equation:

(5.4.5)0 = yd+ 2 − (1− )VN 2−d / 2 − 2 f
N 3− d

yd

F(R) = F0 +
dkT

2
y2 + (1− )kTV
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2R0
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N 2
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We know that (1 − ) has to be positive for T greater than θ and negative for T less
than θ. We can substitute a linear dependence for (1 − ) = c ∆T. Limiting ourselves to
three dimensions, we can write Eq. (5.4.5) as:

(5.4.6)

Looking at this equation, we see that a large value of ∆T has the same effect as a large
value of N, since the only relevant parameter that controls the collapse is ∆TN1/2. This
shows that for long polymers, large values of N, we can always think about the col-
lapse as occurring at low effective temperatures, or large ∆Teff = ∆TN1/2. This argu-
ment provides a formal justification of our treatment of collapse using monomers
that encounter each other and stick (bond) irreversibly.

In Section 5.4.2 we describe simulations that indicate a possible relevance of
kinetics to polymer collapse. They motivate a scaling argument, described in
Section 5.4.3, which generalizes the results. Section 5.4.4 contains a discussion of the
implications of the results for protein folding and other systems. Additional simula-
tions in Section 5.4.5 explore the sensitivity of the results to the details of the polymer
structure.

5.4.2 Two-space simulations of collapse
Using the cellular automaton Monte Carlo algorithms developed in Section 5.3 we
can study the problem of polymer collapse. The simulation of polymer collapse starts
from a set of equilibrium (expanded) polymer configurations in good solvent gener-
ated by Monte Carlo simulations. To generate these conformations, we use either the
two-space algorithm with the local monomer moves or the nonlocal Monte Carlo de-
scribed in Question 5.3.1. The nonlocal Monte Carlo is faster than the local Monte
Carlo dynamics and yields the same equilibrium polymer conformations. However,
because it is nonlocal, we cannot use it f or simulating dynamics such as the collapse
itself.

In order to simulate collapse of a polymer, we must allow monomers to stick to
each other and form aggregates. Once aggregates form, we have to track their shape,
move them as a unit, and allow continued aggregation at their boundaries as they
move. This will complicate our simulations substantial ly. Before we try this, is there
an easier way? Aggregation would be much simpler if we allowed monomers to move
onto the same site of the lattice. Then the aggregate would look the same as a
monomer for the simulation. We can make the simulations a little more realistic by
keeping track of the aggregate mass—the number of monomers that have accumu-
lated. Since this is easy to do, we might try to simulate collapse and see what results
we find.Later we can make tests to verify or correct the results.This approach is quite
similar to the way scaling relations were derived in Section 5.2—use the simplest
method possible, then che ck if it makes sense and verify it with a more complete
analysis. Whether the simple method works or not, we will have learned something
valuable about what is important and what isn’t. If the simple approach works we

    
0 = yd+2 −cV (∆TN 1/2) − 2 f

1
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learn that the results are general and robust. If the simple approach does not work,
then by investigating what details change the results we learn what aspects of the
problem or parameters play a role. An example of this approach is the treatment of
the scaling of polymer size in Section 5.2. The random-walk model was not quite
enough to give the correct exponent. Incorporating excluded volume was necessary
and also sufficient. For simulations of polymer collapse, a simple approach that
doesn’t quite work is described in Question 5.4.1.

Question 5.4.1 In terms of our polymer simulation algorithms, aggre-
gation is easiest to think about as the elimination of the excluded volume

constraint. This allows one monomer to approach another and bond by en-
tering its bonding neighborhood.Once they bond we would not allow them
to separate. This means we continue to impose the connectivity constraint
by not allowing a monomer to leave behind another monomer. We might
simulate collapse by keeping track of each individual monomer, even if the
monomers occupy the same site. However, there is a problem with this ap-
proach. Consider what happens to the diffusion constant of an aggregate.
Show that the diffusion constant of an aggregate is not realistic and that this
must distort the outcome of the simulations.

Solution 5.4.1 In the proposed method, monomers aggregate by moving
into each other’s bonding neighborhoods. As time goes on,aggregates form
with many monomers bonded to each other in their mutual bonding neigh-
borhoods. The problem with diffusion is that for an aggregate with N
monomers, the diffusion constant of the aggregate becomes exponentially
small with N. In order to see this, we can focus on the motion of the bond-
ing neighborhood associated with a monomer. Assume we begin with a
bonding neighborhood located at a particular place in the lattice. All of the
bonded monomers are located in this bonding neighborhood. In order for
the bonding neighborhood to displace by one square to the right, none of
the monomers must be in the leftmost set of cells of the bonding neighbor-
hood. Any monomer that stays on the left would veto the motion to the
right. Thus,in effect,in order to move to the right all of the monomers must
move to the right at the same time. Since each monomer is moving inde-
pendently, the probability of this occurring decreases exponentially with the
number of monomers in the aggregate. This is unrealistic. In a simulation,
once aggregation starts to occur, the continued motion of an aggregate is too
slow. This problem can be solved as discussed in the text, by moving aggre-
gates as a unit. ❚

The example described in Question 5.4.1 illustrates an important feature of com-
puter simulation and research in general.One o f the most important and yet most dif-
ficult skills to learn is to distinguish a correct from an incorrect result by simple cri-
teria. This capability is crucial when performing computer simulations because, to
one degree or another, the computer acts as a black box. We are unable to verify the

506 P ro t e in  F o l d i ng  I I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 506
Title: Dynamics Complex Systems Short / Normal / Long

05adBARYAM_29412  3/10/02 10:40 AM  Page 506



performance of the simulation ourselves directly. This is a problem both for the pres-
ence of an error—bug—in the computer program,as well as an error in the method-
ology or approach to simulation. The latter is illustrated by Question 5.4.1. For some
students,the problem of telling whether a simulation is correct may seem an impos-
sible one. However, this is a skill that we develop. An example is the ability to deter-
mine if two numbers have been multiplied correctly. After the multiplication we can
check whether the order of magnitude is correct and whether the number is even or
odd. We can perform these and other tests independent of the multiplication itself.By
verifying that these aspects of the multiplication are correct, we increase the likeli-
hood that the entire multiplication is correct. When computer simulations are per-
formed, one of our best tools to determine whether it is valid is to view the simula-
tion as a movie. By viewing it, our qualitative concepts about the simulation can be
evaluated and compared with what is observed. For this reason, it is important to
build a mental model of how the simulations should appear. When the simulations
and mental model do not agree, we can either correct the mental model or the simu-
lations based upon further inquiry. This approach is not guaranteed to work,since we
might have an error that falsely makes the simulation agree with our mental concept.
However, performing such tests does increase the reliability of the results. In effect,it
is one way we can compare two independent models of the same process. Whenever
we can compare more than one model of the same process, we gain an understanding
of the reliability and robustness of results.

We begin to investigate the behavior of polymer collapse using the two-space lat-
tice Monte Carlo algorithm.Starting from an initial equilibrium conformation, poly-
mer collapse is simulated by eliminating the excluded volume constraint. We discuss
below why excluded volume may not be necessary during collapse even though it is
necessary for the original polymer conformation. Once the excluded volume con-
straint is eliminated,the usual monomer Monte Carlo steps are taken. Monomers are
no longer prevented from entering the neighborhood of another monomer; however,
they continue to be required not to leave any neighbors behind. This enables
monomers of the same type (odd or even) to move on top of each other. Once one
monomer moves onto another monomer, they lose separate identity and become an
aggregate. Aggregates are moved as a unit. This avoids the problem we found in
Question 5.4.1. We keep track of the mass M of an aggregate, which is the total num-
ber of monomers that reside on the same site. We can assign a diffusion constant to
the aggregate which depends on the mass of the aggregate. The most natural choice is
to set the diffusion constant according to Stokes’ law: D(M) ∼ 1/Mx. As discussed at
the end of Section 5.2, we use a diffusion constant in two and three dimensions that
scales as D ∼ 1 /R, so in d-dimensions x = 1 /d. By incorporating Stokes’ law into the
collapse, we have introduced hydrodynamics into the simulation. Hydrodynamics is
not generally part of a lattice simulation. However, by explicitly setting the diffusion
constant, we have incorporated its primary effect when there are aggregates present.

What role does the diffusion constant play in the simulations? The diffusion con-
stant is proportional to the rate at which an aggregate hops from a lattice site to a lat-
tice site (Eq. (1.4.55)). When we perform a Monte Carlo simulation, steps occur in
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discrete time. The rate of hopping is represented as a probability of making a hop in
a single time step. Thus we can implement the diffusion constant by controlling the
probability of making a hop when an aggregate is selected to move. We choose our
time scale and normalize the probabilities by setting to one the probability that a sin-
gle monomer will move when chosen.All moves, of course,may be rejected if they vi-
olate other constraints.

The polymer dynamics are then simulated by selecting at random an aggregate
(monomers are included as aggregates of mass 1),and moving the aggregate in one of
four compass directions with a probability given by the diffusion constant,and only
if connectivity constraints allow—the aggregate does not leave any neighbors behind.
In order to move the aggregate with a probability g iven by its diffusion constant, a
random number ranging between zero and one is compared with the diffusion con-
stant. The monomer is moved only if the random number is smaller than the diffu-
sion constant.

In order to describe the time dependence of the collapse, we must keep track of
the passage of time in the simulation. Time is normally measured in a Monte Carlo
simulation of polymers by choosing randomly N monomers to move in a single time
interval.On average,each monomer is moved once in a time interval. During the col-
lapse we must do a similar counting, where one time interval of the simulation con-
sists of performing a number of aggregate moves equal to the number of remaining
aggregates. Since the number of aggregates can change during the time interval, it is
arbitrarily taken to be the number at the end of the time interval. As monomers are
moved, a counter is incremented and compared with the number of aggregates re-
maining. When the number of moves exceeds the number of aggregates, a new time
interval is started.

When we simulate collapse, we introduce effective interactions between
monomers in the same space. This interaction is the aggregation itself. We therefore
do not consider parallel processing in the simulation of collapse. While we don’t take
advantage of parallelism,other aspects of the two-space algorithm make it convenient
for these simulations.

A sequence of frames from a simulation in two dimensions is shown in Fig. 5.4.1.
Each aggregate is shown by a dot. The area of the dot is the mass of the aggregate. Most
striking in these pictures is that the ends of the polymer have a special role in the col-
lapse. The ends diffuse along the contour of the polymer, eating up monomers and
smaller aggregates until the two end aggregates meet in the middle. Along the con-
tour, away from the ends,the polymer becomes progressively smoother. The polymer
becomes more and more like a dumbbell. One way to think about this process is that
the polymer collapse becomes essentially a one-dimensional process along the poly-
mer contour. We call this process end-dominated collapse.

5.4.3 Scaling theory of collapse
In this section we develop a scaling theory that describes the results found in the sim-
ulations. Before proceeding, we summarize a mean field model for the kinetics of
polymer collapse that is relevant to conditions where the collapse occurs slowly be-
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cause T is very close to the θ-point. This means that monomers bind and unbind
many times during the collapse.Under these conditions,the behavior of the polymer
in solution is like the behavior of two liquids trying to separate because they are im-
miscible. This is called phase separation. The slowest process is the longest length scale
separation. The final structure of the system is a sphere of polymer, so the longest
length scale relaxation is the contraction of a prolate spheroid, a sausage shape, to a
sphere. The longest time scale is set by the diffusion that causes the sausage to thicken
as the ends contract. Despite the difference in the nature of this process from our
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Figure 5.4.1 Frames, “snapshots,” of
the collapse of a single homopolymer
of length N = 500 monomers in two di-
mensions. The plot is constructed by
placing dots of area M1/2 for an aggre-
gate of mass M. This does not reflect
the excluded volume of the aggregates,
which is zero during this collapse sim-
ulation. Simulations that include ex-
cluded volume during collapse demon-
strate similar results (Section 5.4.5).
Successive snapshots are taken at in-
tervals of approximately one-quarter of
the collapse time. The initial configu-
ration is shown at the top. The results
demonstrate the end-dominated col-
lapse process, where the ends diffuse
along the contour of the polymer ac-
creting small aggregates. ❚
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usual polymer relaxation,the scaling of the collapse time is essentially consistent with
the Zimm relaxation of a polymer above the θ-point, (N ) ∼ N 3 .

In contrast to the mean field scenario, in order to investigate the kinetic effects in
polymer collapse we must consider larger departures from the θ-point. As discussed
in Section 5.4.1, a model in which monomers stick irreversibly becomes valid pro-
gressively closer to the θ-point as the polymer length increases. Below the θ-point,
monomers attract each other. However, unless the monomers are charged, for a long
polymer the interactions are short range. Thus we will consider monomer-monomer
interactions only when they come into contact. When two monomers come into con-
tact, they stick to each other and do not separate. Therefore, the first step in under-
standing the kinetics of polymer collapse is identifying the order in which monomers
encounter each other. In completely irreversible collapse (sticking), every encounter
causes a kinetic barrier to arise, as described in Fig. 5.1.1,that does not allow the two
monomers to separate. In a more realistic model there would be reversibility; how-
ever, the final conformation will evolve from a conformation established by the initial
encounters. This picture is convenient for our analysis because the initial encounters
between monomers occur when the polymer is expanded, and therefore we can un-
derstand it beginning from the theory we have developed for the polymers in good
solvent.

When we consider qualitatively the process of polymer collapse, we realize that
encounters of monomers that are distant from each other along the contour of the
chain are unlikely because they are also, on average,distant from each other in space.
We can therefore begin by limiting ourselves to consider aggregation as primarily a lo-
cal process where a monomer forms an aggregate with neighboring monomers along
the contour. This kind of aggregation is, however, inhibited by the existing bonds.
Aggregation occurs when two monomers that are near each other in space move close
enough to form a new bond. The easiest aggregation would occur ifa monomer could
move to aggregate with one of its neighbors,however, the neighbor on the other side
prevents this because stepping away from the other neighbor would break an existing
bond. Without curvature in the chain, the monomer is unable to move to aggregate
with either neighbor, because it is bonded to the neighbor on the other side. If there
is some curvature, then monomers can aggregate. The aggregation would cause the
curvature to decrease,and further aggregation becomes more difficult. The same ar-
gument applies if we consider a monomer moving to bond to its second or third neigh-
bors along the contour. These problems do not occur at the ends of the polymer. The
ends, because they have only one neighbor, can move to aggregate with the monomers
near them along the contour. Thus during collapse, the aggregates at the ends grow
more rapidly than aggregates along the contour and eventually the polymer looks like
a dumbbell. This is what was found in the polymer collapse simulations (Fig. 5.4.1).

To develop a scaling argument for irreversible collapse that distinguishes only be-
tween the ends and the average collapse along the contour, we assume that we can
summarize the collapse using two variables M(t) and M0(t). M(t) is the average mass
of an aggregate along the polymer at time t, but it does not include the end aggregates.
M0(t) is the mass of the aggregate at either end of the polymer. At time t the end ag-
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gregate has grown to size M0(t) and the average mass along the contour is M(t). In a
small time interval,each end aggregate has a probability proportional to its diffusion
constant of collecting more mass by moving toward and accreting its immediate
neighbor aggregate. This neighbor has an average mass M(t) and is a distance a away
that does not depend on time. Thus, on average M0(t) grows according to

(5.4.7)

By Stokes’ law (see the discussion at the end of Section 5.2) the diffusion constant
D0(t) of the end aggregate decreases in time as its mass increases according to the re-
lationship

D0(t) ∝ 1/M0(t)1/d (5.4.8)

We assume that the two quantities M(t) and M0(t) follow a power law scaling with
time:

(5.4.9)

Inserting Eq.(5.4.9) and Eq.(5.4.8) into Eq.(5.4.7), we can ignore prefactors and set
the exponents of the time on both sides equal.

(5.4.10)

Solving for s0 in terms of s we obtain:

s0 = (s + 1)d /(d + 1) (5.4.11)

The two exponents are equal when s = s0 = d. This would correspond to the case of
uniform collapse, where there is no difference between collapse at the ends and col-
lapse along the chain.We will find instead that s is much smaller than d, and therefore
s0 is much larger than s.

The value of s may be obtained from a second scaling argument by considering
collapse of a polymer with fixed ends at their average equilibrium separation. This re-
moves the dynamics of the end motion from the problem. The collapse of this fixed-
end polymer would result in a straight rod of aggregates with an average mass M =
N /R, where N is the number of original monomers and R ∼ N is the average end-to-
end distance of the original polymer, which is also the length of the resulting rod.
Since we have eliminated the special effects of the ends, the time over which the col-
lapse occurs can be approximated roughly by the usual dynamics of a polymer with

∼ N z, where z = 3 or z = 2 + 1 for Zimm or Rouse relaxation respectively. We think
about the fixed-end polymer collapse as a simple model for the collapse of the origi-
nal polymer along the contour away from the ends.We are assuming that the polymer
can be approximated locally by polymer segments whose ends are pinned.Over time,
progressively longer segments are able to relax to rods. The average mass of the ag-
gregates at a particular time t is then determined by the maximal segment length
N(t) ∼ t1/z that relaxes by time t . This means that

t s0 −1 ∝ t s / t s0 / d

M(t) ∝ t s

M0 (t ) ∝ ts0

dM0(t)

dt
∝ M(t )D0 (t )/ a2

Po l y me r  c o l l a p se 511

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 511
Title: Dynamics Complex Systems Short / Normal / Long

05adBARYAM_29412  3/10/02 10:40 AM  Page 511



M(t) ∼ N(t)/R(t) ∼ N(t)1− ∼ t (1− )/z (5.4.12)

or

s = (1 − )/z (5.4.13)

The value of s obtained from this argument (see Table 5.4.1) is small. Using
Eq. (5.4.11) we also find that s0 is much larger than s. This means that the ends will
play a special role in the collapse of long polymers. The mass of the ends increases
more rapidly than the average mass along the chain and eventually dominates the ag-
gregation. We have seen this result in the simulations of collapse.

The idea that the polymer becomes straighter with time, because regions of
higher curvature aggregate more rapidly, can be made more precise. To characterize
this behavior it is convenient to compare the distance, r, between two designated
monomers (not necessarily the polymer ends) with the contour length, l, of the poly-
mer connecting them. The contour length is the number of bonds between them
along the chain. When aggregation occurs, the small aggregates that form,appearing
like beads on the chain, decrease the effective contour length of the polymer. We can
define the effective contour length by counting the minimum number of monomer-
monomer bonds that one must cross in order to travel the polymer from one desig-
nated monomer to the other. Bonds formed by aggregation allow us to bypass the
usual polymer contour. In this way the effective number of links in the chain decreases
over time.

We consider the scaling of r(l, t) as a function of l . Before collapse begins (t = 0),
the scaling is given by r ∼ l . This is just the usual scaling of the end-to-end distance
of a self-avoiding random walk,Eq.(5.2.11), because the number of links is essentially
the number of monomers. If the polymer becomes straighter, the scaling exponent
will increase over time. At long enough times, the scaling will approach that of a
straight line (r ∼ l ). However, the smoothing occurs first at the shortest length scales.
The characteristic time over which a particular length of polymer becomes straight is
the relaxation time of the polymer segment. We can approximate this as in the previ-
ous paragraph using the usual relaxation, ∼ l z.

We can summarize the behavior of the polymer over time using a universal scal-
ing function. This function describes how the end-to-end distance depends on the
contour length as a function of time. The essential idea of the scaling function is that
the behavior on different length scales can be described by the same function.
Specifically we have a relationship of the form:

(5.4.14)

This rel a ti onship su m m a ri zes our previous discussion thro u gh properties of the uni-
versal scaling functi on f (w) . f(w) is a constant for large va lues of its argument (lon g
times) because at long times r ∼ l . We also know that it scales as w( 1− )/z for small va lu e s
of its argument in order to en su re the correct scaling of the sel f - avoiding ra n dom walk,
r ∼ l , at t → 0 . The cro s s over bet ween one beh avi or and the other occ u rs at a parti c u-
lar va lue of the argumen t , w = w0, so that the rel a x a ti on time satisfies t = = w0l z ∼ l z.

r (l,t ) = l f t / l z( )

512 P ro te i n  Fo l d i ng  I I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 512
Title: Dynamics Complex Systems Short / Normal / Long

05adBARYAM_29412  3/10/02 10:40 AM  Page 512



This concludes our analytical study of irreversible collapse. This analysis has
given us the tools to discuss the simulations in a way that will show us important fea-
tures of the collapse. In particular we can study the behavior of the quantities M(t),
M0(t), r and l . Before we do so we address one of the questions we asked before about
the simulations.

In our simulations,during polymer collapse we eliminated the excluded volume.
Isn’t the excluded volume important for collapse? We know that excluded volume is
relevant to the initial polymer conformation in good solvent. Moreover, excluded vol-
ume is relevant to the final collapsed state of the polymer—without excluded volume
the polymer collapses to a point. However, we see that excluded volume does not en-
ter in the scaling argument leading to the relationship between s and s0, Eq. (5.4.11).
This argument describes the kinetics of collapse itself. Thus, we do not expect ex-
cluded volume to affect the behavior of the collapse. In particular, we do not expect it
to affect the relationship between s and s0. According to Eq.(5.4.11) this relationship
depends only on the dimension d of the space.On the other hand, the value of s de-
rived in Eq.(5.4.13) is dependent on the values of the exponents and z. This means
that we can expect the precise values of s and s0 to be somewhat more sensitive to the
presence of an excluded volume. However, the range of possible values (Table 5.4.1)
indicates that the overall behavior of the collapse should not be affected. In
Section 5.4.5 we will describe simulations that have excluded volume, and find that
the results are indeed similar. We can understand why the excluded volume is not im-
portant because during collapse the kinetics is primarily affected by the net attractive
interaction between monomers, rather than the hard core repulsive part.

We can analyze the simulations to compare with the scaling argument by study-
ing the average mass of the polymer except the ends, M(t), and the mass of the ends,
M0(t). The result of averaging many collapse simulations are shown in Fig. 5.4.2 for
two and three dimensions. As indicated, two lengths of polymers were simulated in
each case. Longer polymers follow the collapse of the shorter polymers but extend the
curves to longer times. This is consistent with the picture of end-dominated collapse,
where the only effect of a longer polymer is increasing the length of time till the end
aggregates meet in the middle.
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s = (1 − ) /z z = 3 z = 2 + 1

2 − d: = 0.75 0.11 0.10
3 − d: = 0.6 0.22 0.18

= 0.5 0.33 0.25

Table 5.4.1 Values of the exponent s from the scaling relation Eq. (5.4.13) using different
assumptions for and z. = 0.5 would occur for a random walk without excluded volume in
any dimension. The other values of are for self-avoiding random walks. z = 3 is for Zimm
relaxation that includes hydrodynamics. z = 2 + 1 is Rouse relaxation that does not include
hydrodynamics. All of these values are small and indicate that s0 is much larger. ❚
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Figure 5.4.2 Plot of the time evolution during polymer collapse of the average total mass of
the polymer ends M0(t), and of the average mass M(t) of aggregates not including the ends.
(a) shows collapse in two dimensions of polymers of length N = 1000 (averaged over 500 sam-
ples), and N = 500 (1000 samples). (b) shows collapse in three dimensions of polymers of
length N = 500 (500 samples), and N = 250 (1000 samples). Scaling exponents fitted to the
longer polymer collapse for times between the vertical dashed lines are given in Table 5.4.2
and discussed in the text. ❚
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Both M(t) and M0(t) follow a power-law scaling behavior. Exponents from the
lines in Fig. 5.4.2 are given in Table 5.4.2. There are two results from our scaling analy-
sis that we can compare with. The more reliable derivation is that of the relationship
between s and s0. A comparison is made in Table 5.4.2 by calculating the expected
value of s0(s) using the scaling relation, Eq.(5.4.11),and the measured value of s. This
is compared with the measured value of s0. The agreement with the scaling relation-
ship is striking since there are corrections which may be expected due to the neglect
of the effects of small rings, or changes over time in curvature and compression of the
polymer. The statistical errors are smaller than the quite small difference between the
expected and measured value of s. This difference, in principle, might be real but
could also be due to systematic error from the use of polymers that are not long
enough to determine this level of precision.

The comparison of the value of s obtained from the simulation with the values
predicted by the scaling argument (Eq.(5.4.13)) show that there is qualitative but not
quantitative agreement. The value in two dimensions does not agree with that ex-
pected—it is halfway between the values expected in two and three dimensions. The
value in three dimensions is very close to that expected without excluded volume
( = 0.5) and with Zimm relaxation. There are two ways to discuss this: one is to
downplay the success and the other to downplay the failure. All the values of the ex-
ponent s are small, and this suggests that the general discussion in the scaling argu-
ment is essentially correct. We could also excuse the disagreement in two dimensions
because we are using Stokes’ law to move aggregates, and hydrodynamics is not well
behaved in two dimensions (see the end of Section 5.4.2). The estimate given for three
dimensions using Zimm relaxation and without excluded volume s = 1/3 is in coin-
cidence with the simulations. It is hard to believe that this result can be justified ex-
cept as a coincidence. While it is true that we implement hydrodynamics by perform-
ing moves of aggregates according to Stokes’ law, and that we have performed the
simulation without excluded volume, nevertheless, the initial conformation of the
polymer should set the distances that control the collapse time. This initial polymer
conformation is for a polymer with excluded volume. This would suggest that a
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s s0 s0(s) [Eq. (5.4.11)] s0 − s0(s)

1-d 0 0.5 0.5 0
2-d 0.154±0.001 0.7734±0.0006 0.7695±0.0006 0.004±0.001 (0.5%)
3-d 0.337±0.002 0.982±0.005 1.003±0.002 −0.021±0.005 (2%)

Table 5.4.2 Power-law exponents for the scaling of end mass (s0) and mass along the con-
tour (s) during polymer collapse. The first column gives the dimension of space. The second
and third columns are fitted to the simulation results between the dashed lines in Fig. 5.4.2.
Fits were chosen to minimize standard errors. Errors given are only statistical—they reflect
the standard deviation of the simulation data around the fitted line. The simulation results
are compared to the scaling relation, Eq. (5.4.11), in columns four and five. Results in one
dimension are exact, since there is no possibility of collapse along the contour, s = 0. ❚
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smaller value of s should be expected. For our purposes, the precise value of s is not
essential, but the central result of the end-dominated collapse is.

Finally, to investigate the validity of the universal scaling of polymer smoothing,
Eq.(5.4.14), we plot in Fig. 5.4.3 values of r /l against the rescaled time, w = t /l z, with
z = 3 . This is a way of showing directly the function f (w). What is important in this
figure is that all the different values lie along the same curve. This is the significance
of the universal scaling function. The generally good coincidence of the different
curves confirms that the simulation obeys Eq. (5.4.14). Moreover, we see that the
function f (w) approaches the expected value, 1, at large values of w, consistent with
the polymer becoming straighter with time. If we try to change the assumptions we
find a poorer fit.For example,assuming r ∼ l 0.95 at long times or changing slightly the
value of z would lead to visibly poorer coincidence of the curves. The fit in two di-
mensions is somewhat less precise. This may be due to the difficulties with modeling
hydrodynamics in two dimensions, or it may be due to other effects we neglected such
as ring formation during collapse.
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Figure 5.4.3 Plot of the rescaled end-to-end polymer segment distance, r/ l, as a function
of the rescaled time, t/ l3 . Results for both two and three dimensions are shown. In both
cases the polymer contained 500 monomers and results were averaged over 200 collapses. The
many curves in each case arise from different values of l. The coincidence of the curves is con-
sistent with validity of the universal scaling relationship, Eq. (5.4.14). The plot shows the
universal scaling function, f(w). This function describes the structure of the polymer contour,
not including the ends. For large w it approaches one, consistent with the expectation that
the polymer contour becomes straight at long times. ❚
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5.4.4 Implications of end-dominated collapse
We have found that polymer collapse in both two and three dimensions appears to re-
duce essentially to the behavior of a one-dimensional collapse. In one dimension we
would have a starting conformation of a set of monomers along a line.Then, without
excluded volume,the ends in each time step can move to occupy the same site of,and
aggregate with,their neighbor. In each time step the end has equal probability to try
to move away (it cannot) or to try to move on top of its neighbor. Thus, 50% of the
steps, it aggregates with its neighbor. Collapse thus proceeds by the driven diffusion
of the polymer ends. The driving force is the aggregation of the monomers. The only
modification of simple diffusion is the change in the diffusion constant due to the
accretion of mass onto the ends. In two and three dimensions,the results are similar.
Ends diffuse along the contour accreting monomers and smaller aggregates.

We can analyze our results to give the scaling of the collapse time (N). In end-
dominated collapse this is the time that passes until the end aggregates meet in the
center. By this time the end aggregate has reached one-half of the mass of the whole
polymer:

M0( (N)) ∝ N (5.4.15)

where we need to write only that the end mass is proportional to the number of
monomers. Substituting Eq. (5.4.9) we obtain

(5.4.16)

From the simulations we find that 1/ s0 = 1.293 ± 0.001 in two dimensions and
1.018 ± 0.005 in three dimensions (errors are statistical). Thus the collapse time is pre-
dicted to scale linearly with polymer length in three dimensions. This indicates that
kinetic effects through end-aggregation accelerate the collapse from the usual relax-
ation time scaling of (N) ∼ N z.

Even without a value of s0 from the simulations, we can see that end-aggregation
must accelerate the collapse from the equilibrium relaxation. The scaling relation
Eq.(5.4.11) gives a minimum possible value for the exponent s0. s0 is a monotonic in-
creasing function of s. The minimum value of s0 results from setting s = 0 in the scal-
ing relation. This corresponds to collapse without any aggregation along the contour.
The only process that occurs is the increasing mass of the ends. The minimum value
s0 = 2/3(3/4) in two (three) dimensions gives the slowest possible collapse, or the
largest collapse-time scaling. Thus the maximum possible collapse-time scaling ex-
ponent (1/s0) is 3/2 in two dimensions and 4 /3 in three dimensions.These exponents
are still significantly smaller than the usual polymer relaxation-time scaling exponent,
z ≈ 2. They are also not dramatically different from the values we found using s0 from
the simulations.

When we simulate a system like a polymer, we are always concerned that our sim-
ulation results are characteristic only of the size simulated and not of the regime we
are interested in.Our objective is to understand the properties of long polymers. Thus
we must ask the question: Are the polymers simulated long enough to show the cor-
rect collapse mechanism for very long polymers? We can address this question

(N ) ~ N1/ s0
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because we know how the collapse-time scales with the size of the system for end-
dominated collapse. If another process were to become the dominant process for
longer polymers, it would have to scale as an even lower power of N than the end-
dominated collapse process. Only then could it become important for longer poly-
mers. However, the scaling of the collapse time we found is significantly lower than
other known collapse mechanisms. The mean field collapse scaling near the θ-point
is similar to the usual polymer relaxation. Thus it is unlikely that for longer polymers
a faster process will dominate.

How can we relate our discussion of polymer collapse to the problem of protein
folding? Our results on the end-dominated collapse of polymers indicated that col-
lapse can be faster than would be expected from the usual polymer dynamics. Instead
of a scaling of O(N2) we have a scaling of O(N). This appears to be a significant re-
duction in the time; however, when we consider this in light of our discussions in the
previous chapter, we see that this is not as significant as we might expect. Both scal-
ing exponents are reasonable for a polymer collapse time since there is enough time
for either scaling to reach its conclusion. We allowed, in principle, for exponents up
to O(N 4). Even if O(N 4) is generous, O(N2) appears quite possible.

Where does the difficulty then arise? The difficulty is that we have considered all
of the collapsed polymer conformations as equally acceptable. All we have shown is
that we can make a transition from expanded to collapsed polymers in a reasonable
amount of time. We have not shown that we can select the right compact form of the
polymer. This is where the simulations can provide their most important clue to the
benefits of kinetics.End-dominated collapse does not give an arbitrary compact poly-
mer. The process of sequential accretion of monomers and small aggregates by the
ends should reproducibly yield a particular compact structure.

Unlike a general uniform collapse of the polymer, the end-dominated collapse
proceeds by an orderly process of sequential monomer encounters. These encounters
build up the aggregate compact structure (globule) in a manner that is not random.
A consequence of this orderly kinetic process is that the resulting globules may be
expected to be selected from a limited subset of all possible globules. This is precisely
what we have been looking for—a kinetic process that might enhance the process of
arriving at a specific folded protein structure. One of the most striking implications
of the end-dominated collapse process is that the order of monomer encounters is es-
sentially independent of the initial conformation of the polymer. It is not easy at this
point to see what the precise nature of the globules that are formed are. However, we
can note that they are likely to be formed out of two parts corresponding to the ag-
gregate formed from one end and the aggregate formed from the other. A more sub-
tle feature of this process is that the globule is likely to contain fewer knots than would
be generally found in a globule. This is because the diffusive end motion tends to un-
knot the polymer, since the ends are passed through any knots rather than closing or
tightening them. To discuss this formally would require defining knots in a polymer
with free ends, which is a feasible but tricky task.

End-dominated collapse is also consistent with a model,called the molten glob-
ule model,that has been proposed for the kinetics of protein folding. It suggests that

518 P r o t e in  F o l d i ng  I I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 518
Title: Dynamics Complex Systems Short / Normal / Long

05adBARYAM_29412  3/10/02 10:40 AM  Page 518



there is a fast initial process of forming a compact globule followed by a rearrange-
ment of the globule to form the final folded protein.Our simulations and scaling re-
sults describe the fast process by which a polymer makes a transition from an ex-
panded form to a compact globule. The rearrangement process should take more time
and is likely to be the limiting step in the formation of the protein. Unlike the collapse,
this process requires segments of polymer to move around each other, which is a
much more difficult dynamic process. The significance of the end-dominated collapse
is that by preselecting the initial compact globule,the rearrangement process is short-
ened and does not necessarily explore all possible compact conformations of the pro-
tein before settling in the desired state.

There is another interesting feature of the end-dominated collapse relevant to
proteins. Proteins, when they are formed,are not formed all at once. Instead the chain
emerges sequentially from a ribosome.This process is called extrusion. It is thus quite
likely that the protein in the cell (in vivo) performs much of the folding sequentially
as it is formed. In many ways this is similar to the sequential process of end-
dominated collapse. Thus the polymer during extrusion has a natural sequential
process for forming a definite final folded structure. The appearance of end-
dominated collapse in polymer simulations may simply reveal why folding also works
when the protein is unfolded and refolded in vitro. One possible difference between
the two environments is that the collapse process in vitro occurs from both ends while
during extrusion it occurs from one end only.

We note that it has yet to be demonstrated experimentally that kinetics plays a
significant role in protein folding, or in other processes like DNA aggregation. There
is an interesting consequence of end-dominated collapse that has relevance to exper-
imental tests. End-dominated collapse represents a significant departure from the
usual rule of thumb that linear and ring polymer dynamics are similar. The primary
other exception to this rule is reptation in polymer melts. When polymers are placed
together at high density, the resulting fluid is called a melt. The motion of polymers
in the melt is inhibited by entanglements. Essentially the only way a polymer can
change position is to move along its own contour by local stretching and contraction.
This is a process, called reptation, that is possible for polymer chains. For rings it is
not. Other processes must become relevant for rings, and motion should be much
slower. The simulations and scaling argument we have described in this chapter indi-
cates that ring collapse should be significantly slower than linear polymer collapse.
This is one of the possible ways that the predictions of these simulations could be
tested by experiment.

5.4.5 Variations in the polymer microstructure
In this section we discuss additional simulations of homopolymer and heteropolymer
collapse. The objective is to investigate how robust are the results we have found in the
simple simulations discussed in Section 5.4.2 and the scaling argument in
Section 5.4.3. If the results are sensitive to the choice of model,then we should doubt
their applicability to real polymers. On the other hand,if the results are robust then
we can feel confident that they will also be relevant to real polymers. For a variety of
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systems the results suggest that collapse of long polymers is dominated by diffusion
of the polymer ends, which accrete monomers and small aggregates. Collapse does
not proceed uniformly along the polymer. However, in a model where only pairwise
bonding is allowed,the collapse is uniform, since more flexible end motion does not
result in continued end accretion.

All of the simulations in this section are in three dimensions and are based on the
one-space cellular automaton algorithm described in Section 5.3. The one-space al-
gorithm uses a 5 × 5 × 5 bonding neighborhood for monomers. It allows adjacent
monomers to separate by one lattice site providing flexibility in the polymer dynam-
ics. Motion of monomers is performed by Monte Carlo steps that satisfy the polymer
constraints.

We summarize briefly the general process of simulation of collapse,then discuss
each of several models that test various aspects of the dependence of the results on the
local properties of the polymer. As with the two-space simulations, the simulation of
collapse starts from a set of equilibrium polymer configurations.Each of the models
consists of a particular scenario for monomer-monomer sticking whereby aggregates
are formed from individual monomers. In all models, once formed, aggregates are
moved as a unit. The collapse simulations include only aggregation, and not disag-
gregation. As discussed in Section 5.4.3, the primary effect of hydrodynamics is in-
cluded by scaling the diffusion constant of aggregates by Stokes’ law. For the three-
dimensional simulations described here, D ∼ 1/M 1/3. Polymer dynamics are
simulated by selecting an aggregate (monomers are included as aggregates of mass 1)
and moving the aggregate in one of the four compass directions with a probability
given by the diffusion constant, and only if connectivity constraints allow—the ag-
gregate does not leave any neighbors behind. One time interval consists of perform-
ing a number of aggregate moves equal to the number of remaining aggregates,taken
to be the number at the end of the time interval.

Six different models of polymer microstructure are described in the following
numbered paragraphs. These simulations are also compared with the two-space col-
lapse simulations that did not include any form of excluded volume during collapse.
All of the six models were simulated using polymers of length N = 250. The first two
models explore variations in the collapse of homopolymers. The third and fourth
models explore heteropolymer collapse. The results of these four models are shown
in Fig. 5.4.4. The last two models only allow pairwise bonding. Results of these two
models are shown in Fig. 5.4.5.

1. The first version of one-space collapse explores the significance of excluded vol-
ume. Since excluded volume is essential for the final structure of the polymer as
well as the initial structure,it might be expected to be relevant to collapse. This
was completely neglected in the two-space simulations. In these one-space sim-
ulations, during collapse, monomers are allowed to enter the bonding neighbor-
hood. However, excluded volume is maintained during collapse by preventing
monomers from occupying the same lattice site. Monomers aggregate by moving
adjacent (NSEW) to other monomers. As before,aggregates are moved as a unit
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using a step probability governed by Stokes’ law. This means that we must keep
track of each aggregate’s structure in space,and move it as a unit. After a step we
must check all sites at the boundary of the aggregate in order to perform addi-
tional aggregation. From the figure we see that the inclusion of excluded volume
appears to increase the rate of collapse. Conceptually, we might think about this
as resulting from a decrease in the distance monomers need to travel in order to
aggregate. Both exponents s and s0 increase slightly. However, we see that ex-
cluded volume does not affect overall behavior and does not even dramatically
change the values of the exponents (Fig. 5.4.4 and Table 5.4.3).

2. One of the strange features of model (1) is that monomers aggregate by directly
attaching to their neighbors along the chain. Thus, much of the aggregation
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Fig. 5.4.4 Plot of the time evolution during polymer collapse in three dimensions of the av-
erage total mass of the polymer ends, M0(t), and of the average mass, M(t), of aggregates not
including the ends. The different lines correspond to the different models described in the
text. The end mass evolution is shown by a solid line and the mass along the contour is shown
as a dashed line. The bold curves are for the two-space algorithm (Fig. 5.4.2). All of the oth-
ers are for variations on the one-space algorithm for polymers of length N = 250 and are av-
eraged over 300 simulations: (1) for the one-space polymer including excluded volume; (2)
same as (1) but preventing aggregation of nearest neighbors along the contour; (3) a model
for heteropolymer collapse where only the odd monomers aggregate; (4) is similar to (3) but
monomers that aggregate are selected at random. ❚
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occurs between monomers that previously were already bonded as neighbors.
This would be a particularly convenient process for end aggregation and may ex-
aggerate its importance. The aggregated structure of model (1) is formed out of
rodlike structural components. These rods arise because the attachment to near-
est neighbors follows the contour of the polymer. A more realistic model would
exclude such nearest-neighbor aggregation. The second version of one-space col-
lapse is similar to model (1) except that nearest neighbors along the contour are
prevented from aggregating to each other. Monomers or aggregates are forced to
move around their nearest neighbor to bond to a monomer further along the
chain. This prevents the simplest end monomer accretion of nearest neighbors.
Simulations show, however, that not only does the end-domination persist but
(Fig. 5.4.4 and Table 5.4.3) that this change does not change significantly the ex-
ponent values. Presumably this is because the need to move around neighbors to
aggregate affects collapse along the contour similarly to its affect at the ends,
making both more difficult. The only apparent effect is an overall slowing of the
collapse as seen by the shift of the M(t) and M0(t) curves to longer times.The fol-
lowing simulations (3)–(6) are based on model (2).

3. We now consider heteropolymers. Thus far our discussions, both in simulations
and in scaling arguments, have not distinguished between different monomers.
However, there are significant differences in the bonding of different monomers
in heteropolymers. In order to investigate the effect of such variation, we take an
extreme case where there are some monomers that bind and some that do not
bind at all. This is a simple model of proteins that takes into account the differ-
ence between hydrophobic and hydrophilic monomers. In our language, this is
the same as monomers that want to collapse by aggregation and monomers that
do not.The third one-space model of collapse includes both kinds of monomers.
Using the one-space algorithm as in (2), only odd monomers are allowed to ag-
gregate. This is an ordered 50% hydrophilic version of this model of hy-
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s s0 s0(s) s0 − s0(s)

1-d 0 0.5 0.5 0
2-d 0.154±0.001 0.773±0.001 0.769±0.001 0.004±0.001 (0.5%)
3-d 0.337±0.002 0.982±0.005 1.003±0.002 -0.021±0.005 (2%)
3-d (1) 0.484±0.002 1.102±0.004 1.113±0.002 -0.011±0.004 (1%)
3-d (2) 0.453±0.002 1.079±0.004 1.090±0.002 -0.011±0.004 (1%)
3-d (3) 0.061±0.001 0.363±0.001 0.796±0.001
3-d (4) 0.050±0.001 0.293±0.001 0.787±0.001

Table 5.4.3 Power-law behavior exponents fitted to the simulation results of Fig. 5.4.5. The
results from the two-space algorithm (Table 5.4.2) are included for comparison in the first
three lines. Fits were chosen to minimize standard errors. Errors given are only statistical.
Results are compared to the scaling relation given by Eq. (5.4.11). As discussed in the text,
the heteropolymer collapse results are not in agreement with this scaling relation. ❚
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drophilic/hydrophobic collapse. The way the collapse works is that monomers
that do not want to bind at all must be on the outside of an aggregate. The ag-
gregate has an interior filled with bonding monomers and a surface of non-
bonding monomers. These nonbonding monomers prevent further aggregation
and thus slow the continued formation of larger aggregates. The process of in-
creasing shielding is not included in our scaling arguments, so Eq. (5.4.11)
should not be expected to apply, and it doesn’t. Despite the shielding of contin-
ued collapse by nonbonding monomers, the collapse is still dominated by end
motion for the length and time scale simulated. The overall collapse is signifi-
cantly slowed—the exponent s0 is reduced to a third of its value for the ho-
mopolymer case. There is also some indication that the collapse would com-
pletely saturate in this case and would not go through to completion. The overall
fraction of hydrophobic (nonbonding) monomers must be reduced to reach
complete aggregation.A reduction in the proportion of hydrophobic monomers
would make the simulation results more like the previous homopolymer models.

4. The fourth version of one-space collapse is similar to the third version but tests
the relevance of the order in model (3). Instead of alternating the hydrophobic
and hydrophilic monomers along the chain,they are placed at random along the
chain. The collapse behavior is almost the same as in (3). Opportunistic collapse,
which results from convenient local arrangement of bonding monomers,speeds
the collapse at first. However, the scaling of the masses is slightly lower, and even-
tually collapse is slightly slower at later times.

5. In order to make end-dominated collapse as unfavorable as possible, we must
eliminate the advantage that is gained by the high mobility of the ends. We can
do this by eliminating entirely the continued aggregation. The fifth version of
one-space collapse starts from the same conditions as (2);however, collapse only
includes pairwise bonding. Once two monomers are bonded, other monomers
that become adjacent are not aggregated. This is not like protein folding, since
each amino acid can form two hydrogen bonds with other amino acids. Also,
there is additional bonding due to van der Waals forces. Nevertheless, we can con-
sider the pairwise bonding model as a version of collapse.End dominance in this
case would correspond to a progressive pairing from the ends inward. A plot of
the pair-density along the chain (Fig. 5.4.5) shows that,despite a tendency toward
more rapid pairing at the ends, the collapse is essentially uniform. Thus in this
model we do not have end-dominated collapse.

6. The sixth and final vers i on of co llapse (Fig. 5.4.5) is like the fifth vers i on wh ere
p a i rwise bonding is all owed ;h owever, on ly even - odd mon om er com bi n a ti ons are
a ll owed for pairwise bon d i n g. The re sults do not differ sign i f i c a n t ly from (5).

We have learned from these simulations that in heteropolymer collapse the val-
ues of the exponents s and s0 may change; however, only when we go to an extreme
and unrealistic model of polymer aggregation do we lose the end-dominated collapse
entirely.
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Figure 5.4.5 Plots of the average aggregate mass at every site along the contour when col-
lapse only allows pairwise bonding. Each curve shows the averages at a particular time, with
later times having higher masses. Collapse is uniform except for a tendency for the monomers
near the end to pair up first. The minimum mass is 1 and the maximum mass is 2. The col-
lapsing polymer has a length N = 250. By symmetry only the first 125 sites are shown. (a)
shows the case (5) of arbitrary monomer bonding with the exception of no nearest-neighbor
bonding; (b) shows the case (6) of only odd to even monomer bonding. Progressively later
times are shown separated by (a) 50 updates and (b) 100 updates. For clarity only the first
ten times are shown. ❚
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The scaling time (N) ∼ N1/s0 can also be calculated for the first four one-space
models of collapse. For homopolymer collapse 1/ s0 = 0.907 ± 0.003 in model (1) and,
0.927 ± 0.003 in model (2). Thus the collapse time still scales approximately linearly
with polymer length in three dimensions.In contrast,the time for heteropolymer col-
lapse with nonbonding monomers scales as 1/ s0 = 2.75 ± 0.007 in model (3) and
3.41 ± 0.008 in model (4).This is much slower than the heteropolymer collapse.It also
approaches the limit of our allowed exponents for protein folding discussed at the be-
ginning of Chapter 4.

Question 5.4.2 One way to think about the effect of various properties
of the microstructure of a polymer is as a change in how the diffusion

constant of an aggregate grows with its mass. For example, if there are
monomers that do not aggregate at all,they become like a surface coating on
an aggregate that prevents further aggregation. Rather than model this as a
limitation in aggregation, we could simplify the effects by modeling them as
a progressively larger diffusion constant that would also limit continued ag-
gregation. Find the relationship between s and s0 for different values of x in
D ∼ 1/Mx. Then simulate the collapse of a polymer for different values of x
and see if the scaling relationship between s and s0 continues as before. How
should this affect the value of s?

Solution 5.4.2 The generalized form of Eq. (5.4.11) is:

s0 = (s + 1)/(x + 1) (5.4.17)

Simulations of collapse when x is varied are shown in Fig. 5.4.6. The end-
dominated collapse occurs for all values of x that are simulated. The scaling
relationship continues to be satisfied.

The size of s appears to be nearly constant.A quite reasonable value for
s0 may be obtained from a single value for s in each dimension and use of the
scaling relation Eq. (5.4.17). In three dimensions, s appears to decrease
slowly with increasing x. ❚

5.4.6 Conclusions
In this chapter our objective was to understand how kinetic processes could acceler-
ate the formation of a selected final polymer structure. We found that there is a dis-
tinctive kinetic process that occurs in the initial stages of polymer collapse that results
in a characteristic order of monomer-monomer encounters. This suggests that it
might be possible to design a sequence of amino acids that fold into a particular struc-
ture using this order of events. The polymer might not reach the desired structure if
the polymer were to explore all possible conformations. We have not demonstrated
that this process applies specifically to proteins, but the robustness of the end-
dominated collapse to variations in models suggests that it should play some role.Our
analysis has been specific to polymers. How can we generalize this discussion to apply
more generally to complex systems? The most important feature of these simulations
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is the recognition that there may be a natural sequentiality to events. Such sequen-
tiality does not necessarily mean that a desired structure will be attained; however, it
provides an opportunity for control over the final structure. This leads us to the topic
of self-organization and organization by design, which we address in the following
two chapters.

Figure 5.4.6 Exploration of the variation of polymer collapse with x, where the diffusion con-
stant scales as D ∼ 1/M x. In the top panels of (a) and (b) are plots of the time evolution dur-
ing polymer collapse of the average total mass of the polymer ends M0(t) and of the average
mass M(t) of aggregates not including the ends. (a) shows collapse in two dimensions of poly-
mers of length N = 250 (500 samples) for x = {0.4, 0.5, 0.6, 0.75, 0.9, 1.0}. (b) shows col-
lapse in three dimensions of polymers of length N = 250 (500 samples) for x = {0.5, 0.75, 1}.
The value at x = 1/3 is from polymers of length N = 500. In the bottom panels the scaling
exponents s0 and s obtained from fits to the plots of M0(t) and M(t) are plotted as a function
of x. The value of s0(s) obtained from the scaling relation Eq. (5.4.16) is also plotted. It is in
good agreement with the values of s0 found in the simulations. ❚
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6
Life I: Evolution—
Origin of Complex Organisms

Conceptual Outline

We are interested in developing an understanding of organisms in their en-
vironments. The primary focus is on the evolutionary dynamics of populations of com-
plex organisms, rather than on how they act collectively.

Evolution is a general approach to the formation of complex organisms
through incremental change. The phenomenology of life is rich and motivates the dis-
cussion of evolution. Conceptual models of incremental evolutionary processes in-
clude monotonic evolution on a fitness incline, divergence of traits and extinction.

In theories of evolution, fitness is the only property of the organism which
determines the evolutionary dynamics. The fitness can be described as a function of
the genome, but it is more directly related to the phenome. Variations in the fitness as
a function of changes in either phenome or genome may sometimes be large and may
sometimes be insignificant. Conventional evolutionary theory is, however, based
upon gradual changes in fitness.

A model of organisms evolving by diffusing on a fitness landscape is equiv-
alent to particles moving on an energy surface. In the context of this model, many as-
pects of evolution can be discussed. However, it is far from trivial to account in a ro-
bust way even for basic phenomena such as the existence of groups of organisms
with well-separated traits.

The use of dynamical equations that model reproduction, competition for
resources, and predation can model a variety of dynamic phenomena in populations.
They illustrate how various organism properties contribute to fitness. Moreover, the
dynamics of such models is fundamentally different from that of the models discussed
in Section 6.4. However, like the models in Section 6.4, these models cannot account
for the existence of groups of organisms with well-separated traits. To overcome this
problem requires introducing a variety of resources, with their own dynamics.

Returning to the consideration of collective behavior of components, we
find that sexual reproduction takes advantage of composite patterns to form high-
fitness organisms. A mean field approach that neglects correlations in the genome

❚ 6 . 6 ❚

❚ 6 . 5 ❚

❚ 6 . 4 ❚

❚ 6 . 3 ❚

❚ 6 . 2 ❚

❚ 6 . 1 ❚
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does not apply when organism types diverge due to correlations imposed by selec-
tion and reproduction. Moreover, a discussion of altruism and aggression in evolution
is relevant to understanding the existence of organisms formed out of components,
or social groups of organisms, that exhibit collective behaviors.

Various systems, including the immune system and artificial computer soft-
ware, can be used as laboratories for developing an understanding of evolution.

Living Organisms and Environments

The study of living organisms, their behavior and evolution, using mathematical
tools, is one of the rapidly developing areas in the study of complex systems. In this
chapter we discuss the collective evolutionary dynamics of living organisms. There is
an essential difference between this endeavor and the study of neural networks
(Chapters 2 and 3) or protein folding (Chapters 4 and 5). In discussing spatial sub-
structure and temporal relaxation in these systems, we were able to construct models
from the interactions of simple elements. Even though these elements were drastic
simplifications of neurons or amino acids, meaningful questions were addressed.
They were meaningful because our focus was on the complex collective behavior.
When we discuss life in general, we are not interested in the collective behavior of the
organisms, but in the behavior of complex individual organisms in interaction with
their environment. It is still possible to consider the emergent collective behavior of
many individuals; however, it is not clear that this behavior is complex. In contrast,
the individual behavior is often complex.

The contrast can be illustrated by two examples. The first example is related to
the concept of subdivision discussed in Chapter 2.Collections of animals or plants do
not generally satisfy the conditions that were considered necessary for a complex or-
ganism. Flocks of animals or collections of plants can be diminished in size without
essentially affecting their collective behavior. Indeed “diminished in size” would not
be the natural phrase in the previous sentence. We would say instead “diminished in
number.” While there are collective effects,they are not sufficient to satisfy our crite-
ria for a complex organism. The second example is related to the development of life
over time,analogous to our discussion in Chapter 4 of protein folding. The develop-
ment of life is generally described as evolution. Evolution is the development of ca-
pabilities of the individual organism—specifically, an increase in its complexity.
While there is also a development of species and ecosystems, evolution is not consid-
ered primarily the development of a collective behavior of many organisms. We will
discuss this more fully later in this chapter. Our primary focus,however, is to explore
the consequences of the shift in emphasis from the collective system to the individual.

As a re sult of the shift in em ph a s i s , in discussing models of l i fe we cannot
use a two - s t a te va ri a ble to repre s ent the el em ents of our sys tem . And yet , in the
con s tru cti on of m odel s , the use of simple el em ents cannot be avoi ded . In order
to de s i gn models of com p l ex or ga n i s m s , t h ey must them s elves be com po s ed out

6.1
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of su i t a bly de s i gn ed simple el em ents that captu re as mu ch of the com p l ex i ty of
t h eir beh avi or as we are intere s ted in.

As we consider the construction of models of life,it must be understood that any
model of life includes a model of the environment. Behaviors of individual organisms
are generally measured in response to external stimuli. The relationship between the
capabilities of the individual and the demands of the environment plays an important
role in the description of the organism. The environment also plays a central role in
the dynamics of evolutionary change. As we discuss both here and in Chapter 8, the
complexity of an organism and the complexity of its environment are often closely re-
lated. Moreover, while the behavior of individual organisms is central to the discus-
sion of life, much of the interest in describing life is in the interaction of an organism
with other organisms. This interaction may take the form of competition, coopera-
tion, reproduction, communication, exploitation, consumption, etc.

Since our objective is to model aspects of the evolutionary dynamics of popula-
tions, we can adopt quite abstract models of organism behavior that do not relate di-
rectly to their biology. Nevertheless,these models provide insight into population dy-
namics and interactions. The models describe an organism and its behavior as a
coordinate in an abstract configuration space. In general, we are not concerned with
the mapping of this coordinate to specific behavioral attributes. Any concrete com-
putational model of behavior must be represented by a set of parameters that we con-
sider to be our abstract configuration space. In this way we ensure that our discussion
is relevant to behavioral models of organisms. The generality of the representation we
use for organisms may be argued on the basis of universality of computation and in-
formation theories described in Sections 1.8 and 1.9. However, any choice of repre-
sentation emphasizes particular aspects of a complex system. There is no claim that
these models address all of the questions of interest in discussions of life.

There are important connections between this chapter and Chapter 7. In both
chapters we are considering processes associated with heritable organism traits. The
heritable physiological and behavioral traits are called the “phenome.” These traits
also exist in an encoded form called the “genome,”which is commonly associated with
DNA, though some other heritable molecular and cellular structures should be in-
cluded. In this chapter, we are concerned with the joint evolution of the phenome and
genome, which are linked together. In Chapter 7 we are concerned with the process of
expression of the genome—the process of development which connects the genome
with the phenome. This connection is essential to our understanding of evolution.
Moreover, the same central question is present in both: How are complex systems
formed? In this chapter we discuss concepts relevant to self-organization. In Chapter
7 we discuss concepts relevant to organization by design. Also significant is the con-
nection between the processes that we consider. In both cases it will turn out that we
are considering pattern formation. In this chapter we consider patterns of organisms
in the space of possible organisms. In Chapter 7 we consider pattern formation in cell
populations and physiology.

This chapter is divided into five major sections. In Section 6.2 we review briefly
the phenomenology of life that motivates evolutionary theory. Section 6.3 sets a gen-
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eral tone for discussions of evolution by considering the representation space in
which organisms evolve, and the concept of fitness which is central to the the ory of
evolution. Section 6.4 presents,mostly through conceptual discussion,a Monte Carlo
random-walk model of evolution. Fundamental limitations of this model motivate
the introduction in Section 6.5 of a collection of models of evolution by reproduction
and selection. These models also turn out to have fundamental limitations that be-
come apparent through simulation and analysis. While the models of Sections 6.4 and
6.5 have difficulties, they provide various insights into evolution. Moreover, through
recognizing the difficulties,we are forced to develop a better concept of the aspects of
organism-environment and organism-organism interactions that must be incorpo-
rated in more complete models of evolution. Finally, in Section 6.6 we return to dis-
cuss the relationship between components and collective behavior. We discuss sexual
reproduction and social behaviors (altruism and aggression) to make connections be-
tween the behavior of genes (genome components), molecules, cells, organisms and
populations of organisms.

Evolution Theory and Phenomenology

6.2.1 The theory of evolution
For modern biologists, evolution evokes the rich phenomenology of life on earth.
Evolution is considered to be a universal process (dynamics) that gives rise to the
nonuniversal (diverse) phenomenology of life. The nature of evolution from a biolo-
gist’s perspective has also been modified over the years. In particular, the relationship
of evolution to organism complexity has been bypassed almost entirely in recent
years. This arises in part from the recognition that the process of evolutionary change
need not give rise to more complex organisms. However, for our purposes it is essen-
tial that evolution is a process that can give rise to more complex organisms, whether
or not it does so under particular circumstances. Thus we focus on the concepts that
have been developed in biology to understand the change in organisms as a part of a
theory of evolution that not only pertains to the phenomena of life but also indicates
quite generally how complex systems can arise.

In this context,the objective of the theory of evolution is to explain the existence
of complex life on earth. The need for an explanation arises because it is assumed that
the earth began in a state devoid of life. Since living organisms today are complex,the y
are highly improbable combinations of the building blocks of nature—atoms. An ex-
planation of their existence is necessary. Traditionally, the scope of evolution is di-
vided into two parts. This separation is in recognition of the essential role played by
organism self-replication (reproduction). The first part is the formation of relatively
simple self-replicating organisms from molecules. The second part is the formation
of complex organisms from simple organisms.While our discussion will focus on the
latter, the dividing line is not fundamental. Conditions exist in which various mole-
cules can replicate, and thus a theory of evolution can apply to molecules and the
formation of cells as complex molecular structures,as well as to organisms.Our dis-
cussion of this point will be delayed to the end of the chapter in Question 6.6.6.

6.2
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Evolutionary theory was introduced as an alternative to two older theories. The
first of these is the theory of creation by a prior being capable of creating life.This the-
ory is manifest in some form in most mythologies and religions. Typically this model
assumes that life was created at a particular time in a form similar to that we see to-
day. The creation model is difficult to accept because it assumes an external agent that
has not been observed. It also gives no explanation for the phenomenology that exists
in life discussed below. The second theory is that of spontaneous generation. This the-
ory assumes that life can form spontaneously under certain conditions that arise nat-
urally. In an experimental context it was discussed as a reason for the formation of
maggots in rotting meat,until it was shown that without parent organisms that could
lay eggs this would not happen. The difficulty with the model of spontaneous gener-
ation is precisely our original problem,that the spontaneous formation of a complex
system is highly improbable.

Evolutionary theory provides an alternative to these models by proposing that in-
cremental changes over many generations of organisms led to increasing complexity.
Spontaneous changes by themselves are assumed to be random, but organism selec-
tion through interaction with the environment can lead to a process that systemati-
cally increases the complexity of the organisms. The selection process is the driving
force in evolution that replaces the physical force in systems governed by classical me-
chanics.A relevant image is that of biased random walk or biased diffusion similar to
that discussed in Section 1.4. In evolution,the biased diffusion occurs in the space of
possible organisms. Selection is a consequence of differences in fitness, which plays
the role of the energy. Fitter organisms survive at the expense of less fit organisms.We
say that the organisms compete f or survival, though the intentionality in the term
“compete” may be an unnecessary anthropomorphism. The concept of incremental
changes leaves many details of the theory unspecified. The importance of the theory
is that it provides a framework in which we can understand the appearance of com-
plex systems through a dynamic pathway. The incremental changes are understood to
be encoded largely in the genome, which transfers information from generation to
generation.

Evolutionary theory is powerful because it describes a large variety of phenom-
ena in life.Darwin’s articulation of the theory of evolution preceded the discovery of
DNA and its role in preserving traits from generation to generation,and many other
relevant discoveries that have given a firm basis for the concept of incremental
changes, which is necessary for evolutionary theory to hold. Nevertheless,as a theory
of the origin and phenomena of complex life on earth, there are missing pieces, be-
cause it is not easy to verify whether processes articulated conceptually, but not re-
produced experimentally are sufficient to explain the phenomena of life on earth. For
some there is a belief that evolutionary theory requires only verification; others sug-
gest that major new concepts are likely to be discovered that will modify qualitatively
our global understanding of evolution. There are also key unanswered questions re-
lated to the incremental concept of change.

There is a connection to be made between the study of evolution and the prob-
lem of protein folding considered in Chapters 4 and 5. Both deal with dynamics of or-
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ganization. Chapters 4 and 5 assumed that a unique folded structure had to be
reached by a process that selected one out of many possible structures. We can artic-
ulate the problem of the formation of life in a similar manner. The problem is the for-
mation of a biological organism from atoms. The developmental process from,e.g., a
fertilized egg, can be included as part o f this process. Like the protein-folding prob-
lem,an attempt to search all possible arrangements of atoms is impossible on any rea-
sonable time scale (e.g.,the lifetime of the earth). Even the formation of a single pro-
tein out of its atomic components is a much more difficult problem than folding the
same protein. Much more difficult still is the formation of long DNA chains found in
living organisms. The protein is an engineered system with a specified amino acid se-
quence. We assumed that it was designed to lead to a special conformation,and dis-
cussed the properties of the energy that were necessary in order to enable this to oc-
cur. For the formation of life on earth,there is no readily apparent analog to the initial
amino acid sequence that served as a template for the formation of life. Thus we have
a much more difficult problem with fewer tools. The opportunity present is that,un-
like protein folding, we are not required to succeed every time. A process can be de-
signed where many attempts are made.A successful attempt may be reproduced and
can be the starting point for successive developments.

While the process of incremental change is conceptually powerful, we will en-
counter fundamental difficulties in our attempt to understand the overall process of
the development of life. Perhaps one of the key issues that underlies these difficulties
is that the theory of evolution assumes that the emergence of complex organisms is
reducible to understanding incremental changes. We have found in previous chapters
that a system composed out of many components cannot be understood in a reduc-
tionist manner as trivially related to the behavior of components. Instead,it is neces-
sary to understand their interactions and how these interactions result in collective
behavior. Similarly, the process from atoms to organisms cannot be understood as a
direct result of a few elementary incremental evolutionary processes. This becomes
apparent in this chapter as we attempt to construct a global representation of fitness
that can account for evolution by an incremental model.

6.2.2 Fitness—what is being optimized?
We should pause and consider the fundamental justification for use of a fitness prop-
erty in the dynamics of organisms. Our study of thermodynamics specified that the
state of a system is determined by maximizing the entropy of an isolated system or
minimizing the free energy at a particular temperature. What gives us the freedom to
postulate an alternate dynamical process—a process in which organisms increase
their fitness rather than decrease their free energy? The key point is that the earth is
not in equilibrium. It receives energy from the sun and emits lower energy photons to
black space. This energy flow implies that the second law of thermodynamics does not
apply, and it enables the existence of nonequilibrium structures that themselves con-
sume energy and emit waste heat.Without the energy flow, this would be impossible.
Having said that such structures are possible does not necessarily mean that they must
occur in the form of living organisms. However, as an underlying concept, the idea
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that this nonequilibrium circumstance can lead to nonequilibrium entities then en-
ables us to ask constructively what entities or organisms will be in existence. The an-
swer provided implicitly by evolutionary theory is that in some sense the organisms
that exist are those that optimize some function of the energy flow. Ultimately this is
the nature of fitness.

To reach the fitness of organisms,the discussion also requires an additional step
that would relate the overall process of energy flow not to the whole system, but rather
to individual organisms. The overall nonequilibrium conditions create local non-
equilibrium conditions in which organisms exist. The availability of energy in various
derivative forms different from that provided by the sun,as well as the availability of
heat sinks of other derivative forms, enables the local process of a living organism to
proceed. Within this local circumstance, the organisms that exist are the result of
some dynamic process that need not optimize the free energy, but may optimize some
function of the energy flow. When we can interpret each organism as optimizing the
cost function separately, the resulting cost function is the fitness.The process of opti-
mization causes incremental changes to appear in the system. The assumption of in-
dependent optimization by par ticular organisms bears resemblance to parallel pro-
cessing in the protein-folding problem, where components of the system act,in part,
independently.

6.2.3 Phenomenology of life
The phenomenology of life is rich and diverse. There is a lot of specific information
that is known, and general observations that can be made. The general observations
should be addressed by a complete theory of evolutionary dynamics. In each of the
following paragraphs, we summarize some of the general observations to motivate
aspects of our discussion of evolution.

Existence of life—Aside from the observation that without life we wouldn’t be
here to talk about it,the existence of life tells us that in principle it is possible to have
life. What it doesn’t tell us is whether it is a highly improbable or a probable occur-
rence, and whether there are other forms we have not encountered.

Existence of variety of life—Not only do we find that life exists, we also find that
various forms of life exist.The variety is remarkable:animals and plants,living beings
that can exist in various environments, animals that can swim, walk and fly.
Conventional life-forms range in size from single-celled organisms to whales.We can
also say that life exists in many different degrees of complexity. This indicates that not
only can life exist, but that there are many varied forms it can take.

Existence of distinct traits—Organisms living today are grouped together in vari-
ous ways. Certain animals are similar and others are quite different. There is no con-
tinuum of organism traits at the present time. Instead there are groupings of organ-
isms that are more similar and less similar to other organisms. For example, there is
no continuum of organisms between a giraffe and a spider or a giraffe and a grass
plant. There are many different forms of variation that appear to exist,and others that
do not.One might wonder, for example, why domestic dogs come in a wide range of
sizes, while domestic cats do not.
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Existence of shared traits—Various quite different organisms share similar traits.
For example, bony fishes, sharks and dolphins share a superficial body form.
Butterflies, birds and bats share certain attributes of wing structure.Organisms share
similar numbers and roles of appendages. Mice and men share common organs, tis-
sues and chemical processes.

Existence of fossils—Fossils illustrate various changes in traits of organisms over
geologic times. Specifically:

a. Changing of traits—Many existing organism traits did not exist in previous times.
The rate of change is not uniform over history. Slow changes occur at some times,
and rapid changes at others.

b. Extinction—One example of dramatic change is extinction. Large dinosaurs are
the most prominent example of disappearance of a set of complex organisms.
Other organisms also have disappeared at particular times.

c. Persistence of species—While some organisms have disappeared,others have per-
sisted over long times.Single-celled organisms similar to those existing today are
found in fossils at the beginning of recorded life 3 × 109 years ago. Among the
longest continuously existing animals are cockroaches,horseshoe crabs and cer-
tain sharks.

d. Systematic changes (evolutionary progress)—Among the changes that are shown
by fossils are examples of incremental monotonic changes from an initial form
to another form.A classic example is the horse for which a sequence of progres-
sively larger fossils was found.

Trait persistence from generation to generation by reproduction—Organisms that
reproduce (asexually or sexually) pass traits from generation to generation. Dogs
don’t give birth to plants. More specific traits ranging from size to color are correlated
from generation to generation, though a detailed description of inheritance must in-
clude mixing in sexual reproduction and various statistical correlations rather than
deterministic relationships.

Death—All organisms appear to die. Death is due to various circumstances in-
cluding accidents, disease, hunger and predation. Barring other causes, for some or-
ganisms there appears to be a “natural life span” following which death occurs by
senescence, i.e., “old age.”

Migrations and domains—Organisms may migrate from place to place on the
earth.Generally a species exists within a certain domain. Other places it is not found.

Trait change by human (artificial) selection—When human beings select mem-
bers of a domesticated species to reproduce,this can cause progressive changes in or-
ganism traits. Eventually, different varieties can be formed. Various properties can be
modified, such as size, disease resistance, or quantity of a product (milk, eggs, meat,
grain, etc.). This is apparent in both plants and animals that have been domesticated
over many years.

Apparent competition for resources—Studies of organisms suggest that they com-
pete for resources such as food, territory and mating rights.
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Apparent interdependence and reliance—Organisms are also interdependent.
There are parasitic relationships, symbiotic relationships between species and social
behaviors within a single species.

Food web—There is a food web that corresponds to organisms consuming other
organisms as food. There is specialization in this food web. There are herbivores and
carnivores as well as omnivores. Other aspects of specialization in the consumption
of resources are also apparent. Different herbivores consume different plants, or dif-
ferent parts of the same plant. Different carnivores consume different animals.

Reproduction—All organisms reproduce. There exists asexual and sexual repro-
duction among all major groups of living organisms. Sexual reproduction appears to
become more prevalent among more complex organisms.

Relevance of organism size—Among organisms with larger body sizes there are
characteristically fewer individuals, fewer progeny and also fewer species.

Role of DNA—Many traits have been traced to DNA sequence.Various genetic as-
sociations of traits and generational transfer of traits as well as the direct manipula-
tion of DNA have established DNA as a source of information that determines hered-
itary physiological traits of plants and animals.

6.2.4 Life and reproduction
The existence of life relies upon a diversity of molecules and molecular types.Polymers,
discussed in Chapters 4 and 5, formed of several types of units are essential. Proteins
appear to serve primarily as enzymes. DNA and RNA, formed from chains of nu-
cleotides (bases),appear to serve primarily as repositories of information. This infor-
mation is represented by the particular sequence which is composed of four distinct
molecular units. For DNA the units are adenine,cytosine,thymine and guanine. For
RNA the thymine is replaced by uracil and all have a systematic modification that
changes deoxyribose to ribose forms. DNA and RNA could also be used as catalysts,
but this does not appear to be their primary function in cells. Polysaccharides and
lipids are polymers that serve both structural functions, and for storage of energy.

A number of polymers are involved in the formation of two-dimensional mem-
branes that are self-organizing molecular assemblies. A membrane is formed when
certain polymers having both hydrophobic and hydrophilic ends are present. Under
a certain range of conditions, the polymers form a planar double layer consisting of
internal hydrophobic ends that avoid water, and external hydrophilic ends that seek
water. Once a membrane is formed, other molecules can be added to modify its be-
havior. The formation of a membrane is, more than the existence of complex mole-
cules,the boundary of living and nonliving. It bridges from molecular systems to or-
ganisms because it establishes a distinction between the interior and exterior of a
system. Ultimately a membrane enables the interior environment to be controlled so
that, in turn, a variety of molecular processes can be controlled.

The hierarchy of living organisms is now understood to be classified into largely
single-cell prokaryotes and largely multicell eukaryotes. By number, most of the or-
ganisms on earth are in the category of prokaryotes. Prokaryotes, which include bac-
teria,are simpler and, according to fossil records,arose earlier (3 × 109 years ago) than
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eukaryotes (1.5 × 109 years ago).Prokaryotic cells consist of a cellular membrane with
molecules or molecular aggregates inside. In contrast, eukaryotic cells have additional
internal levels of structure in the form of membrane-bound organelles. These can in-
clude a nucleus,mitochondria, chloroplasts, endoplasmic reticulum,Golgi apparatus
and food vacuoles. Eukaryotic cells are typically at least 10 times larger than prokary-
ote cells. Prokaryotes can form colonies but never achieve the highest levels of orga-
nization seen in eukaryotes. Eukaryotic cells can be either single-celled organisms or
part of multicellular organisms including plants and animals.

Prokaryotic cells reproduce by replication. The DNA in a prokaryotic cell repli-
cates as materials are available. It consists of a single DNA double helix. In the ba c-
terium E.coli it is 2 × 106 bases long. Eukaryotic cells undergo a more complex process
of reproduction. Individual cells reproduce by mitosis, which involves DNA duplica-
tion and then separation in an organized fashion to ensure proper grouping of mul-
tiple DNA strands, each of which is called a chromosome.

Multicellular organisms frequently reproduce by sexual reproduction, which in-
volves two processes. The first is the formation of gametes consisting of cells that con-
tain half of the full set of chromosomes. This occurs by a process of cell division called
meiosis, during which a mixing (recombination) of the parent chromosomes occurs.
The second is a developmental process that occurs once two gametes from different
organisms are combined. This developmental process creates a new multicellular or-
ganism by cell division, growth,differentiation,locomotion and changes in shape and
function of cells. The developmental process is the topic of Chapter 7.

Cell replication involves both molecular replication and cell growth.DNA can be
replicated because the nucleotides preferentially bind in specific pairs: adenine with
thymine, cytosine with guanine. This enables a complementary chain to be readily
formed with the help of additional molecular machinery—a polymerase. The reac-
tion of replication can be performed in a test tube. The test-tube version is called the
polymerase chain reaction,and it is the basis of modern methods for determining the
sequence of DNA nucleotides and other uses of DNA. What does it mean to replicate
the molecule? Since this is the most basic biological replication process,it is helpful to
ask exactly what is being replicated. The atoms are not replicated, thus it is better to
think about DNA replication as a replication of the information in the sequence of the
polymer. More generally, polymers can grow by selective addition of monomers facil-
itated by catalysts. Cell growth occurs by selective addition of molecules to the cell.
This generally requires consumption of energy in order to execute the selection
against the influence of entropy.

Rep l i c a ti on is cen tral to the process of evo luti on , wh i ch invo lves ch a n ges in the
or ganism type over many gen era ti on s . In c rem ental ch a n ges occur thro u gh proce s s e s
that we gen eri c a lly call mut a ti on . The simplest of these is the ch a n ge of a single base—
a tra n s c ri pti on error. Th ere are other processes that ch a n ge the gen ome from gen era-
ti on to gen era ti on . The main process is that invo lved in sexual reprodu cti on . In this
proce s s , the DNA of male and female parent are mixed , typ i c a lly by taking half of t h e
ch rom o s omes from each . In order for this to make sen s e , t h ere must be some way to
en su re that all essen tial functi ons of the cell and mu l ti cellular or ganism wi ll be repre-
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s en ted in the final com bi n a ti on . This is accom p l i s h ed by the pre s en ce of t wo (or more )
h om o l ogous ch rom o s omes in each or ganism that would perform similar functi on but
a re differen t . Wh en the ch rom o s omes are sep a ra ted into zygo te s , wh i ch have on ly half
of the ch rom o s om e s , the process of m eiosis is de s i gn ed to en su re that one of e ach of
the hom o l ogues ends up in each of the zygo te s . The mating of z ygo tes then gives a new
D NA sequ en ce form ed out of the DNA of the paren t s . In human bei n gs there are 23
h om o l ogous pairs of ch rom o s om e s . With su ch a proce s s , the nu m ber of d i s ti n ct indi-
vi duals would be the produ ct of the nu m ber of d i s ti n ct hom o l ogue ch rom o s om e s .
Du ring mei o s i s ,h owever, t h ere is also a process that en co u ra ges cro s s over bet ween the
h om o l ogue ch rom o s om e s . Segm ents of D NA are tra n s ferred bet ween them . The lo-
c a ti ons of the DNA segm ents can also be re a rra n ged . This re sults in a mu ch larger set
of po s s i ble va ri a ti ons in the DNA of of fs pri n g. The basic functi onal parts of ch rom o-
s omes are call ed gen e s . In the simplest pictu re , a single gene contains the code for a
s i n gle pro tei n . F i n a lly, o t h er proce s s e s , su ch as ex tra ch rom o s ome du p l i c a ti on , c a n
ch a n ge the nu m ber of ch rom o s omes in the cell . No te that gen etic mixing by sexual re-
produ cti on is qu i te analogous to the form a ti on of com po s i te states discussed in Secti on
2.4 and similarly assumes partial indepen den ce of com pon ent functi on .

In our discussion of evolution, we will assume the existence of a basic cell with
DNA and replication machinery. Processes that led to such a system would involve
molecular evolution that can be discussed in a similar framework. The difficulty in
discussing molecular evolution is that organisms that involve other types of polymers
might be possible and we have no grasp of the space of possibilities. Even restricting
the organisms to those primarily encoded by DNA and ancillary molecules, we know
little about the enormous space of possibilities.Our discussion of proteins at the be-
ginning of Chapter 4 counted the large number of conformations for a protein. The
number of possible DNA sequences which are no longer than human DNA is 41010

.
Our interest is in this space of possibilities. We note that the number of possibilities
in Star Trek’s domain—“Space,the final frontier”—pale in comparison to the space
of possibilities that is being explored by nature through the process of evolution, in
which exploration human beings participate.

6.2.5 Qualitative incremental dynamics of evolution
The theory of evolution is based upon two processes, mutation and selection,that are
assumed to give rise to incremental changes in organisms. We discuss here qualita-
tively the processes and the types of incremental changes,and then we address their
properties more systematically through mathematical models that turn out to be
more subtle than the qualitative picture would suggest. The approach we take here il-
lustrates the dangers of qualitative models,how more quantitative models can be con-
structed, and some of the problems, as well as the benefits, of doing so.

Mutation,as previously mentioned, is used as a generic term for heritable varia-
tion in an organism largely through changes in the genome.Specific processes that re-
sult in changes in organisms from generation to generation include point mutations,
rearrangement, mixing by sexual reproduction and gene duplication. Mutation in-
creases the variety of organisms,thus enabling selection to effect a change in the over-
all population of organisms.
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Selection in a qualitative sense is differential reproduction. Organisms repro-
duce. The type of organism that is more likely to be around in the future is one that
has more offspring. The ability to have offspring requires survival and reproduction.
This can be prevented by various problems—nonviability, nonfertility, lack of food,
death by predators, death by disease, lack of a mate—leading to death without off-
spring. Fitness is, by definition, the quality that is selected for.

Equilibrium—To illustrate conceptually the processes of selection and mutation
it is helpful to consider first a condition in which there is no net change in the popu-
lation of organisms from generation to generation. We will often call this an equilib-
rium, but it is actually a steady-state condition, because resources are consumed. We
imagine a population of organisms (Fig. 6.2.1) that has a distribution of some prop-
erty and whose population is described by a Gaussian distribution. Without consid-
ering many implicit assumptions in this picture, we suggest that mutation is a process
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F i g u re 6 . 2 . 1 C o nc e p-
tual illustration of an
equilibrium that results
from mutation and se-
lection. The top figure
shows the increase in di-
versity of a population of
organisms as a result of
mutation. The middle
figure shows the de-
crease in diversity due to
the action of selection.
When these processes
are balanced, there is
no net change. The rela-
tive normalization of the
curves is chosen only for
convenience. The hori-
zontal axis is some heri-
table property of the
organisms. The bottom
figure illustrates the var-
iation of the fitness with
this heritable property.
In order to retain consis-
tency with dissipative
physical systems that
move to lower energy, we
plot the negative of the
fitness. By this conven-
tion, equilibrium occurs
in a valley. ❚
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that would, by itself, increase the width of the distribution, while selection decreases
the width, thus leading to equilibrium.

Evolution—The central process of evolutionary change is the displacement of a
population along some coordinate.Qualitatively this is illustrated in Fig. 6.2.2, where
motion on a slanted fitness surface as a function of some property is assumed to give
rise to population evolution. This motion results from a combination of mutation
and selection, where the mutation increases the width of the distribution,and selec-
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Figure 6.2.2 Conceptual illustration of a process of incremental evolution by biased selec-
tion. In the top figure, nonuniform selection is shown acting on a population of organisms.
Selection occurs by preferential death of organisms and/or by preferential reproduction of or-
ganisms. In the figure, only the effect of both is shown. This results in a net movement of
the population. The bottom figure illustrates progress down a fitness slope. Only one of the
subtleties that arise in this illustration is that we did not appear to need mutation. Mutation
is necessary because the population is discrete rather than continuous and therefore does not
have an arbitrarily long tail. At every step, mutation must create the forward tail of the dis-
tribution, which is then increased by reproduction. ❚
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tion causes the preferential selection of the more fit organisms. We say that selection
is a force driving the evolutionary process.

Trait divergence and speciation—In order to account for the existence of a variety
of organism types,it is necessary to have a possibility of splitting a single population
into two populations with distinct traits. For this to occur it is assumed that under
some circumstances there is a process of divergence of the organism traits. The be-
ginning of this process is called disruptive selection. This is illustrated in Fig. 6.2.3.
The opposite process of true convergence of two populations is not often considered,
for reasons discussed below. The formation of groups of organisms with distinct traits
may also lead to the formation of distinct species—organisms that cannot interbreed.

Extinction—Finally,organism types can disappear through extinction (Fig.6.2.4).
It is also possible for an organism type to increase dramatically in population over a
short period of time.Of the four processes illustrated in Figs.6.2.1–6.2.4 this process
is the one that most clearly suggests that what is shown is only part of the picture,since
extinction is a strictly time-dependent phenomenon. This implies that something ex-
ternal to the organism—its environment—is changing. We note that the nonre-
versibility of evolution is manifest in extinction, since the reverse process is sponta-
neous generation.
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Figure 6.2.3 Conceptual illustration of a process that may result in trait divergence — the
formation of two populations with distinct traits starting from one population. Beginning
from a population that is located at a particular value of a heritable trait, the population sep-
arates into two parts by disruptive selection that broadens the distribution and then forms
two peaks that separate over time. In order for this to occur, the fitness in the center must
be smaller than at the sides of the distribution. A question that immediately arises is, Why
did the initial single population peak form? Resolution requires some additional features that
must be included in a model but are not contained in this picture. ❚
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Genome, Phenome and Fitness

6.3.1 Complex to simple: a single behavioral parameter
The theory of biological evolution is predicated on the assumption of a measure of
fitness and its relationship to survival, reproduction and competition for resources
with other organisms. Fitness is considered to be a single valued function of the pa-
rameters, s, describing the organism. Depending on one’s viewpoint, the parameters
describing the organism may refer to the genetic code or to physiology and behavior.
It may be easiest to imagine the organism described by the genome as an explicit list
containing the sequence of DNA base pairs. For example s = (ATCGAAGCT...A). The
genome should also be understood to include a description of other parameters such
as molecules used in transcription and inherited cellular materials. Alternatively, we
can consider s as a representation of the phenome: physical and behavioral character-
istics such as height, weight, speed, instinctive behavior patterns, disease resistance,
etc. These attributes appear more closely related to capabilities of the organism. The
genomic space is related to the phenomic space through development. The converse
relationship, where behavior and physiological t raits affect the genome, is a conse-
quence of evolution. Our primary objective here is not to relate the genome to the
phenome, but rather to discuss the generational dynamics of s as a representation of
the processes of evolution. When we want to emphasize the distinction between phe-
nome and genome, we will use w for the former and s for the latter.

The fundamental assumption of evolutionary theory is that the fitness can in
principle be expressed as a unique function of the organism. More sp ecifically, we
have a real number K(s), which is the fitness. It will turn out that the models that we
will develop to describe evolution will have quite distinct roles for the fitness. These
models are a random walk model and a collection of differential reproduction mod-
els. Before we discuss these models, we will describe in Sections 6.3.2 and 6.3.3 the ba-
sic properties of the genomic and phenomic space and the sources of fitness.

6.3
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Figure 6.2.4 Conceptual
illustration of extinction
where a population of or-
ganisms disappears for
reasons that are not ap-
parent from this picture.
Influences of the envi-
ronment are responsible
but their nature is not
specified. ❚
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6.3.2 Genome and phenome
Before we consider various models for fitness and evolution, we must first clarify the
nature of the variable s. The space of possibilities of s can always be enumerated dis-
cretely as a set, but this is not necessarily helpful. The space of s generally indicates the
connectivity of the space—what values are able to make transitions to what values. A
transition is a change in s from generation to generation. The spatial structure of val-
ues of s thus represents our expectations of changes that are likely (states that are close
together in the space) and changes that are less likely in a single step but might occur
through a number of steps (states that are far apart in the space). We illustrate using
a few relevant examples.

The first case is a binary variable s =±1,similar but not necessarily with the same
dynamics as the two-state system of Section 1.4. This model could be a simplified sin-
gle base—considered as two possibilities rather than four. In sexual reproduction, a
binary variable can represent a gene with two possibilities (alleles) in a population.
The alleles might correspond to particular traits—for example, brown or blue eyes
among humans. We are concerned with the time dependence of the relative propor-
tion of the two traits.A standard picture of evolution would indicate the growth and
eventual dominance of one trait over the other. We can expand the two-state system
to a larger set of discrete possibilities. As long as there are only a few, a discussion of
the dynamics is similar to that for the two-state system.

The second case is a one-dimensional continuum. For our purposes, the contin-
uum and a set of discrete possibilities associated with the integers is the same. How
does such a model relate to the genomic or the phenomic space? The phenome ap-
pears to have continuum parameters such as the height or weight of an organism. For
animal breeding, we might consider chickens with a larger egg, cows with more milk,
or faster horses.A conventional picture of evolution would include the classic exam-
ple of incremental growth in size of the horse over time. How does this relate to the
genome? The natural continuum parameter of the genome is its length. We could
consider the possibility that the height of the organism is related to genome length—
the addition of bases in a particular part of the sequence increases the height. It would
be more reasonable, however, to assume that a number of discrete modifications of
the genome lead to a larger animal. How can discrete modifications lead to a contin-
uum? If we assume that each modification is independent and their effects are addi-
tive, then the height, w, is determined by an expression of the form:

(6.3.1)

where w0 is a constant added for convenience. We assume a representation s = {si },
where si is either ±1. wi is a number that determines the effect of si on w. A very rough
but useful first approximation is to consider each si to correspond to a single gene or
even base. It is important to recognize that this expression has implications for the
natural distribution of heights, which is different from the distribution expected in a
continuum. If we assume that all possible genomes are equally represented in a

    
w = w0 + si w i

i
∑
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population (selection does not apply) then there is a natural distribution of heights.
This would correspond to setting the values of si at random.

The simplest case to consider is when all wi have the same value, wi = w. Then
a random distribution of si implies that the heights have a Gaussian distribution with
a width given by w √N , where N is the number of independent terms. This is unlike
a usual continuum, where a random distribution would correspond to equal proba-
bility of all heights. This also implies that there are bounds to the values of possible
heights, ±N w, though the bounds are much wider than the distribution. There is an-
other way that this model is relevant to any discussion of evolution. When we apply a
selective force to such a continuum parameter, it gives rise to a bias in the probabili-
ties of values of the si. However, the phase space of possible genetic representations
decreases with increasing deviation of the height from the unbiased average.

The distribution of values of wi for a more realistic model should be considered
carefully. A single value might be replaced by a power-law distribution, or a distribu-
tion which implies that particular mutations have a large effect and others have a
small effect. For example, eye color, while dominated by the blue/brown dichotomy,
also has more subtle distinctions. Moreover, the additive representation might be re-
placed by a contingent representation where one mutation can occur only after an-
other has happened. Complicated distributions of traits among organisms that are
not subject to selection reflect features of the underlying genomic representation. As
usual, in modeling such distributions it is reasonable to build a preliminary discus-
sion upon simple models which illustrate features of more complete models.

The existence of an underlying genomic representation also has direct impact on
the dynamics of the continuum model. There is no reason to believe that the proba-
bility of a mutation to the right is the same as to the left. These probabilities will vary
at different location in the continuum. The simplest example is an organism that
starts with a genome of the form (−1,−1,−1, −1, ...,−1) and we study evolution of an
ensemble of these organisms where the only trait we measure is the total number of
1s, which is the relevant phenomic property. Then the genome mutates at random in
every generation. Initially, every mutation changes one of the digits to a 1. This would
look like a constant drift in the value of the phenome. Then as time goes on there are
fewer –1s, and the mutations may change either −1s to 1s or 1s to −1s. Without any
selection bias it will eventually set the digits equally on average to 1s and −1s with a
distribution that extends from N /2 − √N to N /2 + √N. This distribution is not
changed by mutation. We will discuss the effect of a bias due to fitness selection in the
following sections.

There are many other possible spaces to consider in addition to a binary and a
continuum space. We can consider various d-dimensional continuum spaces and
combinations of continuum and discrete spaces. We could also consider a set of N bi-
nary variables, an Ising-like model, representing the various bases or alleles of genes.

The final case we consider is a more direct representation of the genome as a
space of strings, s = (s1s2s3.. .sl ...) where all characters si for i > l are zero, and l is the
genome length. The si might be taken to be bases or genes with a prespecified alpha-
bet of possibilities. One kind of transition in this space alters the characters but does
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not change the string length. For example, point mutations change the value of a sin-
gle character. Another kind of transition changes the length of the genome—for ex-
ample, adding or deleting a single base at the end, or inserting or deleting a base some-
where in the middle. If we limit ourselves to considering only these transitions, we can
consider the process of genome extension as distinct from the process of changing the
genome for a specific length. The rate of point mutation need not be the same as the
rate of mutations that change the genome length. Later, we will discuss the implica-
tions of this model for the problem of generating organisms of higher complexity.

In considering the space of possible organisms, it is essential to consider the in-
dependence or dependence of parameters.Only when parameters are independent is
it possible to consider a phenomic trait or a particular gene as the subject of evolu-
tionary study. Similar to the discussions in Chapters 2 and 4, there are likely to be
parameters that are partially independent. For example, the st ructure of the diges-
tive system is largely independent of the mating behavior or the absolute size of the
organism. Because of the independence of certain physiologic or behavioral para-
meters, we can consider evolutionary change in the different parameters separately.
Even when they are coupled, partial independence implies that there are organisms
that share one trait but vary in another. This variation can allow for evolutionary se-
lection in one and not in another. When chickens are bred for increased size,this can
be done largely independent of the color of the chicken. The independence of phe-
nomic traits should, however, be carefully considered in the context of the underly-
ing genomic representation. The essential point is illustrated by considering the rep-
resentation described in Eq. (6.3.1) and allowing for two different traits w,v to rely
upon the same representation:

(6.3.2)

As long as we are considering values of w and v that can be represented by a large num-
ber of possible genomes,then w and v may act independently. However, when one of
the phenome parameters is pushed by selection to an extreme limit,then the space of
available genomes becomes reduced and the possible values for the other phenome
parameter also becomes reduced. For example,if all (or nearly all) si in Eq.(6.3.2) are
selected to have the same sign as wi to achieve the maximal value of w then we are
restricted to a particular value (or limited set of values) of v which is (are) unlikely to
be optimal. Systematically, we can say that a high selection pressure increases the cou-
pling between various phenomic parameters. Moreover, this shows that it is progres-
sively difficult to optimize multiple phenomic parameters at the same time. This is
important when we consider several different traits that superficially are independent,
such as chicken size,the number of eggs laid per day, and the resistance to a particu-
lar disease. Starting from an unbiased distribution, by selection we may be able to
change them independently. Once they are strongly selected they often become cou-
pled to each other.

      
v = v0 + s i vi

i
∑

    
w = w0 + s i w i

i
∑
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The idea of trait independence, and direct coupling of a single trait to a single
gene, has attained a popular following that is reflected in the searches for individual
genes responsible for a variety of human physiological and behavioral traits. It is not
unreasonable to suggest that this view arises largely out of our ignorance of the com-
plex interplay of genome and phenome.

In a more global context,the coupling of attributes is a motivation for diversity
of life even if the possible organisms are continuous. We can consider different or-
ganisms that optimize particular capabilities and not others: sensory acuity or large
size or quickness.Each of these can provide an opportunity for fitness improvement,
but eventually to the exclusion of improvements in other properties. This suggests
that different organisms could survive by optimizing different traits. However, in or-
der for this to be the case, there must be a nonlinear relationship between fitness and
the phenomic properties. A linear optimization would still mean that a particular
combination of characteristics wins over the others, and diversity would not result.

6.3.3 Fitness sources
The variation of fitness as a result of mutation may range from large to insignificant.
A large variation in fitness may result in offspring that aren’t viable—that are unable
to survive or reproduce. An insignificant variation in fitness means that the difference
doesn’t affect selection; such mutations are called neutral. In a historical controversy
it has been debated whether neutral mutations dominate the space of possible muta-
tions. The controversy is relevant, because if neutral mutations dominate, then ran-
dom changes (diffusion) of the genome, rather than selection, would cause evolu-
tionary changes. Conventional evolution by selection occurs when changes in fitness
are significant but gradual,so that populations change over many generations.On the
other hand, the proportion and spatial distribution of nonviable organisms may re-
sult in boundaries to the course of evolution that are likewise important to under-
stand. In this section we discuss some of the possible reasons for large variations in
fitness, or a lack of variation in fitness,that can give insight into these issues. Remarks
in later sections will clarify the neutralist/selectionist controversy.

Fitness may be considered as a function of the genome or phenome space. The
function K(s) has different properties depending on what s represents. Contributions
to fitness variation are considered for each case in the following paragraphs.

We begin with the contributions to the fitness for the genomic space. We focus
on complex multicellular organisms and their viability. A specific genome may not be
viable because it does not provide for its own reproduction, or for effective expression
of its information. The genome contains markers that indicate where to begin and
where to end transcription so that proteins are formed. Eliminating or adding such
markers may be readily understood to cause nonviability of the genome. Moreover,
the genome acts as a set of instructions that lead to development of a multicellular or-
ganism. It may fail due to inconsistent instructions. It may also describe a nonviable
organism where necessary physiological functions do not exist, or where organs or
systems are improperly connected or sited. We might also distinguish between or-
ganisms that are viable under some circumstances, but not the circumstances that
prevail. For example,a fish born on land.We could introduce the concept of a domain
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of viability as the set of conditions under which a particular organism is viable.
Evidence for a large number of nonviable genomes exists. It is believed that approxi-
mately one-third of successful impregnations in human beings result in early (first
trimester) miscarriages that are often unnoticed.A significant proportion of these are
believed to be due to nonviability of the genome. It should be understood that this oc-
curs even though the possible genomes are very selectively chosen due to their origi-
nation from functional genomes of the parents with limited types of variation. This
also suggests that developmental viability is a major constraint on fitness. Finally,
some organisms are not fertile even when properly developed, with the classic exam-
ple being the mule.

In contrast to the reasons for nonviability, there are also reasons that mutations
are neutral.A significant amount of DNA in cells does not appear to code for proteins
and, at least to a first approximation, does not directly affect the system function.
Discussions of the role of this “junk DNA” have yet to resolve whether it has a func-
tional role, such as in the structure of the DNA molecule or as latent coding DNA, or
if it has no functional role at all. At the present time it is reasonable to assume that a
significant fraction of changes in this part of the DNA are neutral with respect to se-
lection. We can also discuss changes in the coding parts of the DNA. Changing a sin-
gle base that codes for a particular protein may not change the amino acid that it codes
for. This is because the mapping of DNA to amino acids is not one-to-one. Even if a
base change does change the amino acid, changing one amino acid generally does not
affect the structure of a protein or its enzymatic activity. Even when a protein is
changed so that its activity is compromised,the change may be compensated by other
cellular or physiological mechanisms. This suggests that many changes in the genome
do not affect the phenome and thus do not affect the fitness in a conventional way.

When we consider the fitness as a function of the phenome, we would consider
as coordinates various properties of an organism such as height, weight, bone struc-
ture or speed of locomotion. However, a central problem with this description is that
it is not clear whether it is possible to create an organism with a particular set of phys-
iological properties from a genomic description. We can describe various organisms
in terms of their traits, but they may be impossible to create. We could protect our-
selves from this problem by considering only organisms that are known to exist and
comparing their fitness. However, this simplification does not allow us to address ba-
sic questions that we want to understand regarding the reasons for the existence of or-
ganisms in the form and with the evolutionary history that is found. Moreover, from
a practical point of view it is important to understand what are the factors that pre-
vent horses from running faster, chickens from laying more eggs or cows from giving
more milk. Thus nonviability has meaning in this context as nonfeasibility. Feasibility
can be divided into several categories according to which constraint prevents the for-
mation of the organism—physical or representational. We also can discuss generally
the effect of population interactions.

Physical constraints—In the context of particular external circumstances, physi-
cal law places various constraints on possible organisms. There are requirements on
strength of bone in order to support an organism in a certain gravity. There are also
constraints on senses—ears and eyes are limited in their sensitivity by quantum me-
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chanics. External conditions such as temperature, air pressure and composition im-
pose additional constraints. For example,the visibility in air is limited to a window of
frequencies that are relied upon by the eye. The composition of the atmosphere places
constraints on the organisms that can exist in it. The terrain places constraints on the
nature of locomotion and the limbs that may be useful for it. The ocean and its com-
position imposes quite different constraints. The cycle of day and night results in
other constraints. The qualitative differences between organisms in the water and on
the land, or even between fresh and salt water and between different land climates,
and specifically the lack of viability of one organism in another environment, suggests
the importance of physical constraints on fitness.

Representation constraints—Even if certain traits are possible within physical law
they might not be possible when we consider their implementation using DNA en-
coding. The process of developmental biology does not allow all systems to be formed.
For example,automobiles are possible, but it appears likely that developmental biol-
ogy cannot create a car directly using DNA encoding (indirectly, of course, it has).
There may also be limitations in the structures that can be formed because of the use
of particular chemical processes. This is not due to physical law but rather to the
mechanisms of coding. A milder form of the encoding constraints exists in the form
of coupled traits. Thus certain physiological/behavioral traits may be coupled to oth-
ers due to their representation in the genome. Such constraints are difficult to con-
sider without understanding the processes involved in developmental biology. They
will become somewhat clearer as we discuss these processes in Chapter 7.

Population interactions—Population interactions might be thought to be signifi-
cant only after issues of viability cease. This is not entirely true because, for example,
parenting can enable organisms to be viable when they would not otherwise be.
There are various interactions between different organisms that are important for fit-
ness. There are interactions between organisms that are distant from each other in the
genomic space. Examples include: interactions between plants and animals, interac-
tions between bacteria and multicellular organisms and interactions between para-
sites and their hosts. There are also interactions between organisms that are proxi-
mate to each other in the genomic or phenomic space. They can include competition
for the same resource, cooperation in group protection, reproductive interactions
and parental attention.

Is the variation in fitness dominated by interactions between organisms or by in-
herent (physical or genomic) limitations? This question is superficial in that it is quite
clear that both contribute in essential ways to the determination of fitness. Moreover,
physical considerations, such as the composition of the atmosphere, due in part to the
balance of plants and animals, may also reflect indirect interactions between organ-
isms. Interactions and their effect on fitness are also related to physical considerations.
Nevertheless,the issue of the relative importance of interactions and physical causes
of fitness is important because it is relevant to questions that are at the heart of evo-
lutionary theory. For example,it is relevant to the importance of randomness and his-
torical accident in determining the course of evolution.
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It is tempting to consider all variation in phenomic traits as significantly affect-
ing fitness so that there are no neutral variations. The more practical aspect of this ap-
proach is to understand the existing variation of phenomic properties of a particular
population of organisms. The central issue becomes whether the variation in phe-
nome represents a diversity that is being acted upon by selection and therefore certain
traits will eventually be forced to disappear in favor of others, or whether the varia-
tion is neutral with respect to selection and will persist. This limits the scope of the
question from the space of all possibilities to the space of extant organisms. Even in
this context, the controversy between neutralists and selectionists is not easy to re-
solve. The issue is still more complicated since populations of organisms may not act
solely to select individual properties but also properties of the whole population. In
this case variation may reflect the effects of selection. This will be discussed in
Section 6.6.2.

From the discussion in this section, we see that there are a wide variety of con-
tributions to the fitness of an organism. These factors change in time due to various
events that range from change of weather to fluctuations in populations of other or-
ganisms. Since we are describing the evolution of organisms due to a fitness that it-
self depends on the existence of organisms, we are describing a self-consistent
process. Such self-consistency was discussed in Section 1.6 in the simpler context of
the Ising model for magnets. In essence, the concept of fitness itself represents a
mean field approach. The assumption is that at any time, an average over influences
that affect fitness is a meaningful concept, and that evolution takes place in the con-
text of this average fitness. This is one of the central assumptions in evolutionary
theory, not just in the models we will be discussing. Whenever the fitness is dis-
cussed as a fixed external parameter independent of the changes in the population,
this simplification is being made. Corrections to the mean field approximation can
be included in various ways; however, it is not clear how well it serves as a first
approximation.

Question 6.3.1 If large regions of the space represent nonviable organ-
isms,this might prevent evolution from one part of the space to another.

The relevant question is the degree of isolation of regions of the space, like
valleys in a mountain range. What phenomenological evidence suggests that
the phenomic space is connected?

Solution 6.3.1 One observation that suggests that the space is connected is
the existence of various widely different classes of animals such as land ani-
mals, winged animals,and water animals. The existence of flying insects,fly-
ing birds and flying mammals also suggests that there are multiple pathways
between widely separated parts of phenomic space, as does the existence of
different kinds of swimming animals. It is difficult, however, to rule out the
possibility that other classes of organisms do not occur because evolution is
unable to reach them. ❚
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Exploration, Optimization 
and Population Interactions

6.4.1 Exploration and optimization on a fitness landscape
At the root of evolutionary theory is the concept of optimization. It is not to be as-
sumed that the optimum has been, or ever will be, reached. However, incremental
evolutionary processes increase the fitness. Thus, it makes sense that a first mathe-
matical model of evolution relies upon our understanding of the dynamics of opti-
mization. Optimization problems can generally be written as a moving point on a
landscape representing the cost function. The prototype optimization problem is the
motion of a particle on an energy landscape where dissipation of kinetic energy
causes it to move to lower potential energy. A nonzero temperature causes the parti-
cle to bounce around,enabling movement up in potential energy, but the tendency is
to settle in lower regions. This system was introduced in Section 1.4 for simple energy
landscapes and discussed in Section 1.7 in the context of Monte Carlo computer sim-
ulations. It was also the basis of our discussion of the relaxation of proteins to their
folded conformation. For evolution, we modify this picture by allowing the existence
of more than one organism performing the optimization at the same time.
Interactions between the organisms change the nature of the optimization. We first
introduce and motivate a conventional optimization picture, and later discuss how
the interactions affect it.

A central difficulty in constructing mathematical theories of evolution is the ne-
cessity of describing reproductive proliferation of a single organism,a variable popu-
lation size and population interactions.On the other hand, survival pressure is based
on the concept of a population of limited size. In a simplified form, one organism re-
places another due to limited resources. It is not unreasonable to model this first by
using the dynamics s(t) of an organism that reproduces and dies immediately after
giving birth to a single mutated offspring. Thus, as a basis for our discussion we can
consider a single mutating organism in a fixed size population—an ensemble. This is
a Monte Carlo random walk model (Section 1.7.2).

In the Monte Carlo random walk model we begin with a population of N non-
interacting organisms identified by their locations {si} on the fitness landscape. The
organisms are called walkers. In each time interval, every walker attempts to take a
step. Steps correspond to changes in the value of si. The step of an organism is selected
at random from all changes in s that are allowed by organism mutation. The proba-
bility of a mutation is represented by a matrix (s′|s′′) which gives the probability of
a mutation from s ′′ to s′ in a particular step. The move is accepted or rejected accord-
ing to the fitness K(s).A convenient, but by no means unique,way to do this uses the
Metropolis form, which says that if the new fitness is higher, the step is taken. If the
new fitness is lower, then the step may still be taken but with a reduced probability
given by the ratio of fitnesses: K(s′)/K(s′′). The lower the fitness is at s′, the smaller is
the chance the step will be taken. When the step is not taken, the walker stays in its
original location.We can think about this process in terms of the competition for sur-
vival. Starting with an organism at s′′, we perform a mutation to s′. We think about

6.4
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this as the momentary existence of two organisms at s′′ and at s′. Then we perform se-
lection. Either the new or the old organism survives and the other one disappears. In
the Metropolis form there is an asymmetry between the selection of the old and new
organisms. If the mutation leads to an organism that is more fit,the new organism al-
ways survives. If the mutation leads to an organism that is less fit,then there is still a
probability that the new organism will survive. This probability is given by the fitness
ratio. We could also choose a selection rule that treats the new and old organisms the
same. This would not change the overall evolutionary behavior in this model.

Quite generally, the stochastic dynamics of an ensemble with walkers that do not
interact can be written as a Markov chain (Section 1.2). The ensemble is represented
by the probability P(s; t) of finding a particular organism s at time t. This probability
changes with time due to mutation, reproduction and death. The probabilities of or-
ganisms at one time determine the probability of organisms after an interval of time
by a linear matrix equation (Eq. (1.2.5)) which we rewrite here:

(6.4.1)

The matrix Ps(s′|s′′) is the probability an organism at s′′ will go to s′ in the next step.
It is specified by the matrix (s′|s′′) and the fitness K(s). The precise expression for
Ps(s′|s′′) is not essential for our discussion, but for the Metropolis form it is given by
Eq. (1.7.19) as:

(6.4.2)

It is important to note that Eq.(6.4.1) is linear in the organism population. It applies
when there are no explicit interactions between organisms. Because the equations are
linear, we can consider e volution by starting from a population located at a single
point,and apply superposition to obtain the evolutionary behavior of any initial set
of organisms.

There is also one more point that we must consider—the granularity of the en-
semble. Eq.(6.4.1) uses continuous values of the probability P(s; t). We should not use
a continuum model to describe populations, because a subunit population makes no
sense biologically. The Monte Carlo random walk has g ranularity built in. However,
as long as the model is linear this granularity is not essential. When we consider in-
teractions between organisms that make the model nonlinear, we can do so in the
context of the random walk model.

Since we are discussing the properties of a system for which we do not actually
know the landscape, we should review what we know about the general properties of
Markov chains that are true for any landscape. We know that after enough time has
passed,a Markov chain in a connected finite space will reach equilibrium. This is true
about the model populations independent of whether the parameters of the model
are derived by assuming nonequilibrium organisms and nonequilibrium processes of

    

Ps( ′ s | ′ ′ s ) = ( ′ s | ′ ′ s ) K( ′ s )/K( ′ ′ s ) ≥ 1 ′ ′ s ≠ ′ s 

Ps( ′ s | ′ ′ s ) = ( ′ s | ′ ′ s )K( ′ s )/K( ′ ′ s ) K( ′ s )/K( ′ ′ s ) < 1 ′ ′ s ≠ ′ s 

Ps( ′ ′ s | ′ ′ s ) = 1−
′ s ≠ ′ ′ s 

∑ Ps ( ′ s | ′ ′ s )

    

Ps( ′ s ;t) = Ps( ′ s | ′ ′ s )Ps( ′ ′ s ;t −1)
′ ′ s 

∑
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birth, consumption and death. The extensibility of the genomic space suggests it may
not be finite. However, any limit on the ultimate length of the genome implies that
over long enough time the system must reach equilibrium. The time to reach equilib-
rium may be much longer than any reasonable amount of time (e.g., the lifetime of
the universe) but our discussion does not depend upon this, since in this chapter
(contrast Chapter 4) we are concerned about the dynamics of the ensemble, not the
time scale to reach equilibrium.

The overall behavior of the Markov chain is that of a relaxation process of P(s ;t)
to the target (equilibrium) probability distribution P(s) which we recognize as the fit-
ness P(s) = K(s). This follows from our use of the fitness to determine the probabili-
ties of taking a step in the random walk. We may choose to represent the fitness as:

K(s) = P(s) = e−E(s)/kT (6.4.3)

where E(s) is determined as a function of the fitness using

E(s) = −kT log(K(s)) (6.4.4)

We call E(s) the energy since it plays a similar role to the energy in particle motion on
an energy landscape. However, the energy as it is defined here is not the actual energy
or energy consumption of the system—it is only a way of writing the fitness.High en-
ergy implies low fitness, and low energy implies high fitness. The energy landscape is
the landscape for motion of particles representing the genome of organisms. In prin-
ciple, the parameter kT plays no essential role and could be set to 1. If the tempera-
ture kT is kept as a tunable parameter, it is an overall scale factor that changes how flat
the fitness landscape is. This reflects the influence of chance in the selection process.
For low kT the chance of a higher-energy organism surviving is insignificant. For
higher kT higher-energy organisms are more likely to survive.

The identification of the fitness with the target probability distribution of the or-
ganisms enables us to think about the evolutionary process directly. The concept of
selection appears in the target population distribution,since the higher the fitness,the
greater the target population of the organism. Even though the target dist ribution
K(s) is not the same as the distribution at a particular time P(s; t), under some cir-
cumstances the relative populations between organisms given by K(s) may be the
same as in P(s ;t). We will discuss the conditions under which this is true below.

There is one aspect of this model that may already be troubling. If the fitness is
directly related to the current population of organisms,this would strongly favor mi-
crobes over insects and insects over human beings. The difficulty here is not superfi-
cial and is important for the understanding of evolutionary theory.

Our objective will be to discuss generally the consequences of the random walk
model. In particular, we will focus on building an understanding of the relationship
between general biological phenomena and the motion of populations on the fitness
landscape. We will also consider the effect of the environment through the shape of
the landscape and the implications of interaction between organisms. Eventually we
will find this model to be quite limited and will discuss ways that it must be improved
to account for the phenomena we hope to describe.
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Quite generally, the dynamics of a Monte Carlo random walk on a landscape is
an exploration of the space with longer times spent in regions of lower energy. As we
discussed in Section 6.3.2,the nature of the space of possibilities s can be used to de-
scribe the possible mutations. The coordinates of organisms that can mutate to each
other are close in space,and those that require several steps are further apart.Once we
have determined the nature of the space, we must provide values for the fitness. Then
we can tentatively apply our intuition to the dynamics of a population that appears to
diffuse in the space.

6.4.2 Shape of the landscape
In a theory of evolution based upon fitness, there is only one mathematical entity—
the fitness.Thus we must satisfy ourselves that using only the fitness landscape we can
account for all of the phenomena of life. If we knew the landscape, we could analyze
it to arrive at these conclusions. Alternatively, we may analyze the requirements that
the landscape must have in order to satisfy these properties. At this time, the latter
phenomenological approach is appealing, since we have yet to develop a systematic
approach to obtaining the actual landscape. A systematic determination of the land-
scape would require us not only to know the fitness of specific organisms, but also
their genome or phenome in order to map the fitness space. It would be necessary to
know this both for organisms that are found on earth and organisms that might be
created by genomes that do not exist. Using the phenomenological approach, we can
relate general properties of the landscape to the phenomena of life. Various experi-
ments have more specific bearing on the nature of the landscape.

When we consider mathematical models for the landscape of the fitness there are
several generic possibilities:

Flat—The landscape may be essentially flat, corresponding to the neutralist
perspective.

Smooth—When there are variations it might be smooth, so that fitness varies
continuously with changes in the organism. It suggests that there are only a few widely
separated minima.

Rugged/random—A rugged landscape implies that the fitness of one organism is
uncorrelated with the fitness nearby. The fitness might be selected at random from a
distribution.

Locally correlated—If there is local correlation then the fitness is correlated
within a limited distance, and becomes random for larger distances.

Locally rugged with long-range correlations—If the landscape is random over
short distances, it may still be smooth if we average the values of fitness over neigh-
boring sites, or look at the minimum of the values of fitness over neighboring sites
and consider the longer-range variation.

Complex—A truly complex landscape implies that there exists structure on
every scale. There might be power-law correlations between different locations as a
function of distance. Different regions may be smooth or rough. This allows for
many different kinds of evolutionary behavior. In this case we should not infer from
one or two phenomenological examples what the general behavior is like. However,
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the existence of various possibilities does not necessarily mean they are relevant to
the global behavior of evolution.

6.4.3 Evolution—local landscape dynamics
We start by considering incremental pictures of the dynamics of a population of or-
ganisms analogous to Section 6.2.5.These should be related to smooth fitness surfaces
for continuum s. The first picture of equilibrium as a balance between mutation and
selection (Fig. 6.2.1) can be readily understood as the behavior of a population in a
valley. The equilibrium distribution P(s) = K(s) = e−E(s)/ kT is realized with the energy
a parabola E(s) ∼ (s − s0)2 to first order in arbitrarily many (continuous) dimensions.
This picture works. In the dynamics of Monte Carlo walkers, mutation increases the
diversity of the population, while selection reduces it.

We run into some trouble with the second picture (Fig. 6.2.2), of population mo-
tion on a linear slope. In the model that we are considering the population does dif-
fuse down the slope, but the distribution broadens (Fig. 6.4.1). What happens when
we add more dimensions? When the landscape is smooth,there is only one direction
in which the fitness is increasing (the steepest descent direction of the energy ∇K ∝−
∇E), and all orthogonal directions have no change in fitness. This is a property of a
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smooth function,and does not require any special conditions. This should be recalled
in the context of the selectionist/neutralist controversy. To first order (i.e.,valid for in-
cremental evolution) only one out of many dimensions of variation of the mean of a
population of organisms can be affected by selective pressure. In the other dimensions
the population will spread out until it reaches second-order changes in the fitness.

In general, the landscape model readily accounts for the spreading of a popula-
tion throughout space. We might argue that this is a favorable outcome for the expla-
nation of the diversity of life. However, there is greater difficulty in accounting for
confinement of the population. Confinement is evident when a population of organ-
isms has a limited range of traits. It can be confined in a valley; however, a population
evolving as a whole cannot be in a valley. In order to confine an evolving population,
it is necessary to assume that the evolution is in one dimension only and that other
dimensions are confined as in a channel. Even in this case,from Fig. 6.4.1 we see that
spreading occurs in the direction of evolution.

Trait divergence requires the confinement of population traits, since two popu-
lations of organisms must be separated from each other. To understand the formation
of two groups of organisms with distinct traits, as illustrated in Fig. 6.4.2 we would
consider a spreading population encountering a ridge that will separate the popula-
tion at later times. As long as the landscape is smooth,the population will be contin-
uous.Only when there arise barriers will the population separate into different parts.
While there is need for a cause for the separation, there is no need for a cause for the
broadening of the distribution.

An o t h er way to understand the ex i s ten ce of groups of or ganisms with disti n ct
traits is thro u gh local minima in the landscape . A ro u gh or correl a ted landscape has
mu l tiple minima and barri ers over wh i ch walkers must cross to re ach them .S t a rting at
a point within a particular va ll ey, the pop u l a ti on spre ads and becomes a Gaussian dis-
tri buti on at the minimu m . Over ti m e , the pop u l a ti on wi ll escape from the va ll ey to find
o t h er va ll eys . For two va ll eys this is just the two - s t a te model of Secti on 1.4. The pop u-
l a ti on evo lves by ch a n ging the rel a tive prob a bi l i ty of the two states until an equ i l i briu m
is establ i s h ed bet ween them . Th ere is a ch a racteri s tic time for this equ i l i bra ti on . As
s h own in Fig. 6 . 4 . 3 , this can serve as a model for trait diver gen ce or ex ti n cti on .

Wh en there are many va ll eys , we can ch a racteri ze the pop u l a ti on at any time by a
qu a s i - equ i l i brium that applies to the regi on of s p ace wh i ch has been re ach ed by the
pop u l a ti on . In this regi on of s p ace the rel a tive pop u l a ti on of d i f ferent or ganisms is given
by their rel a tive fitn e s s . Thu s , in this regi on the pop u l a ti on approx i m a tes the ex pre s s i on

(6.4.5)

where the values of s in the sums are also limited to the region of space that the pop-
ulation has reached. It is important to note that a feature of this model is that the
population of organisms in a well does not evolve together. Instead, individual or-
ganisms explore space and accumulate at valleys that are then identified as groups of
organisms with similar traits. Since there is no interaction between the organisms,
there is no reason for them to evolve together. This is related to the problem of con-

    

P(s ;t) =
K (s)

K(s)∑
=

e −E(s )/kT

e −E(s )/kT∑
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finement. The problem related to confinement is most apparent when we consider
whether the population maintains a structure of separated groups of organisms or
continues to disperse until each organism is isolated.

On a rough landscape in a one-dimensional space, the population of walkers is
confined to a limited region of space, because barriers prevent it from expanding to
fill the space. However, in higher dimensions the population can generally escape
around barriers to explore ever larger regions of space and therefore also find pro-
gressively lower minima if they exist. We note that in order to account for the phe-
nomena of life, the landscape must be constructed in such a way that groups of or-
ganisms continue to exist:there isn’t complete accumulation in one valley, and at the
same time there isn’t complete dispersal.

We can see that describing a landscape that enables the creation of distinct or-
ganism types without causing complete dispersal is difficult in this model. The need
for this kind of balance is not healthy in a generic model, because it compels us to pro-
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Figure 6.4.2 Schematic illustration of trait divergence in the Monte Carlo random-walk
model. The process requires at least two dimensions in which fitness is varying. In the first
direction, a linear fitness slope causes the population to translate over time. This dimension
is indicated in the figure by successive closely spaced curves displaced towards the bottom
right of the page. The second dimension is shown by the curves themselves. As the popula-
tion evolves down the slope, it encounters a fitness ridge in the second dimension which
causes the population to split into two parts. ❚
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vide some reason that the landscape is so constructed. No reason is readily apparent.
We will try to solve this problem with interactions between organisms in
Section 6.4.5, but we will be only partially successful.

In the random-walk model there is a natural way to discuss the effect of the map-
ping of genome to phenome. The genomic representation can be accounted for by
writing an effective phenome fitness in terms of the genome fitness as:

(6.4.6)

which says that the fitness of the phenome coordinate is the sum over the fitness of
the respective genomes that give rise to this phenome. This makes sense, because the
phenome target population is the sum over the respective genome target populations

    

K (w) = w(s),s K (s)
s

∑
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Figure 6.4.3 Evolution of population on a landscape with two wells, similar to the time evo-
lution of the two-state system in Section 1.4. Starting from a population in one of the two
wells, the population in the other well grows until equilibrium is reached. This can be a model
for trait divergence if organisms of both types continue to exist in equilibrium, or if multiple
wells are being filled and emptied, as in a washboard energy with progressively lower wells.
It is also a model for extinction, when a well becomes completely depopulated. Note that for
trait divergence we could also start from a population in the lower well and create a smaller
population of new organisms by occupying the upper well till it reaches equilibrium. ❚
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for all genomes that give rise to this phenome. Eq. (6.4.6) is the same as treating the
fitness using a free energy for the phenome coordinate.

(6.4.7)

The free energy, defined as in Eq. (1.4.27),

(6.4.8)

plays the same role for the phenome as the energy did for the genome. It contains the
effects of the different number of possibilities of the genome for each value of the
phenome.

The free energy can also be written in terms of an entropy with the usual rela-
tionship between energy, entropy and free energy. Assuming the fitness is only a func-
tion of the phenome w means that the energy E(s) can be written as E(w) and can be
removed from the sum in Eq. (6.4.7) to obtain:

(6.4.9)

The sum in the logarithm is the distribution of possible values of w(s).
For the phenome representation of Eq. (6.3.1) with wi = w, the use of a phe-

nome fitness takes into account the larger number of possibilities of the distribution
being near w0. For random si (no selection), w(s) is a random walk in the variables si .
Thus the distribution is a Gaussian (Eq.(1.2.39)) and the free energy is a quadratic in
w (constant terms due to the normalization of the Gaussian can be neglected):

F(w) = E(w) + (kT /2N w 2)(w − w0)
2 (6.4.10)

Thus the maximum of the phenome fitness is at w0. A similar calculation was done at
the beginning of Chapter 5.

The use of a phenome fitness enables us to perform the Monte Carlo walk in the
phenomic space without considering the genomic space. In general we have to be con-
cerned about the possible transitions in w as a result of mutations in s. For this sim-
ple case where wi = w , mutations can change w by only ±1. As discussed in
Section 6.3.2, when there is no fitness bias in the underlying genome representation,
E(w) = 0,there is still a fitness bias in the phenome representation F(w) ≠ 0. Changes
in w are linear in time if we start sufficiently far away from w0. Every step toward w0

is accepted and every step away is rejected. Near w0 steps are random. Eventually the
population reaches equilibrium in the Gaussian distribution.

To consider a fitness bias and selection that would lead to a phenome that has, for
example, taller horses, we would write the free energy as:

F(w) = − w + (kT /2N w2)(w − w0)2 (6.4.11)

where the linear energy E(w) =− w is the phenome fitness bias. The new equilibrium
value of the phenome is obtained by minimizing the free energy and is given by

    

F(w) = E(w)− kT ln( w (s ),s

s

∑ ) = E(w) −TS(w)

    

F(w) = −kT ln( w(s ), s e −E(s)/kT

s

∑ )

    

K (w) = w(s),s e −E(s )/kT

s

∑ = e −F(w)/kT
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(6.4.12)

The equilibrium distribution e−F(w)/kT is a Gaussian of the same width as before.
Because it is displaced from the center of the genomic space, there are fewer distinct
genomes that comprise the population. This reduction can be estimated by the num-
ber of genomes at the peak location w′0 which is reduced from the number at w0 by a
factor:

(6.4.13)

This il lustrates the effect of selection which, by definition, decreases the numb er of
possible organisms in the population.

Question 6.4.1 Consider a genome that consists of the values of all
wi = w except for one mutation s0 which has the value of w0 = N w.

Start from an equilibrium distribution without selection. Discuss strategies
for artificially selecting organisms for obtaining large w.

Solution 6.4.1 The initial distribution of w consists of two Gaussian peaks
located at w0 ± w0. It is clear that the organisms that are optimal all have
s0 = 1. The key point in performing selection,however, is realizing that in ad-
dition to the gross effect of the single mutation,the best organisms also have
many small effects due to si = 1 for i ≠ 0 that accumulate to reach the opti-
mal w . To achieve a population of such organisms, the best approach is not
to select the upper peak of the equilibrium distribution but rather the upper
tails of both peaks. The upper tail of the lower peak is only one mutation
away from the upper tail of the upper peak. In contrast, organisms in the
lower tail of the upper peak are many mutations away from the upper tail of
the upper peak.

Consider the problem of developing a selection strategy for a more
complex distribution of wi . Also, does the answer change for sexual
reproduction? ❚

6.4.4 Complexity increase
The increase of complexity of organisms is tied to the increasing length of the ge-
nomic representation. For now we can consider this as an intuitive relationship which
will be clarified somewhat during the discussion.A more careful formulation of the
relationship of genome length and complexity is deferred to Chapter 8.

A simple model of the process of genome extension can be constructed out of the
genome-space model consisting of strings of characters where point mutations, in-
sertions and deletions are allowed. There is a difficulty with this model that will be-
come apparent in a moment. Consider first a model where the fitness is the same for
all possible genomes. We are interested in the time dependence of genome length l(s)
of the population when we start from a population of organisms with a short genome,

    

′ w 0 ,s
s

∑
w0,s

s
∑ = e (S( ′ w 0 )−S(w0 )) /k = e −(kT / 2N w

2
)( ′ w 0−w0 )

2

= e − 2
N w

2
/ kT

    ′ w 0 = w0 + N w 2 /kT
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which we might for simplicity take to be length zero. As a result of mutation,the pop-
ulation will spread out in genomic space. It will radiate outward from short genomes
to longer ones. Without any fitness bias,there is equal probability of reaching any of
the genomes of a particular length. We can treat the genome probability as a function
of the length P(l(s)). Over time the characteristic length of the genome increases.
However, it does not behave like a usual random walk in one dimension.One reason
for this is that the genome lengths must be nonnegative, so steps to negative lengths
are rejected. More significantly, since we have an expanding number of possibilities
for longer-length genomes (Fig. 6.4.4),each step of an organism in length has a larger
probability of increasing than decreasing its length. The number of ways to increase
the genome is q(l + 1) (if we assume there are l + 1 places to insert q possible bases)
and only l possible deletions to decrease it.This leads to a bias toward longer sequences.

The bias corresponds to an entropy (and free energy) difference between strings
of length l and l + 1. The number of possible organisms of length l is ql. The effective
entropy of strings of length l is S(l)/k = l ln(q). The free energy difference between
strings of length l and l + 1 is −kT ln(q). Thus, without any underlying fitness bias,the
increasing number of possibilities (phase space) for longer genomes creates a bias in
the diffusion. The bias would result in an average genome length that grows linearly
with time. Does this mean that it is easy to create more complex organisms? The in-
creasing number of organisms that are more complex appears to cause a bias in favor
of their creation. There is a basic problem with this argument, however, because we
have ignored the entropy loss associated with adding a base to the genome from the
fluid that surrounds it. Under normal circumstances we would assume that bases in
free solution have a higher entropy than bases in a long chain. Adding a nucleotide to
the end of a chain decreases the overall physical entropy even though it increases the
entropy in the genomic space. This would cause a counterbias against the creation of
longer genomes. A more complete analysis would include the energy and entropy in
the free energy difference for adding the base to the chain. An even more complete
analysis would also include the nonequilibrium conditions of chemical energy sources
in the cell that drive such processes as DNA replication. The main lesson to be learned
is that a simulation of the genomic space cannot ignore the physical free energy, be-
cause this neglect can give rise to an unphysical bias to the formation of longer chains.

We still have to address the question of the bias from a different point of view. Is
it sufficient to argue that for a particular set of conditions the genome may be driven
to longer lengths to explain evolution? Should we argue that the conditions in the cell
may be such as to form longer genomes,and that this is responsible for the increasing
complexity of organisms? To answer this question we must consider again,and more
carefully, the complexity of organisms. If there is a bias to the addition of more bases,
does this really create more complex organisms? No. It is only when the longer DNA
is used for some purpose that the organism is more complex.

The problem is that if all possible genomes are created, then the description of
the population is simple. It is the selection of organisms by some criteria that makes
them complex (Question 6.4.2). This arrives at the crux of the evolution of complex-
ity. It is the selection of an organism from a large number of possibilities that makes
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it complex. In the theory of evolution, the selection criterion is fitness. The assump-
tion is that longer genomes are systematically able to represent fitter organisms. Since
there are many more possible organisms of longer genome length,this enables selec-
tion of more specific traits that correspond to higher fitness. It is presumed that the
highest fitness of a particular length genome

(6.4.14)
    
K (l) = max

l(s)=l
K (s)
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Figure 6.4.4 Illustration of
the expanding space of
genome possibilities that
starts from a single base on
the left. Lengthening the
genome by a single base moves
one step to the right and mul-
tiplies the number of possibil-
ities by four. The space is only
schematically indicated after
three bases. Many different
steps are possible between
genome lengths if we allow
deletion or insertion of bases.
If we only consider the space
available, starting from an or-
ganism of a particular length
genome, and without any se-
lection, the genome will
lengthen by diffusion because
of the much larger number of
longer genomes. This, how-
ever, does not take into ac-
count the actual free energy
for adding a base. ❚
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is a monotonically increasing function of the genome length.
We can see the adva n t a ge of l en g t h ening the gen ome if we look at our ph e-

n om e / gen ome rel a ti onship in Eq . ( 6 . 3 . 1 ) . This rel a ti onship de s c ri bes a ph en om i c
trait in terms of the ava i l a ble gen omic para m eters . As long as the optimal trait ex i s t s
within this repre s en t a ti on ,t h ere is no probl em . However, i f it does not, the ad d i ti on
of ex tra para m eters in the form of po s s i ble gen ome coord i n a tes increases the po s s i-
ble opti ons for a particular trait or for com bi n a ti ons of tra i t s . This increase in the
phase space of po s s i bi l i ties is ex act ly the motiva ti on for increase in gen ome and or-
ganism com p l ex i ty.

Our discussion of selection and organism complexity is also relevant to the neu-
tralist/selectionist controversy. If neutral mutations dominate the space of possible
organisms, then we are left with the circumstance of a large number of possible or-
ganisms with selection not playing a significant role in evolution. This is unsatisfac-
tory as an explanation of the evolution of complex organisms that, without selection,
have no mechanism by which to arise. Thus, even if neutral mutations account for
many of those that are possible,it is the mutations that do affect fitness that account
for the part of evolutionary changes that we are most interested in.

Question 6.4.2 We noted that selection is what causes an organism to be
complex. What is wrong with the following statement:“If you create all

organisms of length 1010 base pairs, you will also create human beings, and
therefore you will have created complex organisms”?

Solution 6.4.2 A part of the problem with this statement is the number of
organisms that would have to be created, which is 41010

. However, this is not
yet a complete answer. Another problem with the argument is that in order
to see that you have also created human beings, you must have some way of
pointing them out among the large (huge) number of other organisms. It is
pointing them out which is equivalent to selection. Otherwise we can only
see a typical organism out of this set, which would not be a complex organ-
ism. ❚

Question 6.4.3 (for further thought) If there are a larger variety of
complex organisms, then why are there fewer distinct types of complex

organisms than simple organisms currently on earth?

6.4.5 Interactions
In this secti on we con s i der interacti ons bet ween or ga n i s m s — reprodu cti on , con-
su m pti on , pred a ti on , s ym bi o s i s , p a ra s i ti s m — wh i ch affect fitn e s s . To understand the
ef fects of i n teracti ons in the ra n dom-walk model we treat fitness as a property of t h e
en ti re pop u l a ti on of or ganisms ra t h er than of a particular or ga n i s m . We wri te the fit-
ness as K( {N(s) } ) , wh ere N(s) is the nu m ber of or ganisms of gen ome s. Using this fit-
ness of the whole pop u l a ti on , we can sti ll treat evo luti on as an opti m i z a ti on of f i t-
n e s s . We can also define the fitness of a particular or ganism as the differen ce in the
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f i tness of the total co ll ecti on of or ganisms minus the fitness wh en the or ganism is not
pre s en t :

K(s) = K({N(s ′) + s ′, s}) − K({N(s ′)}) (6.4.15)

We can see that our original fitness landscape already included interactions. However,
they were included only in a time-independent average (mean field) way. To get back
to our original picture, we would write the mean field landscape of a single organism
in terms of the fitness of the population as

K(s) = K({N0(s′) + s′, s}) − K({N0(s′)}) (6.4.16)

for a reference population {N0(s)}. This assumes that variations that occur in the pop-
ulations of organisms do not significantly affect the fitness of a particular organism.
This tends to be valid when the population of organisms is large and unchanging. For
smaller populations that change on the time scale relevant to the evolutionary dy-
namics (this would seem to be a tautology), we must include the interactions explic-
itly. This means that the existence of a particular organism affects the fitness of other
organisms. From Eq.(6.4.15),the fitness landscape changes with time along with the
changes in populations.

It is important to recognize, however, that as soon as we assume a fitness which
is only a function of the population, K({N(s)}), we also have a symmetry of interac-
tion. When an organism at s ′ lowers (raises) the fitness of an organism at s′′, then an
organism at s ′′ lowers (raises) the fitness of an organism at s ′. This symmetry is shown
in Question 6.4.4.If we want to model asymmetric interactions,then we must use en-
tirely different models discussed in Section 6.5.Within the Monte Carlo random-walk
model there are thus only two types of interactions, interactions between organisms
that raise their fitness and interactions that decrease their fitness.

Question 6.4.4 Prove that “When an organism at s ′ lowers (raises) the
fitness of an organism at s ′′, then an organism at s ′′ lowers (raises) the

fitness of an organism at s ′.” This assertion is true whenever we have a model
that assigns a unique fitness to the collection of organisms K({N(s)}), where
N(s) is the number of organisms with genome s.

Solution 6.4.4 The only difficulty is translating the English into an equa-
tion. The statement is an answer to the question, How does adding an or-
ganism to s ′ affect the fitness of an organism at s ′′? Start from a set of or-
ganisms {N(s)}. The change in fitness due to adding an organism at s ′′ before
adding an organism at s ′ is:

K({N(s) + s, s′′}) − K({N(s)}) (6.4.17)

After adding an organism at s ′ it is:

K({N(s) + s, s′ + s, s′′}) − K({N(s) + s, s ′}) (6.4.18)

The difference between these two is:
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(K( {N(s) + s, s′ + s, s′ ′}) − K( {N(s) + s, s′} )) − (K( {N(s) + s, s′ ′}) − K( {N(s) } ))
= K( {N(s) + s, s′ + s, s′ ′}) + K( {N(s)}) − K( {N(s) + s, s′}) − K( {N(s) + s, s′ ′} )

(6.4.19)

which is symmetric in s′ and s′′, so the assertion is proven. ❚

A convenient way to think about the interactions is that adding an organism at
one place in the phase space (genome or phenome) changes the landscape for other
organisms by raising or lowering their fitness. A uniform raising or lowering of the
landscape does not affect anything; only the differential effect on the fitness matters.
The simplest interactions are those that raise the fitness of all nearby organisms, or
those that lower the fitness of all nearby organisms. The effect is assumed to decrease
with distance. When the fitness of organisms is raised (the energy is lowered), a de-
pression (energy well) is created around the organism that causes other organisms to
be drawn toward it—an attraction between organisms. If the fitness is lowered,other
organisms tend to move away—a repulsion between organisms.

When there is an attraction,the energy well may cause a self-consistent trapping,
effectively binding the organisms in a group. This trapping causes the organisms to
move together on the landscape rather than as individual organisms. This is the effect
we need in order to account for the confinement of populations discussed in
Section 6.4.3.

For evolution down an incline, Fig. 6.4.2, the spreading of the organisms would
be limited. For more than one dimension,the mutual attraction automatically creates
a channel. Then the co-moving organisms would appear to be analogous to our un-
derstanding of evolutionary change in Fig. 6.2.2. There still is a difficulty with this pic-
ture because the local interactions become less relevant as the dimension of space in-
creases. In particular, in four or more dimensions, short-range interactions are
irrelevant. Intuitively, this is because in a large dimensional space there are too few en-
counters between organisms for their interactions to matter. Alternatively, the reason
is that the mean field theory becomes exact in four or more dimensions. Thus in the
apparent high number of dimensions of the phenomic or genomic space, the attrac-
tions should be irrelevant. There are two possible flaws in this argument. The first is
that the number of relevant dimensions in distinguishing between organisms may not
be as large as the number of apparent dimensions. The second is that the way we are
modeling interactions is inadequate. The latter would again force us into a different
class of models.

Even if attractions help with confinement,they do not as readily help with trait
divergence (Fig. 6.2.3). The picture of a ridge, Fig. 6.4.3, would be difficult to justify
except as a low-probability occurrence.On a smooth landscape,the likelihood that a
self-attracting population is precisely at a location where a ridge occurs (as opposed
to on one side or the other) is small. Speciation would be more readily understood as
a process where a self-attracting population splits by chance into two populations by
random processes. The most likely scenario is when a small population separates it-
self from the whole. This is just the escape of one (or a few) organisms from the en-
ergy well created by the large population. If several individual organisms escape,they
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may encounter each other and aggregate to form a co-moving g roup. Once again,
however, this scenario requires a delicate balance between the tendencies of organisms
to disaggregate and aggregate, which cannot be expected to apply generically.

Before leaving the topic of attraction, we consider, for future reference, the rate
of change of a self-attracting population in two cases. When the collection of organ-
isms moves together, random motion on a flat landscape is slower than the motion of
an individual organism. In Chapter 5 the same problem was discussed for a polymer.
The diffusion constant was shown to decrease with the number of monomers as
D ∼ 1/N and the distance traveled as ∆rcm ∝ N −1/2. On an incline,the speed of travel
of the self-attracting population would be the same as for a single organism, because
on average each organism of the group feels the effect of the bias.

Thus far we have discussed attraction. An organism that repels other organisms
would move on the landscape in isolation. If, because of a valley, the organisms accu-
mulate,they would tend to escape more readily and rapidly from it than without the
repulsion.

Thus far we have discussed the effects of either attraction or repulsion separately.
In order to understand how attraction and repulsion affect evolutionary behavior, we
must recognize that the attraction and repulsion are properties of each place in the
space,not of the walkers themselves. The primary effect of the interactions is to cause
organisms to bunch in regions of space where they are attracting each other. Regions
where they repel would tend to be empty—all other things being equal. Since the
properties of attraction and repulsion vary from place to place in the space,an evolv-
ing population may encounter both aggregation and dispersal. We might consider
creating a model using this variation to account for trait divergence and other prop-
erties of evolution. It is important, however, to recognize that this kind of model is a
significant departure from the model that tries to explain evolution from a single fit-
ness function of individual organisms.

Finally, we discuss long-range interactions. Long-range interactions between or-
ganisms can cause circumstances where the fitness valley in which one type of organ-
ism exists depends on the existence of another organism at some other location in the
space. This is most simply illustrated by the dependence of animals on plants in gen-
eral, or by specific relationships between predator and prey. Note that these relation-
ships are largely untreated in this model of an energy landscape (for example,they are
not symmetric). However, in general we can recognize that relationships of mutual
dependence exist. Changes that occur in one organism thus result in changes in the
fitness landscape of other organisms and thus changes in the other organisms as well.
This leads us to a recent innovation in evolutionary theory—the concept of
avalanches in evolutionary change. Over time, a system of dependencies is developed
which can be disrupted when one organism undergoes a change in population that is
sufficiently severe, whether due to evolutionary change or external influence, such as
environmental change. The change causes a cascade of changes in other organisms.
Depending on the nature of the mutual dependencies, the cascade of changes can be
large or small. The modeling of such phenomena is outside of the fitness landscape
model because it is dependent on interactions that are only being added as secondary
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effects to the fitness landscape. A model that has been used to think about such
processes is a sandpile model. In this model, grains of sand fall at random onto a sur-
face. They cause piles to grow which are formed out of grains supporting themselves
on other grains. The addition of a single grain can destabilize a pile and cause an
avalanche that can move many grains of sand. The sandpile model has a power-law
distribution of avalanche sizes. This model has been used as an analog of what may
happen in mutually interacting networks of organisms.

There is now substantial evidence that evolutionary change has undergone peri-
ods of rapid change in many organisms (e.g.,the Precambrian explosion) after long
periods of slow change. Known as the model of punctuated equilibria,it may be pos-
sible to describe this by a model of avalanches. The idea of a mutually consistent net-
work of dependencies is also a model for the sudden extinction of large dinosaurs af-
ter their extended existence. The fitness of individual organisms was high due to
mutual interactions. However, when a sufficient disturbance occurred (possibly due
to impact of a comet) then the self-consistent network of dependencies was disrupted.
Once this occurred,other organisms that were less fit under the original circumstance
(not just for climactic reasons) were able to increase and dominate the population of
organisms.

We will return to consider interactions between organisms in Section 6.5 in the
context of a different class of models. We will also discuss the impact of interactions
such as altruism and aggression and the formation of collective behaviors in
Section 6.6.

6.4.6 Evolution—global landscape dynamics
There are conceptual problems in understanding a global fitness landscape that in-
cludes microorganisms and man.After several billion years of evolution, we might ex-
pect that the relative populations of microorganisms, insects and man would reflect
evolutionary progress and fitness.On one hand,the fossil record suggests that evolu-
tion proceeded from microorganisms through insects to mammals. On the other
hand, the numbers appear to have remained in favor of the smaller and simpler or-
ganisms that arose earlier in evolution.

If the fitness is directly related to the number of organisms according to
Eq.(6.4.3) where P(s) = K(s), then fitness would strongly favor microbes over insects
and insects over human beings. There is, however, an alternative definition that is
equally valid. We could set the fitness to be the mass times the organism population,
P(s)M(s) = K(s). K(s) would still be the limiting distribution of the ensemble which
represents mass rather than organisms.A Monte Carlo walker would represent a unit
of organism mass. This definition g ives a much higher relative fitness for large or-
ganisms. We do not want to argue which definition is correct, but to understand why
there is an ambiguity. The key point is that the use of an ensemble is predicated on the
existence of a conserved total number of elements in the ensemble.The total number
of organisms is not conserved. Neither is the total mass of the organisms,though this
might seem to be a better approximation. Since such quantities are not conserved, we
do not have a well-defined ensemble. This is only one of the problems that give rise to
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a difficulty in defining the relative fitness of widely different organisms. With this in
mind, we discuss three scenarios for the global behavior of evolution on the fitness
landscape. The first is evolution downhill,the second is evolution uphill,and the third
is an alternative that relies upon a changing landscape.

One traditional view of evolution is most easily considered as starting from the
pinnacle (or somewhere on the side) of a long hill (Fig. 6.4.5). The motion of the
population consists of a descent downward. Grooves in the hill and self-attraction are
essential to account for trait divergence causing a separation into droplets. Unlike
flowing water on a hill that typically converges upon a single channel, the flow is an
outward branching that results in a treelike structure of different subpopulations
with distinct traits. The branching is an assumption about the dynamics; it is more
reasonable for a large-dimensional landscape than the usual two-dimensional one.Of
course, we must also explain why there isn’t a complete dispersal into very few organ-
isms per subpopulation. Starting from this picture, however, another key question
would be, Why do there persist primitive organisms such as single-celled organisms
or insects that were formed earlier and thus higher on the hill? One possible answer
is that these organisms continued to evolve and increased their fitness without dra-
matically changing form. The problem with this picture is that improving fitness
would seem to require manifest changes in phenome that are not evident. A second
possible answer is that nonconservation of organisms enables the microorganisms to
continue to regenerate even though they are high on the hill. However, the ability to
regenerate populations alters radically the assumptions of selection according to the
fitness landscape. Any such new model requires its own analysis. Thus, while the pic-
ture of evolution downhill is consistent with the view that fitness propels forward the
process o f evolution, it is difficult to reconcile this with the population ratios that
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continue to retain most of life as microorganisms, virtually independent of the exis-
tence of the higher forms of life.

An alternative view would adopt the existing population ratios as a model for the
probability function P(s) and use this probability function to define fitness
(Fig. 6.4.6). In this model evolution started with microorganisms that are low-energy,
high-fitness organisms. What is the driving force for the existence of higher forms of
life? The answer is that random mutations provide a possibility of moving upward.
The landscape of mountains and valleys is then responsible for the observed pattern
of organism traits and species. The smaller numbers of complex organisms that oc-
curred later in evolution reflect their lower fitness. A low fitness does not preclude
their existence, because there are only a few of them compared to the high-fitness mi-
croorganisms. The fossil record is explained by the motion of populations upward to
overcome an obstacle,and downward into the subsequent valley. Thus far the model
seems to account for observations, but this quickly breaks down with further thought.
Extinctions are a problem. They might be explained by temporary occupation of lo-
cal minima that are higher in energy than minima currently occupied. However, ex-
tinctions would not be permanent,since such valleys are likely to be repopulated later.
A more serious problem is that organisms would be expected to regularly evolve from
valley to valley, both forward and backward in evolutionary order. This conclusion
follows, because once a time scale of moving from one valley to another is reached,
migration between them continues to occur. It is possible that existing experiments
missed such processes, but it would require a dramatic revision of prevailing thought.
Another controversial conclusion that follows from this model is that organism pop-
ulations are close to equilibrium. Even though randomness through mutation plays
the essential role of causing evolutionary change, because populations are close to
equilibrium, they must be independent of history. However, the main problem with
this model is that it does not agree with the overall size of the phase space of organ-
isms. If we are close to equilibrium, then essentially all possible organisms would be
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represented in existing organisms.Since the genomic space is so large,we would have
to assume that almost none of the genomic space is viable,but that organisms evolved
anyway. This is not reasonable.

There is a third alternative for the fitness landscape that is consistent with the ex-
istence of a diversity of organism types at different stages of evolutionary progress but
maintains the evolutionary pressure of fitness. This approach emphasizes that the
long-range structure of the landscape must include the long-range interactions be-
tween organism types discussed in the previous section. For simplicity we can set the
inherent fitness to be the same everywhere. The existence of a long-range interaction
implies that a particular organism type promotes the existence of another organism
type that may be far away on the landscape. For example,the fitness of a sheep would
not be high without plants.A picture that takes advantage of this property of the land-
scape considers evolution as a process of surfing on self-consistent expanding waves
where the large populations of simpler organisms are responsible for the fitness waves
on which higher organisms evolve (Fig. 6.4.7). This picture is consistent with a local
evolutionary pressure of fitness,and the persistence of primitive organisms.A specific
mathematical model that is related to this picture will be introduced at the end of
Chapter 7, because it is in the class of models of pattern formation in developmental
biology. In Section 6.5.4 we also address related issues.

6.4.7 Randomness and determinism
Many of the questions often articulated about evolution, such as

• How does the formation of life depend on the conditions?
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• What is the likelihood of the formation of life and how likely is life to be found
elsewhere?

• How sensitive is the present form of life to chance, and how determined is it?

• Is the form of life on earth unique or are there viable alternatives?

have to do with randomness and determinism.One of the difficulties,however, is un-
derstanding what we mean by these terms. The statement that existing forms of life
were determined “by chance events” and therefore were not predetermined is not a
sufficiently clear statement since there are multiple issues that must be resolved.First,
it must be recalled (Section 1.1) that chaotic behavior is deterministic. The reason for
chaotic behavior is that the system is sensitive to initial conditions—small differences
become amplified over time. Second, a stochastic system (Section 1.2) is a system
where external influences affect the system behavior and are presumed random.
Finally, in the study of thermodynamic systems (Section 1.3) randomness played a
crucial role in the dynamics, but the equilibrium state of a system is completely and
uniquely determined and is stable and insensitive to initial conditions.

Our objective here is to clarify rather than answer the fundamental questions. We
separate the discussion into two issues. The first issue is whether life that exists on
earth is representative of what would arise from any evolutionary process under a
wide range of initial and intermediate conditions. If it is representative,then life is es-
sentially determined in the same sense that equilibrium states are determined.On the
other hand,if life is not a typical outcome of evolutionary processes,then the second
issue is to determine which influences were important in determining the existing
form of life. Are these the effect of microscopic thermal vibrations or macroscopic in-
fluences? Do the macroscopic or microscopic effects trace themselves to the initial
conditions or to persistent external influences such as solar radiation?

We have noted several times that stochastic iterative dynamics of an ensemble
should lead to equilibrium. The equilibrium state is not affected by the specific and
possibly random path it took to get there. Thus, the existence of randomness in the
dynamics does not necessarily mean that the outcome is not determined.
Thermodynamics uses an ensemble in the same way that we are thinking about the
collection of organisms on earth. There is,however, a basic assumption in thermody-
namics which need not be true about the collection of organisms. An ensemble is an
arbitrarily large collection of systems. The sense in which it must be arbitrarily large
is that the number of systems is larger than the number of system states. Even if this
is not satisfied, at least a significant fraction of distinct high-likelihood possibilities
must be represented. The reason that an ensemble is not affected by randomness is
that whenever one of the systems takes a step, another takes a step in the opposite
direction.

Let us consider the organisms on earth as a limited set of examples of possible or-
ganisms. We know that the genomic space is very large and therefore we could easily
argue that even with all of the organisms on earth,there is unlikely to be a represen-
tative sampling of genomic space. However, we may not care about sampling the
genome space, but rather the phenome space. It is harder to tell if we have represen-
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tatives of all viable phenomes. To take this discussion further, we should include the
interactions between organisms. A self-attracting population that forms a species
which moves together on the fitness landscape becomes correlated, and therefore a
single system rather than a collection of systems. This both reduces the number of in-
dependent samples present on earth and increases the time scale over which random
changes occur. More generally we know that any interaction that causes interdepen-
dence of organisms reduces the effective number of independent systems present on
earth. However, we may still focus on the set of organisms and try to determine ifthey
are representative.

Can we arrive at any conclusions from the general phenomenology of life? On
one hand the existence of a wide varie ty of organisms suggests that many are possi-
ble; on the other hand this wide variety might be sampling all possibilities. The per-
sistence of certain organisms since early in evolution suggests that the correlation
time for organisms is very long, and therefore that independent samples of all possi-
bilities may not have been realized.On the other hand,their persistence suggests that
there may not be many other alternatives. A better source of evidence is the artificial
breeding of organisms. By demonstrating the existence of many varieties of organ-
isms that differ from those found in nature, we can conclude that the naturally oc-
curring organisms are not representative of the possibilities. The large dinosaurs also
provide an important piece of evidence through their persistence and complete dis-
appearance. The more different they are from current living organisms and the longer
their persistence on earth,the better is the argument that there are many possible liv-
ing organisms and the present samples of life on earth are only a few nonrepresenta-
tive examples.

Our discussion indicates that the ratio between the number of organisms to the
space of possible organisms is important in determining whether the existing popu-
lation is representative. This suggests that microorganisms might be effectively in
equilibrium even if multicellular organisms are not. Thus we might not want to ask
whether equilibrium applies, but rather at what level of organism complexity it ap-
plies. If it turns out that the simplest prokaryotes are not fully represented, then we
may conclude that this is also true about more complex organisms (Question 6.4.5).

Let us now assume, reasonably, that the existing organisms on earth are not rep-
resentative of all possible living organisms.Then it becomes relevant to discuss the na-
ture of the pathways of evolution, and the role of initial conditions or external per-
turbations. Either becomes important when there are multiple options at a particular
moment for incremental evolutionary changes, of which only one can be chosen. The
question becomes how the path is chosen, and our interpretation of randomness or
determinism in this context. Of course it is not enough that different pathways exist;
they must also not converge at later times. The evolutionary path taken by an organ-
ism, or a collection of self-attracting organisms,must be distinct at all later times from
other possible paths in order for the choice to be important. The expanding phase
space for ever more complex organisms is the best argument in favor of a lack of con-
verging pathways.A model (or phenomenology) that shows that over time organisms
are always exploring new regions of space would be relevant.
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The main point to understand in this discussion is the relevance of selection. The
whole idea of selection is that there are multiple possibilities of which only a few are
selected. This is also the nature of what we mean by a complex organism—that it is
differentiated from other possible organisms by many details that must be selected.
Thus we must further ask whether the pathway taken in evolution is selected by fit-
ness or whether other effects are significant. If fitness is the primary selective force,
then we are attributing the selection to macroscopic environmental effects external to
an organism and not to microscopic or macroscopic randomness. Another possibil-
ity is that, of the possible mutations that might occur, only a small subset do occur. In
this case selection due to fitness can only apply to the possibilities that occurred, and
microscopic randomness is relevant. Moreover, if the survival of a particular organ-
ism is not determined by fitness but only statistical ly related to fitness through ran-
dom occurrences, then macroscopic randomness plays a role. Here again we must be
careful to recognize that if fitness selection eventually forces the organisms to reach a
particular place in genome space,then all prior divergences in paths due to random-
ness are irrelevant.

Question 6.4.5 Discuss evidence that microorganisms involved in dis-
eases are not in equilibrium.

Solution 6.4.5 Equilibrium implies that all possible microorganisms exist.
If this were true,the eradication of disease (by natural or artificial methods)
and the appearance of new diseases would both be impossible. Since both
appear to be possible,it seems reasonable to assume that microorganisms are
far from equilibrium. ❚

6.4.8 Space and time
Thus far our fitness landscape has been discussed as a function of genome or phe-
nome. We must also include the dimensions of space in our considerations.
Assuming a well-defined fitness landscape as a function of the phenome or genome
also assumes that spatial variation in the landscape is smooth or that its effect can be
averaged over. Rapid spatial variations are likely to have a significant impact on the
model properties. However, even relatively smooth variations in space and time have
important effects. The main effect of a spatial dimension is the existence of popula-
tions of organisms that exist simultaneously in time and can evolve in part indepen-
dently. This would be a valid statement even if the fitness landscape is the same in
different locations. However, the situation is more interesting because the fitness
landscape is different in different locations. Including ocean and land environments,
different climates as well as the existence of distinct combinations of organisms
causes the fitness landscape to vary greatly on earth. All organisms survive only in a
limited range of conditions, and have restricted spatial regions in which they are
found on earth. The dynamics of the entire system become more interesting when
we consider coupling the different environments through migrations. Migrations
enable organisms evolving in one location to encounter alternate environments. An
important realization is that this gives rise to an additional type of selection—selec-
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tion by the organism of its environment. Thus, organisms are not necessarily subject
to a unique fitness criteria. By migrating they may be able to select an environment
to which they are well suited.

Time-dependent variations in the fitness can also cause a variety of effects. An ex-
ample is the mass extinction attributed to a comet that changed climactic conditions
on earth and led to the demise of large dinosaurs.A more current example might be
a forest fire. In either case it is easy to understand how such events might be disastrous
for evolution if they happen too often or too severely. However, the comet may have
been responsible for a large step forward in evolution by enabling other animals
(mammals) to emerge. As discussed earlier, the disruption of an existing network of
organisms may enable other organisms to arise and cause rapid evolutionary changes.
The smaller example of a local forest fire is now understood to provide opportunities
for the survival of organisms that would not have a chance in well-developed forests.
One way to think about this is through the fitness landscape, where valleys are formed
by interactions that cause self-trapping of the population. When the existing organ-
isms are reduced in number, these valleys may also not be as deep. This enables more
rapid movement of organisms on the landscape.

When large variations in the fitness landscape occur frequently, there are other
effects that may occur, including the development of organisms that are better suited
to these variations either through self-imposed genetic diversity (requiring collective
behaviors discussed in Section 6.5) or adaptability.

Question 6.4.6 Why can’t we just think about the dimensions of space
as additional dimensions for the fitness landscape?

Solution 6.4.6 The nature of steps in the spatial dimension is radically dif-
ferent from the nature of steps in the genome dimension. Nevertheless,
within the context of the model of Monte Carlo steps on a fitness landscape,
we can consider the different types of steps in the same way. The only place
we run into trouble is when the steps in space are directed rather than ran-
dom. Specifically, when an organism can identify which direction it should
move in, then there is a violation of the assumptions of the model. ❚

Question 6.4.7 Discuss the relevance of spatial dimension to the prob-
lem of walkers exploring the space of possible organisms.

Solution 6.4.7 The fitness landscape may involve obstacles that consist of
regions that are not viable under particular environmental circumstances.
Thus we can expect that the connectivity of the phenomic or genomic space
is very poor if we consider only one particular environment. The existence
of a spatial dimension with different environments enables organisms to
move around obstacles in the genomic space because there are more possi-
ble ways to have organisms in a variety of environments. For example, it is
not clear that whales could develop from fish directly. However, according to
the current view, by a process of moving from water to land and back to wa-
ter it became possible for whales to appear. ❚
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Question 6.4.8 Discuss, from the point of view of a fitness landscape,
the process of organisms crossing a mountain range to an isolated valley.

Solution 6.4.8 This scenario contains a number of important elements.
First it is assumed that a population of organisms evolved in one region of
the land but was not found across a particular mountain range. The moun-
tain range is a barrier in both physical and fitness space because it is assumed
that the organisms do not live easily on the mountain. By crossing the moun-
tain, a group of organisms becomes independent of the original set of or-
ganisms of which it was a part. They participate in the evolutionary process
in the isolated valley. The distinct evolutionary pressures or random influ-
ences that affect this small population also change its position in genomic
space. Some time later the organisms may recross the barrier, but the two
populations that evolved separately are now at different positions in genome
space. This is significant, because we expect that an attractive interaction be-
tween organisms of similar type prevents the separate evolution of subpop-
ulations. Thus, physical separation is an additional mechanism for the for-
mation of distinct organism types. ❚

6.4.9 Adaptive organisms
An adaptive organism responds to its environment in a manner that adjusts behavior
to improve fitness.We could more generally state that an adaptive organism has a phe-
nome that depends on its environment. However, this does not affect the fundamen-
tal relationships of genome or phenome and fitness. Specifically, given a genome of
an adaptive organism, the fitness is still as well defined a quantity as it is without the
adaptation. However, by making additional assumptions, we can try to understand
the effect of adaptation.

One perspective is that there is no special ability that adaptation provides over
nonadaptive organisms. However, an adaptive organism can approximate the behav-
ior of more than one nonadaptive organism. It cannot do so exactly, because adapta-
tion carries its own cost. However, it can do so well enough to reach close to their fit-
ness. This is an advantage when the fitness landscape is spatially or temporally
varying, because the adaptive organism can survive in varied conditions. We might
write that:

(6.4.20)

where s represents an adaptive organisms and s ′ varies over a set of nonadaptive or-
ganisms. We have written the fitness as a function of the environment e explicitly.
represents the inherent cost to fitness of adaptation, because the optimal behavior is
not automatically realized for a particular environment.

A consequence of this view is that the fitness landscape due to changes in genome
(that do not affect the adaptive ability) for adaptive organisms tends to be flatter than
for nonadaptive organisms. As the genome of an adaptive organism changes, if the
domain of s ′ in Eq. (6.4.20) does not change,then neither will its fitness. Even if the

    
K (s,e) = min

′ s 
K ( ′ s ,e) +
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domain of s ′ in Eq.(6.4.20) changes, the variation in the fitness will be more gradual
than for a nonadaptive organism. The organism,in effect, reduces barriers to evolu-
tion by using adaptation to move around them. This picture, however, also implies
that the ultimate benefit of adaptation becomes small for a relatively static fitness
landscape,since it is advantageous for adaptation to disappear in favor of the geneti-
cally determined optimal behavior pattern.

A different perspective suggests that it may be possible that adaptation can enable
certain phenomes to exist that cannot be described directly by the genome-to-
phenome developmental relationship. Thus, for example, certain behavioral patterns
may not be possible to specify genetically and can only arise through adaptation. In
this case, adaptation becomes an extension of the physiological developmental
process in creating the resulting phenome.

6.4.10 Limitations of the fitness landscape
We have discussed many limitations of the fitness landscape in previous sections and
have introduced some ways to work around them. Here, however, we recall the most
basic ways in which the fitness-landscape model breaks down, to motivate a different
approach taken in the following section. Ultimately, the main problem in the fitness-
landscape model is the use of a conserved population that forces a particular treat-
ment of reproduction and death. Let us think what this means in terms of the model
behavior. When an organism reproduces or dies,it causes a change in the local popu-
lation of organisms at a particular genome or phenome. The random-walk mo del
treats this by assuming that reproduction of a single offspring and death,either of the
offspring or the parent, are directly linked. If we do not do this, but still require the
conservation of population,then the birth of one organism is tied to the death of an-
other organism. However, the death and birth may be at very different locations in the
genomic space. Thus we are forced to consider various nonlocal moves. Including
nonlocal moves is not,however, sufficient, because a Monte Carlo move is possible or
impossible independent of the population itself. The birth of one organism and the
death of another forces a particular nonlocal move that would not be possible with-
out the existence of the parent organism. Specifically, we can imagine an organism
that gives birth to many offspring as a process of ingathering of organisms from var-
ious other regions of space. This type of nonlocal move is not readily treated in Monte
Carlo and another approach is necessary.

One illustration of how reproduction can affect the behavior of evolution on a
fitness landscape is a hybrid picture in which we think about organisms evolving on
a landscape but with reproduction and a nonconserved population. By processes of
mutation,an organism might overcome a fitness barrier and end up in a fitness well.
There is no need for other organisms to follow over the barrier, since the organism
can reproduce,increasing the population in the well that is reached. Even if we include
sexual reproduction,there is only need for a reproducing population to cross the bar-
rier. The decoupling of the population in one well from the population in another well
is a problem for the model we have been discussing. To enable us to think about this
picture, we must develop different tools. We might note, however, that this image
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suggests additional problems for a single global fitness function tied to the indepen-
dence of growth and death of different populations.

Consistent with this discussion, we recognize that the Markov chain, even in its
most general form, does not allow the transition rate from one location in space to
another to depend on the population. This is because the description is limited to that
of an ensemble of independently evolving systems treated statistically. To progress, we
must write a time dependence of the organism population N(s; t),as given by a non-
linear dependence on its population and other populations {N(s;t)}. We therefore
abandon the Markov chain formalism in favor of a more explicit discussion of repro-
duction, death and selection and the interaction of organisms.

Finally, by abandoning the Markov chain formalism we can also eliminate the use
of a target limiting distribution for the dynamics. This inherently prevented us from
considering many possible dynamical behaviors of population evolution. For exam-
ple, fluctuations in populations driven by predator-prey relationships. The lack of
such dynamics is related to the impossibility of including asymmetric interactions be-
tween organisms that increase the fitness of one and decrease the fitness of the other.
It should be noted that this is a limitation that is often assumed in evolutionary the-
ory even without the assumption of a Markov chain or limiting distribution, because
fluctuating populations would be represented by fluctuations in the fitness function
with time.

Our efforts to understand the random-walk model were not in vain. It is a diffi-
cult and valuable accomplishment to demonstrate that an entire class of models is not
adequate, and to understand in what way it is not adequate. Moreover, we have dis-
cussed many important issues and gained insights that will also show us limitations
in the seemingly better models that we will proceed to investigate.

Reproduction and Selection by 
Resources and Predators

The objective of this section is to present and discuss several mathematical models for
the process of incremental evolutionary change in a population of reproducing or-
ganisms. We will see that there are subtleties that arise in such models that may ini-
tially be counterintuitive,and this will lead to a better understanding of evolution. In
these models we often assume two or more types of reproducing organisms and fol-
low their relative populations as a function of time.Our attention will be focused on
understanding what parameters control selection—the survival of one type of organ-
ism at the expense of the other. One common model for evolution relates fitness di-
rectly to reproductive rates.Organisms with more offspring are more likely to survive
and therefore more fit than organisms with fewer offspring. We will see by analyzing
a few more detailed models that this is too simplified and incomplete a picture.

The models we will use directly describe the behavior of a population of organ-
isms N(s; t) in terms of an iterative map:

N(s;t + 1) = fs({N(s; t)}; t) (6.5.1)

6.5
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or in terms of a differential equation:

(6.5.2)

In either iterative map or differential equation forms, the models of the last section
would account for any case where the function fs is linear and population conserving.
We will rapidly depart from this in our efforts to describe reproduction, death, re-
sources and predators.

6.5.1 Reproduction, resources and selection
We start with a simple model for population growth. An organism that reproduces at
a rate of > 1 offspring per individual per generation has a population growth that is
exponential. Using an iterative equation (Section 1.1) this is written as:

N(t) = N(t − 1) (6.5.3)

In the simplest interpretation, this represents synchronous generations with death
following reproduction, but the behavior is more general. We can also write a differ-
ential equation that represents similar growth:

(6.5.4)

where ′ > 0. If we have two organisms whose populations grow exponentially, the
faster growing population will eventually dominate the slower one.However, both or-
ganisms continue to exist.

We obtain a standard model for fitness and selection by taking two equations of
the form Eq.(6.5.3) for two populations N1(t) and N2(t) with 1 and 2 respectively,
and normalize the population at every step so that the total number of organisms re-
mains fixed at N0. We have that

(6.5.5)

Because we did not change the relative dynamics of the two populations,and only the
total p opulation is affected by the normalization, we know that the faster-growing
population will dominate the slower-growing one. If we call i the fitness of the i th
organism we see that according to this model the organism populations grow at a rate
that is determined by the ratio of their fitness to the average fitness of the population.
This model is similar in form, but not behavior, to the two-state system of Section 1.4,
which is a prototype for the model of evolution discussed in Section 6.4.
Question 6.5.1 addresses the similarities and differences of this population model and
the two-state system.

    
N 2(t) = 2N2(t −1)

1N1(t −1) + 2N 2(t −1)
N 0

    
N1(t) = 1N1(t − 1)

1N1(t −1) + 2N2(t − 1)
N0

    

dN(t)

dt
= ′ N(t)

    

dN(s ;t )

dt
= fs({N(s ;t)};t)
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Question 6.5.1 We can choose to write Eq.(6.5.5) in terms of the prob-
ability of having each organism type by writing P1(t) = N1(t)/N0 and

similarly for P2(t). Compare the qualitative behavior of Eq.(6.5.5) with the
behavior of the two-state system that also describes the dynamics of two
probabilities.

Solution 6.5.1 The most dramatic difference between the behaviors of the
two models is that the two-state system, at any particular energy difference
and temperature, equilibrates at a particular ratio of the two different pop-
ulations. In Eq.(6.5.5),unless the fitnesses are exactly equal,the lower fitness
population will eventually disappear no matter what the relative fitnesses
are. The relative fitness only controls the rate of disappearance. ❚

The model for selection in Eq. (6.5.5) is useful in that it provides an alternative
dynamics to the two-state model. However, we would like to develop an understand-
ing of the process by which population size is limited. The model of Eq.(6.5.5) does
not represent population limits directly. Instead it simply normalizes the population
size. In order to have a better model for the interaction between organisms that gives
rise to selection, we should directly limit the number of organisms and then see how
one organism grows at the expense of the other. A standard way to limit the popula-
tion growth is to use a differential equation of the form:

(6.5.6)

This equation appears similar to the quadratic iterative map discussed in Section 1.1,
but this differential equation is not the same (Question 6.5.3) and it has a relatively
simple behavior. Eq. (6.5.6) can be solved analytically or integrated numerically to
obtain the behavior shown in Fig. 6.5.1 (Question 6.5.2). Starting from a small pop-
ulation, the population grows exponentially, then saturates at the value N0. The
qualitative behavior can be understood directly from Eq. (6.5.6) because the factor
(1 − N(t) /N0) reduces the growth rate to zero as N(t) approaches N0.

Question 6.5.2 In this section we use both iterative maps and differen-
tial equation models when convenient. It is simplest to integrate the dif-

ferential equations by converting them to an iterative map, as long as it is well
behaved, by the straightforward method of converting an equation of the
form

(6.5.7)

to

N(t) = N(t − dt) + f(N(t − dt))dt (6.5.8)

and reducing dt until the results are insensitive to it.
Try this for Eq. (6.5.6) and plot the results.

    

dN(t)

dt
= f (N(t))

    

dN(t)

dt
= N(t)(1− N(t)/N0)

578 L i f e  I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 578
Title: Dynamics Complex Systems Short / Normal / Long

06adBARYAM_29412  3/10/02 10:44 AM  Page 578



R e p r oduc t i on  a n d  s e l e ct i on  by r e s o u rc e s  a nd  p re d a t o rs 579

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 579
Title: Dynamics Complex Systems Short / Normal / Long

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

N(t)/N0

t

dt=0.02 dt=0.05

Figure 6.5.1 Solution of the logistic equation (Eq. 6.5.6) with = 2 using an iterative map
to perform the integration. When starting from low values, the population increases and sat-
urates at the value N0. The two curves are for different time increments in the integration (see
Question 6.5.2). ❚

Solution 6.5.2 See Fig. 6.5.1. ❚

Question 6.5.3 Show analytically that Eq. (6.5.6), unlike the quadratic
iterative map, should not have chaotic behavior.

Solution 6.5.3 The iterative map corresponds to the equation:

N(t + 1) = N(t) + N(t)(1 − N(t)/ N0)dt

= (1 + dt)N(t) − ( dt/N0)N(t)2 (6.5.9)

= (1 + dt)N(t)(1 − cN(t))

where

(6.5.10)

Defining s(t) = cN(t) we have the same quadratic map as in Section 1.1:

s(t + 1) = (1 + dt)s(t)(1 − s(t)) (6.5.11)

where the coefficient can be made incrementally greater than one, which is
in the stable regime. ❚

    
c =

dt

N0(1+ dt)
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In order to consider selection between two organisms, we use two equations that
describe the growth of each of the populations with the same form as Eq.(6.5.6) but
with different growth-rate parameters 1 and 2:

(6.5.12)

To couple the equations, we have assumed that the limitation on the number of or-
ganisms applies to both of them together. In solving these equations,our intuitive as-
sumption is that one type of organism will dominate over the other and grow to have
most of the population regardless of the initial starting point. However, when we look
more closely we see that this cannot be true.

    

dN2(t)

dt
= 2N2(t) 1−

N1(t) + N2(t)

N0

 

 
 

 

 
 

    

dN1(t)

dt
= 1N1(t) 1−

N1(t) + N2(t)

N 0
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Figure 6.5.2 A model of competition based on Eq. (6.5.6) where two types of organisms are
limited to have a total population less than N0. The first organism has a reproduction rate 1

= 0.2 and the second 2 = 10 1. The initial conditions are set so that the first organism with
N1 = 0.5N0 dominates the second N2 = 0.02N0. The concept of evolution by selection suggests
that the second organism should grow in number and eventually dominate the first organism.
However, the figure shows that both populations grow so that the first organism continues
to dominate the second. ❚

06adBARYAM_29412  3/10/02 10:44 AM  Page 580



We notice first that if at any time the total population N1(t) + N2(t) is N0, then re-
gardless of the mix of organisms, the number of organisms of each type does not
change, because the expression in parenthesis is zero. So we consider instead starting
the organisms with a total population below N0. In this case both populations are mo-
notonically increasing as long as the total population is smaller than N0. This means
that whatever our initial conditions are, the lower growth-rate type of organism will
never have fewer than its starting number. This is illustrated in Fig. 6.5.2, where the
population of the lower growth-rate type of organism starts at 0.5 N0 and the popu-
lation of the higher g rowth-rate type of organism starts at 0.02 N0. We see that it is
not possible for the organisms with the higher growth rate to overcome the organisms
with the lower growth rate.This does not correspond to our intuition about selection.
According to this equation, an organism type that exists cannot be superseded by a
newcomer even if the newcomer is reproducing more rapidly.

To try and overcome this problem we might consider the possibility of adding
noise that would cause the total population sometimes to be greater than N0 and
sometimes to be less than it. This would cause the populations of the organisms al-
ternately to grow and shrink.Then we might expect to see the higher growth-rate type
of organism dominate. In a numerical integration this would look like:

(6.5.13)

where (t) is a random number in the range 0 to 1 and controls the impact of the
noise. If we simulate this problem many times, we will find that the faster growing
population does not usually dominate. If is large enough, there are large fluctua-
tions,and one or the other population might become extinct, but it is the population
that starts out with the greater number that survives on average. The reason for this
is that Eq.(6.5.12) assumes that the factors 1 and 2 control the population increase
when the total population is less than N0, and they also control the population decline
when the total population is greater than N0. Thus the faster-growing population is
also the faster-declining population when there are too many organisms,and this pre-
vents it from dominating the slower-growing one.

We are now faced with an interesting situation where we have several options.
The model as we have constructed it has a built-in assumption about the relationship
between the population growth and the population decline of an organism. We could
argue that this relationship might not be correct,and introduce a model where there
are two parameters; one describing the population growth and one describing the
population decline. While this can work, we should learn something more significant:
that the rate of population growth in a circumstance of plenty is not the factor that
controls the fitness of the organism from an evolutionary perspective. The necessity

    
N 2(t) = 2N2(t − dt) 1−

N1(t −dt) + N2(t −dt)

N0

 
 
  

 
 dt + N 2(t − dt) + •( (t) − 0.5)

    
N1(t) = 1N1(t − dt) 1−

N1(t −dt) + N2(t − dt)

N 0

 
 
  

 
 dt + N1(t − dt) + •( (t) − 0.5)
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of introducing an additional parameter demonstrates this. If we introduce another
parameter, then an interplay between the two different parameters controls the fit-
ness. Thus, according to our analysis, the reproduction rate by itself does not deter-
mine the fitness.

Rather than pursuing a model with a new parameter for population decline, we
can consider instead whether there is a different model that better captures what we
have in mind when we consider selection. The real difficulty with the model in
Eq.(6.5.12),and Eq.(6.5.6) upon which it is based, is the way the limitation on pop-
ulation is implemented.

A more natural model for selection represents organisms in competition for a re-
source. Instead of limiting the population directly, the population is limited by the re-
source necessary for reproduction. This resource could be food—e.g., grass that re-
grows to a limited height after being grazed—or space—e.g., nesting sites that are
limited in number but are available again after offspring are grown. We will call this
model the renewable-resource mo del. The amount of resource is measured in ele-
mentary units,each of which is sufficient to enable an organism to reproduce. We let
r(t) be the amount of resource available at time t. This amount is determined by re-
source renewal as well as by the amount that is consumed by organisms. If there are
no organisms,the amount of resource reaches a maximum value r0. The resource that
is available at time t is assumed to be given on average by:

r(t) = r0 − N(t − 1)P(t − 1) (6.5.14)

where the available resource has been reduced by the product of the number of or-
ganisms at the previous time N(t − 1), times the probability that any one of them will
consume the resource P(t − 1).

Each type of organism is assigned an effectiveness , which is the probability that
the organism can consume the resource if there is only one available. The probability
that it consumes the resource when there are r(t) available is:

P(t) = (1 − (1 − )r(t)) ≈ 1 − e− r(t) (6.5.15)

The latter expression is valid when r(t) is large and is small. It is not a very limiting
assumption, though we will not need to use it. Finally, the number of organisms at
time t is given by:

N(t) = N(t − 1)P(t − 1) (6.5.16)

which means that each organism that consumes a resource produces progeny
for the next generation, and then dies. The model described by the three
Eqs. (6.5.14)–(6.5.16) is an iterative map that can be used to represent competition
for a resource. For a single type of organism, the population grows like the solution
of Eq.(6.5.6). This is shown in Fig. 6.5.3. The organism grows until it reaches an equi-
librium. However, when we have two organisms, the behavior is quite different from
what we found before. Question 6.5.4 describes the construction of equations that
generalize this model for two organisms. The results of a simulation show that if we
have one organism at equilibrium and add a single organism of a type that has a
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slightly higher effectiveness , or a slightly higher reproduction rate , then the new
organism will grow and the original organism will become extinct (Fig. 6.5.4).

Question 6.5.4 Write the equations for two types of organisms and sim-
ulate their behavior for various initial conditions and parameter values.

Solution 6.5.4 Instead of Eq. (6.5.14) the resource left is:

r(t) = r0 − N1(t − 1)P1(t − 1) − N2(t − 1)P2(t − 1) (6.5.17)

The other two equations are the same as before for each of the organisms:

P1(t) = (1 − (1 − 1)
r(t))

P2(t) = (1 − (1 − 2)
r(t))

N1(t) = 1N1(t − 1)P1(t − 1)
(6.5.18)

N2(t) = 2N2(t − 1)P2(t − 1)
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Figure 6.5.3 Renewable-resource model of population growth described by Eqs. (6.5.14)–
(6.5.16). The organism population, N(t), grows and saturates in a similar manner to Fig.
6.5.1. The limitation in population growth arises, however, from a reduction in the amount
of resources, r(t), consumed by the organism. The parameters used for this simulation are r0
= 100, = 2, and = 0.01, and the initial population is N(0) = 1. An incremental version of
the model discussed in Question 6.5.5 gives similar results. For other values of the parame-
ters, e.g. higher values of , the incremental model is necessary due to chaotic behavior in
the original equations. ❚
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Figure 6.5.4 Renewable-resource model of competition between two organisms showing how
the second organism population grows and dominates the first organism. The two figures il-
lustrate different reasons for selection of the second organism over the first. In both cases
the second organism has the same parameter values as in Fig. 6.5.3 ( = 2, = 0.01). For
(a) the first organism has a lower consumption effectiveness, = 0.009. For (b) the first or-
ganism has a lower number of offspring per resource consumption = 1.8. The initial condi-
tions are close to, but not equal to, the steady-state value for the first organism. The initial
population of the second organism is N2(0) = 1. The baseline resource is set to r0 = 100. ❚
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See Fig. 6.5.4 for two simulations for organisms with different values of the
parameters. ❚

Question 6.5.5 Eqs. (6.5.14)–(6.5.16) together constitute an iterative
map with a tendency to chaotic behavior. The reason for this is that the

whole population is being updated at once. We can, however, use a model
where both population growth and consumption of the resource occur in-
crementally. Set up an incremental analog of the iterative map. Hint: The dif-
ficulty is in determining how the resource should behave.

Solution 6.5.5 One way to do this is to assume a continuously growing re-
source that grows in proportion to the amount that is missing:

r(t) = r(t − dt) + (r0 − r(t − dt))dt − N(t − dt)P(t − dt)dt (6.5.19)

Eq. (6.5.15) requires no modification and Eq. (6.5.16) becomes:

N(t) = N(t − dt) + ( P(t − dt) − 1)N(t − dt)dt (6.5.20) ❚

We see from Fig. 6.5.4 that this model displays an intuitive behavior of selection
of one organism over another. The reason for this behavior can be found by consid-
ering the nature of the population control exercised by a resource. For a single or-
ganism, the equilibrium population is reached when there is no change in the value
of N(t). We can solve the equations in this case directly. Using Eq.(6.5.16) we find that
N(t) = N(t − 1) implies:

1 = P(∞) (6.5.21)

and from Eq. (6.5.15) that:

1/ = (1 − (1 − )r (∞)) (6.5.22)

We can solve this for the amount of resource that is available in equilibrium as:

(6.5.23)

The latter expression applies when is large and is small. The meaning of r(∞) is
that when this amount of resource is available,the population is self-sustaining. This
implies that the probability of consumption is enough to generate the same number
of organisms in the next generation. We can also conclude that if the amount of re-
source is less than r (∞) the population of the organism will fall;if the amount of re-
source is greater than r(∞) the population of the organism will grow. The product of
the effectiveness of the organism and the reproduction rate sets this equilibrium value
of the resource, and the resource controls the population.

Consider what happens when we have two organisms that are competing for the
resource. The relevant parameter of each one is their respective r(∞). This reflects the
efficiency of utilization of the resource. The more efficient the organism is,the smaller
is r(∞). The population of the organism that has a higher efficiency will grow at the
equilibrium concentration of resource of the organism that is less efficient, while the

    
r(∞) =

log(1−1/ )

log(1− )
≈

1
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population of the organism that is less efficient will shrink at the equilibrium con-
centration of resource of the organism that is more efficient. Thus the less-efficient
organism must disappear while the more efficient one must increase in number and
dominate the population. Thus, in this model fitness is given by the efficiency of re-
source utilization:

K = 1/r(∞) ≈ (6.5.24)

To see how the fitness is distinct from the population of the organism in equilib-
rium, we can write down the equilibrium population of each type of organism by it-
self. This is given by:

N(∞) = (r0 − r(∞)) (6.5.25)

This means, reasonably, that the population is the reproduction rate times the amount
of resource that is consumed. We can think about the case where the efficiency of or-
ganisms is high so that the residual resource r(∞) is much smaller than r0. Then the
population of a type of organism is directly proportional to its reproduction rate .
However, this is not the same as the fitness in Eq. (6.5.24). Thus we have found that
starting from a first organism type with an equilibrium population N1(∞) we can in-
troduce a second organism type that grows and dominates the first organism type be-
cause it has a higher fitness K2 > K1. But even after the first organism is entirely elim-
inated, and the second organism has reached its equilibrium population N2(∞), we
find that N2(∞) < N1(∞).Specifically, when 2 > 1 then the fitness can increase,even
though the total number of organisms decreases because 2 < 1.

6.5.2 Predators and selection
The discussion of the previous section leads us to consider what happens when one
evolving organism serves as a resource for another organism.A first model that con-
siders a reproducing organism as a resource is the Lotka-Volterra predator-prey
model. This model is a pair of coupled differential equations that describes the expo-
nential growth of a population of prey whose population is limited only by its con-
sumption by a predator. The predator population is limited by the availability of prey,
without which it declines. For convenience we write the prey population as a(t) =
Na(t) and the predator population as b(t) = Nb(t). The equations are:

(6.5.26)

The parameters are the reproduction rate of the prey a, the probability that preda-
tors meeting prey consume them , the rate of death of predators in absence of prey

, and the number of offspring produced by predators after consumption of prey b.
Solutions of these equations display oscillations as shown in Fig. 6.5.5. These oscilla-
tions result from the interplay between the effects of growth of the two organisms.

  

db

dt
= − b + b ab

  

da

dt
= aa − ab
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When the prey increases in population, the predator population increases so much
that it decreases the prey population, which then results in a decrease in predator pop-
ulation. We can add a second type of prey to this model and see how the fitness selec-
tion of the two types of prey would work:

(6.5.27)

The result is simulated in Fig. 6.5.6 for several variations in parameters. We see that
the prey which has either a higher reproduction rate (larger ) or a better avoidance

    

db

dt
= − b + b( 1a1 + 2a2)b

    

da2

dt
= 2a2 − 2a 2b

    

da1

dt
= 1a1 − 1a1b
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Figure 6.5.5 Simulation of the predator-prey model described by Eq. (6.5.26). The predator
and prey populations undergo periodic oscillations as discussed in the text. The parameters
are a = 2, = 0.2, = 3, b = 0.5 and the initial conditions are a(0) = 20 prey, and b(0) = 3
predators. It is important to recognize that the progressive increase in the height of the peaks
is an artifact due to the numerical integration of these equations using Eq. (6.5.8) and a time
increment of dt = 0.01. A solution using smaller values of time increment would be more
closely periodic. An analytic solution of the equations is exactly periodic. This is an illustra-
tion of the inherent sensitivity of the predator-prey model to perturbations. ❚
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Figure 6.5.6 Predator-prey model of competition between two types of prey, showing how
the second type of prey population grows and dominates the first type of prey. The two fig-
ures illustrate different reasons for selection of the second type of prey over the first. In both
cases the first type of prey has the same parameter values as in Fig. 6.5.5 ( a = 2, = 0.2).
For (a) the second type of prey has a higher reproduction rate, a = 2.2. For (b) the second
type of prey has a lower probability of being eaten = 0.18. The initial population of the first
and second type of prey are 15 and 5 respectively. ❚
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of being eaten (lower ) will survive and therefore is the fitter organism. It is a com-
bination of these two traits that is the important criteria for fitness.Question 6.5.6 de-
scribes a method for obtaining the longer time dynamics of the evolutionary process
from these equations. It is significant that in this model,as in the renewable-resource
model, it is not just the population growth by itself that is important.

Question 6.5.6 When there are two or more different types of prey
whose parameters ( , ) differ by a small amount,they together undergo

oscillations in population. As this occurs, one of them increases in popula-
tion at the expense of the others. This longer-time evolutionary dynamics
can be separated from the short-time oscillations. Write a differential equa-
tion for the longer-time dynamics of the ratio of the populations of two
types of prey with incrementally different parameters. Determine the unique
parameter that controls the fitness.

Solution 6.5.6 We write the density of the second prey in Eq. (6.5.27) as

a2(t) = (t)a1(t) (6.5.28)

so that (t) is the population ratio. Inserting in Eq. (6.5.27) we obtain:

(6.5.29)

Substituting the first prey equation from Eq. (6.5.27) we have:

(6.5.30)

or:

(6.5.31)

where ∆ = 2 − 1 and ∆ = 2 − 1. This equation has the same form as the
differential equations describing the prey population. However, since the pa-
rameters ∆ and ∆ are small, we know that the change in is small,and so
we can average the coefficient of on the right over the time that b is fluc-
tuating. This shows that the population ratio changes at a rate controlled by:

∆ − ∆ < b > (6.5.32)

which means, quite intuitively, that the fitness is controlled by the difference
in the reproduction rate minus the average probability that an organism will
be eaten over time. ❚

We can consider a similar question to that asked about the renewable-resource
model. If a particular prey is replaced by a fitter organism, would the eventual total
population of the prey be larger after the change? The result of Question 6.5.6 con-
tained in Eq. (6.5.32) might be wrongly interpreted to mean that with a higher

  

d

dt
= ∆ − ∆ b

    
1a1 − 1a1b( ) +a1

d

dt
= 2a1 − 2a1 b

    

da1

dt
+a1

d

dt
= 2a1 − 2a1 b
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reproduction rate and/or a lower consumption rate,the population of the prey would
necessarily increase. However, this is not the case.The average population of the prey
is not determined solely by the parameters; it is very sensit ive to the initial condi-
tions—how many predator and prey are present at a particular time. Since there is no
unique stable equilibrium toward which the equations lead, we cannot define the av-
erage prey population directly. We can, however, make some relevant remarks.

For the one steady-state solution of Eq.(6.5.26) obtained by setting the time de-
rivative to zero,

a = / b

b = a /
(6.5.33)

there is an increase in the value of a with lower consumption rate , but there appears
to be no effect of its own reproduction rate a. The reason is that the predator popu-
lation is affected by the rate of increase of the prey population which then affects the
prey population. Moreover, for a particular set of initial conditions, it is possible to
show (by simulations or by solving the differential equations) that the average prey
population does not increase with its reproduction rate.

The predator-prey model with evolving prey can be readily expanded to consider
what happens when both the predator and the prey can evolve. This process of evo-
lution of coupled organisms is called coevolution. Its study is a step toward develop-
ing an understanding of the network of interdependence discussed in Section 6.4.5.
An essential parameter in the fitness of both the prey and the predator is the ability of
the predator to eat the prey. Changes in one organism are echoed by changes in the
fitness criteria for the other organism, which in turn drive its selection.

The results we have found from the models in this and the previous section con-
tribute to our understanding of fitness and evolution on a more global scale. An im-
portant conclusion was the decoupling of fitness from the equilibrium or average
number of organisms. As discussed in Section 6.4.6, a relationship between fitness
and population,e.g., P(s) = K(s),is in conflict with the idea that selection resulted in
evolution to larger, more complex organisms. We know that the number of small, rel-
atively simple organisms greatly exceeds the number of complex organisms. This
might suggest that the fitness of the smaller organisms is greater. However, the results
that we have found indicate that fitness is not directly related to the number of or-
ganisms. In these models,parameters such as the efficiency of resource utilization as
well as reproduction rate control the fitness rather than the equilibrium number of
organisms. We are still left with the problem of understanding why the presumably
less fit small organisms continue to exist in the presence of the more fit complex or-
ganisms. This will be addressed in Section 6.5.4.

6.5.3 Mutation
In the discussion of selection in the previous sections, we assumed the existence of
two types of organisms and investigated the consequences. In this section we consider
the process by which changes in organisms occur through mutation.Our objective is
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to consider implications of the existence of many possible mutations that can occur
in an organism. In the context of a simple evolutionary model, we would categorize
the effect of these mutations in terms of their effect on fitness. Some mutations im-
prove the fitness,others decrease it. In general,it is also important to allow mutations
that do not change the fitness. Moreover, once a mutation has occurred,the organism
has changed and the effect of subsequent mutations is contingent on the mutation
that has already occurred. We will start,however, by considering only mutations that
increase or decrease the fitness by a fixed amount. Of particular significance is the
fundamental assumption that mutations occur at random. Mutations occur with a
probability that is not affected by the contribution of the mutation to the fitness. This
does not mean,however, that mutations that improve fitness are equally likely to those
that decrease it.

We simplify the problem by considering what happens if there is a fixed propor-
tion 1/ of mutations that increase fitness for any organism. Moreover, all mutations
change the fitness by the same amount up or down. With these assumptions there is
no significant difference between two organisms that have distinct genomes or phe-
nomes but the same fitness. Organisms that have the same fitness will coexist and
their population will grow or decline together. We can consider together the class of
organisms of the same fitness—a fitness class.Our concern is to understand how the
population in a fitness class changes with time through the effect of mutation and se-
lection. We have chosen to write 1/ for the proportion of fitness-improving muta-
tions because, due to prior fitness selection,it is less likely to have a mutation that in-
creases fitness to one that decreases it. Thus we expect and assume that is
significantly greater than one.

For definiteness we consider an organism that reproduces while consuming a re-
newable resource as given by Eqs.(6.5.14)–(6.5.16) or, better, their incremental ana-
log (Question 6.5.5). We introduce a certain rate at which mutations can occur that
change the fitness class of offspring. Each fitness class is identified by its limiting re-
source ri(∞). For simplicity we will consider only variations in the resource utilization
effectiveness which will be taken to have the value:

i = g i −1
1 (6.5.34)

where i is the fitness class and g is the ratio of the value of i from one class to the next,
assumed to follow a geometric sequence. This is a convenient choice because we will
find that the ratio of i determines the relative growth of the population of a fitness
class.

The simulation must be performed in such a way that a fractional organism is not
allowed to reproduce or mutate. The use of a differential equation can cause problems
when care is not taken with this granularity. A set of incremental equations that do
account for the granularity are developed in Question 6.5.7.

Question 6.5.7 Write a set of incremental equations based on those in
Question 6.5.4 that account for granularity and allow for mutation be-

tween a set of fitness classes.
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Solution 6.5.7 Two of the relevant equations are:

(6.5.35)

Pi(t) = (1 − (1 − i)
r(t)) (6.5.36)

A subtlety in setting up the equation for the number of organisms in a class
is realizing that mutation into a class should be treated probabilistically.
Specifically, at any step there is a certain probability of mutation. When a
mutation occurs, one organism moves from one class to another. If we
naively try to make the continuum equations deterministic, we would intro-
duce a fractional transfer of organisms. This can be treated by accumulating
fractional organisms inside a class but not using them for reproduction or
mutation. When the fraction of an organism reaches a whole organism,then
we do use it. This corresponds, on average, to the moment at which one or-
ganism in a stochastic process would have reached there.

The number of offspring that would arise in a single generation of the
organism in class i is given by:

Oi(t) = iPi(t)Ni(t) (6.5.37)

wh ere x i n d i c a tes the integer part of x. Some of these of fs pring wi ll mut a te
to another cl a s s — s pec i f i c a lly, Oi wi ll . To wri te an increm ental model we as-
sume that on ly a fracti on d t of the or ganisms reprodu ce at on ce and we have :

(6.5.38)

The subtraction of Ni(t − dt) in the first line corresponds to the assump-
tion that the parent dies when the offspring are born. The second line de-
scribes the effect of mutation, where a fraction of the offspring of class i
mutate and leave the fitness class. Of these /( + 1) go to the next higher
fitness class and /( + 1) go to the next lower one. The equation is writ-
ten in terms of the changes in the i th fitness class due to mutations from the
i + 1 and i − 1 classes. We can see that this part of the equation corresponds
to a biased diffusion of population in fitness classes. ❚

A simulation of the model of mutation is shown in Fig. 6.5.7. As mutations oc-
cur, the fitness class of the organisms increase. We might imagine this process as ac-
counting for some of the historical fossil record where over many years an organism
changes monotonically from one form to another. However, since there is no specific
trait or t raits assumed to be associated with the mutations, this is also a general de-
scription of evolutionary progress.

There are several interesting features of this model that we can understand by
considering the effect of various parameters.First we should recognize that there is a
finite range of possible fitness classes. This range is set by the total amount of the re-

    

N i (t) = N i (t −dt) +(Oi (t − dt) − N i (t − dt) )dt

+ 1

+ 1
Oi −1(t −dt ) +

+1
O i+1(t − dt) −O i (t − dt)

 

 
 

 

 
 dt

    

r(t) = r(t − t) +(r0 − r(t − t)) t − N i (t − t)Pi (t − t)
i

∑ t
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source r0. The smallest value of which makes sense is min = 1/(r0 ).A smaller value
results in an organism that is not viable with this amount of resource. Recognizing
that there is a lower bound to the viability of an organism is important. It is related to
the problem of creating the first viable organism. On the other end of the scale there
is also a maximum fitness that arises when there is only one unit of resource left. This
gives max = 1/ . It is impossible for an organism to improve further because there is
no resource to be consumed. Thus, a finite amount of resource leads to a bound on
how much improvement in fitness is possible.

We can gain additional insight into the behavior of this model by determining
the rate of evolutionary progress—the time for fitness class i − 1 to be replaced by fit-
ness class i. There are two parts to this process the first is the time 1 till a first organ-
ism appears in class i and the second is the time 2 till its population becomes domi-
nant. We can make a complete analysis when 1 is longer than 2. In this case
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Figure 6.5.7 Model of evolutionary progress by mutation and selection based upon the re-
newable-resource model. Mutation enables organisms to move from one fitness class to an-
other. The improved resource utilization by the higher fitness classes causes their population
to increase and dominate the lower fitness classes, as the amount of resource available, r, de-
clines due to its utilization. In this simulation the base resource is r0 = 103, all fitness classes
have = 2 offspring per unit of consumed resource, the first fitness class has a resource uti-
lization effectiveness 1 = 10−3, the resource utilization effectiveness of each successive fit-
ness class is multiplied by g = 2, the ratio of fitness improving mutations to fitness reducing
mutations is 1/ = 1/4, and the mutation rate is = 10−3. The first fitness class starts with
50 organisms and all others start with none. The time increment for integration is dt = 0.05. ❚
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equilibrium is reached in class i − 1 and it dominates the population of organisms be-
fore mutation creates organisms in class i.

To study the condition of equilibrium, we use Eq. (6.5.38) to describe the time
dependence of class i − 1 by shifting i to i − 1 everywhere. We can then impose the
equilibrium condition, Ni −1(t) = Ni −1(t − 1). The resulting equation simplifies because
when class i − 1 is dominant the population of other classes is negligible;also, we don’t
need to take the integer part of Ni −1(t). We find:

Ni−1(t) = (1 − )Oi −1(t) (6.5.39)

which says that the offspring that do not mutate replace their parents. From Eq.
(6.5.37) we have:

1 = (1 − ) i −1Pi −1(t) (6.5.40)

From the resource equation Eq.(6.5.35), with r(t) = r(t − 1), we can obtain a value for
Ni −1(t):

Ni −1(t) = (r0 − r(t))/Pi −1(t) = (1 − ) i−1(r0 − r(t)) ≈ (1 − ) i −1r0 (6.5.41)

The latter approximation holds unless the organism is just marginally viable.
The time 1 to create a first organism in class i is determined by Eq.(6.5.38) with

all of the terms equal to zero (Ni(t) = 0) except for the contribution by mutation
from class i − 1:

(6.5.42)

This equation is linear, so the time to reach a single organism 1 is:

1 = (Λ + 1) / i−1r0 (6.5.43)

This expression says that the time to obtain a single organism in class i is proportional
to the difficulty in finding a fitness-improving mutation, and inversely related to the
number of mutated offspring per generation produced by fitness class i − 1.

Once class i has an organism, we can neglect mutation from class i − 1, because
Ni(t) grows by reproduction. Moreover, now that class i has more than one organism,
it is not essential to take the integer part of Ni(t). Ni(t) grows according to (Eq.6.5.38):

Ni(t) − Ni(t − dt) = ((1 − ) iPi(t) − 1)Ni(t − dt)dt (6.5.44)

To solve this we recognize that the amount of resource available during the growth of
Ni(t) is determined by the equilibrium resource of the fitness class i − 1. It is essen-
tially independent of time,and therefore so is Pi(t). From Eq.(6.5.36) the equilibrium
resource of fitness class i − 1 is:

(6.5.45)

Then we have:

(6.5.46)
    
(1 − ) i Pi (t) ≈(1− ) i (1− (1 − i )

r (t )) ≈ (1 − ) i ir(t) ≈ i i

i −1 i −1

= g

    
r(t) =

ln(1−1/(1− ) i−1)

ln(1− i−1)
≈

1

(1− ) i −1 i −1

    
N i (t) − N i (t −1) =

+1
O i−1(t − dt)dt ≈ i −1r0

+1
dt
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where we have used approximations to simplify the form of the result. Using this in
Eq. (6.5.44) we have exponential population growth in class i:

Ni(t) ∝ et /(g −1) (6.5.47)

2 is the time for the population of class i to grow from a single organism to the equi-
librium population of class i − 1. This is given by:

Ni −1(t) = e 2/ (g −1) (6.5.48)

or:

2 = ln(Ni −1)/ ln(g − 1) = ln((1 − ) i −1r0)/ ln(g − 1) (6.5.49)

We conclude that the total time for a change of fitness class is given by (setting i = :

= 1 + 2 = ( + 1)/ r0 + ln((1 − ) r0)/ ln(g − 1) (6.5.50)

This is the evolution time between fitness classes. It becomes invalid when the second
term becomes large enough compared to the first that significant growth of class i oc-
curs before the growth of the class i − 1 is completed.

We can develop an understanding of Eq.(6.5.50) by realizing that the first term
is large compared to the second term when the mutation rate is small or the prob-
ability of finding a fitness-improving mutation is small ( is large). In this case, the
organisms evolve in distinct stages where a fitness class replaces the one immediately
preceding it. If is not too large and the mutation rate becomes high enough (it can-
not be greater than one), 1 may become shorter than 2. In this case there are several
overlapping classes that exist at the same time, and Eq. (6.5.50) is no longer valid.
Fig. 6.5.8 illustrates the latter case, where at any time there is a heterogeneous popu-
lation of organisms undergoing selection.

The model of mutation and selection appears in its overall behavior to be simi-
lar to the Monte Carlo random-walk model of downhill diffusion that was discussed
in Section 6.4. However, there are a number of differences between these two models.
The most important difference is the role of the rarity of fitness-improving mutations
(phase space). In the Monte Carlo model we can analyze its role through the proper-
ties of equilibrium. In equilibrium the number of organisms that mutate from class
i − 1 to class i is the same as from class i to class i − 1. The relative number of organ-
isms in equilibrium in the different classes is set by this condition. We can calculate
the number of mutating organisms in the random-walk model using the parameters
of the mutation and selection model. In each time step, a walker chooses one of the
possible mutations. The proportion of these that improve the fitness is 1 /( + 1),
while the proportion that decrease it is /( + 1). All of the mutations that improve
the fitness are accepted, but only K(i − 1)/K(i) = 1/g of those that decrease the fitness
are accepted. This means that in equilibrium the proportion of the population in class
i − 1 and class i is given by:

Ni /Ni −1 = g / (6.5.51)

This means that the population of the lower fitness class will be larger if the number
of fitness-improving mutations is sufficiently small. If we think about dynamics,
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under these circumstances the evolution will progress uphill rather than downhill.
The reason for this is that the balance between entropy and energy is being won by the
entropy of the much greater number of lower-fitness organisms.

This conclusion is not true for the reproduction and selection model. The time
that it takes to improve the fitness Eq.(6.5.50) increases with increasing . However,
for any value of the fitness increases. This is an important result for our under-
standing of evolution. It means that selection with reproduction is more powerful
than entropy. Our understanding becomes more complete if we recognize that the ad-
vance in fitness does stop when the resource is scarce—when the fitness reaches max

so that the amount of resource is a single unit. Thus it is the nonequilibrium driving
force of resource consumption that plays a different and more powerful role than a
difference in energy or entropy.

A related difference between the two models arises when we consider the possi-
bility that an individual organism will move counter to evolutionary progress—
downward in fitness or upward in energy. In a reproduction and selection model, the
possibility of movement to a significantly lower fitness class is vanishingly small. This
is because steps downward in fitness become progressively more and more difficult.
A step downward consists of two parts,a mutation downward and a successful repro-
duction in the lower fitness class.The first part does not depend on which fitness class
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Figure 6.5.8 Simulations similar to those shown in Fig. 6.5.7. The only difference is that a
higher mutation rate = 10−1 was used. The fitness classes overlap because each one does
not reach a steady state population before the next one arises. ❚
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we start from. However, the second decreases for lower-fitness classes because the re-
production rate is controlled by the available resource which is controlled by the dom-
inant fitness class. In contrast, Monte Carlo steps upward in energy have the same
probability no matter what the starting energy is. If we think about the fitness land-
scape as formed of valleys and ridges,this difference in model behavior is directly rel-
evant to the possibility of climbing over ridges to find other valleys. In the Monte
Carlo model, it may be possible. In the reproduction and selection model, it is very
unlikely. This is also related to the observation that in the Monte Carlo model the pop-
ulation tends to spread out on an incline. In the reproduction and selection model this
is not the case.

Finally, there is also a difference in the effect of the absolute population size in the
two models. In a simple Monte Carlo model where each walker moves independent
of the others, the population size does not enter in any way. When there is self-
attraction of the organisms (Section 6.4.5),it plays a role in random movement on a
flat landscape—the motion is faster for smaller populations. However, population
size does not play a role in the rate of evolution on an incline. On the other hand, in
the reproduction and selection model,the probability of finding a rare mutation per
generation increases with population size.Thus the rate of evolution increases almost
linearly with population size when the probability of finding the right mutation is
small. We can also think about the reproduction and selection model as a kind of fit-
ness optimization algorithm. The linear increase in rate of evolution with population
size implies that it works as an efficient parallel algorithm where each processor (or-
ganism) contributes to the optimization.

Qualitatively our conclusions from this section are that the process of reproduc-
tion and selection is effective at finding rare fitness-improving mutations and there-
fore is effective at forcing evolutionary progress against the influence of entropy. This
is precisely what is needed to generate complex organisms. However, we also find that
reproduction and selection tend to drastically confine the exploration of possible or-
ganisms to a steepest descent in the fitness landscape. Thus, evolutionary progress
should become stuck in the first fitness valley that is encountered, and organism
change will no longer be possible. This problem leads to even more dramatic conse-
quences when we consider it in the context of trait divergence in the next section.

6.5.4 Trait divergence, extinction and the tree of life
The incremental process of evolution by mutation and selection described in the pre-
vious section must be accompanied by a discussion of trait divergence in order to ac-
count for the phenomenology of life. As discussed before and illustrated in Fig. 6.5.9,
it is assumed that all organisms, ranging from single-celled organisms to plants and
animals, originated from the same microorganisms early in evolutionary history. This
requires a process of divergent evolution. At various moments in time, originally sim-
ilar organisms evolved in different ways to create (at least) two types of organisms
from the original one. The evidence in support of this picture includes the similarity
of various organisms in their various levels of structure (chemical, cellular, physio-
logical) and the experience of breeding where distinct varieties can be generated. The
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relative proximity of organisms on the tree of life has been studied by assuming that
the number of differences in the genome reflects their distance on the evolutionary
tree. In Section 6.4.6 we discussed several global models,flow downhill,uphill motion
and expanding waves, which might be considered in the context of Monte Carlo mod-
els for speciation. What can we say about the reproduction-and-selection models dis-
cussed in this section?

Remarkably, we can point out that any of the reproduction-and-selection mod-
els discussed in this section are inconsistent with trait divergence. For definiteness,
consider the reproduction-and-selection model based upon resource utilization in
Section 6.5.3. We can introduce branching channels for organisms in a pattern con-
sistent with that shown in Fig . 6.5.9. Progress along any channel is directly mapped
onto mutations that increase fitness. Thus we identify a particular fitness class with
the horizontal lines in Fig. 6.5.9. Starting from an organism at the beginning of the
tree, the organism evolves downward to the first branching. Then some organisms
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Figure 6.5.9 Schematic illustration of the tree of life formed by evolution and trait diver-
gence, resulting in all of the diversity of life, and originating in one type of single-celled or-
ganism. As discussed in the text, a model of reproduction and selection that requires com-
petition based on fitness between all organisms would not be able to account for trait
divergence, because at every time all of the species must have essentially the same fitness.
This would require all to evolve in precise lockstep. In order to account for trait divergence,
selection must be understood to apply separately to organisms that consume distinct re-
sources—identified both by resource type and geographical location. ❚
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move to one channel and some to the other. The problem with this model arises in the
interplay between organisms evolving in the two channels.Assume that organisms in
one channel,even by chance,progress to a higher class slightly before they do so in the
second channel. Then the organisms in the second channel will be rapidly suppressed
by selection. This suppression is an accelerating process, because once there are fewer
organisms,they have less chance to reach the subsequent fitness class.Thus,unless we
could demonstrate a reason for all organisms to evolve in lockstep, there is no possi-
bility that the reproduction-and-selection model will allow the coexistence of distinct
types of organisms. This is the literal conclusion of “survival of the fittest”—only one
type of organism can exist. This conclusion applies not only to the renewable-re-
source model but also to the simplest reproduction-and-selection model in
Eq.(6.5.5),and to the predator-prey model for the evolution of prey (or predators) in
Section 6.5.2.

Question 6.5.8 Contrast the formation of diverse organism traits in the
Monte Carlo model with its absence in the reproduction-and-selection

models. What is the key difference?

Solution 6.5.8 The key difference is the scope of selection. In the Monte
Carlo model, selection only occurs between an organism and its one mu-
tated offspring. In the reproduction-and-selection model, selection occurs
between all organisms at the same time. In the first case, we can have differ-
ent traits for every walker. In the second,essentially only one organism type
is possible. ❚

Question 6.5.9 Consider neutral mutations in the model of the last sec-
tion. These mutations consist of additional genome or phenome di-

mensions in which the organisms can change without affecting their fitness.
How does the population evolve in these dimensions? For simplicity, con-
sider the case where is large.

Solution 6.5.9 The trick is to recognize that evolution in the direction of
increasing fitness affects the population movement in the neutral dimen-
sions as well. Thus we cannot describe the evolution of the population as a
diffusion in the neutral dimensions.

The case where is large means that fitness-improving mutations are
rare. As a result there is essentially only one organism that mutates to a
higher fitness class. This organism reproduces to form the entire population
at the next fitness class. Thus the population of every fitness class begins
from a unique genome. During the proliferation of the organisms in this
class,they diffuse in the neutral dimensions to form a more diverse popula-
tion. Then a mutation takes one organism to the next fitness class, and the
process of spreading starts over. Thus, the width of the distribution in the
neutral dimensions is limited to be the width of a random walk that occurs
in the time to reach the next fitness class; i.e.,it is proportional to √ . In our
model where does not change,the width of the distribution also does not
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change as the organisms evolve. This is consistent with the observation that
this model precludes the coexistence of distinct organism types.

However, there is a change over time in the average location of the
population in the neutral dimensions. At the time a fitness-improving mu-
tation occurs, the population consists of a distribution of width √ . From
this distribution, one organism mutates to the higher fitness class. Thus in
the next class the average location of the population in the neutral dimen-
sions will be different from that in the previous class by a distance propor-
tional to √ . We see that the population as a whole undergoes a random
walk in the neutral dimensions. The typical distance traveled in the ran-
dom walk is proportional to √ n = √t , where n is the total change in fitness
class. This means that the typical distance traveled in the neutral dimen-
sions is independent of . ❚

Where have we neglected an essential element in our models that would enable
evolutionary coexistence of organism types? By considering natural phenomena, we
recognize that the main problem in this picture is that all organisms do not compete
directly for the same resource. Instead,there are many different resources that organ-
isms are consuming. The primary resource is the energy that is arriving from the sun
and radiated as heat into space. This resource is converted by interaction with the
physical world,as well as with the biological organisms that exist, to other forms. The
utilization of this resource by one organism type (e.g., plants) leads to another re-
source type (oxygen, sugar) that can be used by other organisms. The interplay of this
process with physical climate and geologic conditions also leads to variations in the
form the resource takes and conditions under which it can be utilized. In addition to
their distinct forms, resources may also be distinct through spatial physical isola-
tion—the separation of two different areas by physical obstacles that prevent easy mi-
gration from one to the other. This variation and isolation of resources leads to dis-
tinct channels of evolution related to their utilization.

We conclude that it is the existence of different resources that enables distinct or-
ganism types. Thus, to simulate the formation of different types in a model similar to
that in Section 6.5.3,we must modify it to allow for the existence of distinct resources,
say r1 and r2. These may represent different sides of the same mountain range,differ-
ent types of grass, or grass and leaves or even sunlight and plants. To allow the for-
mation of different types of organisms, mutation (or migration) must then allow cre-
ation of organisms that pursue these distinct resources. Construction of a model of
this kind is not difficult. We assume a number of organism types indexed by i that
consume the two resources with efficiencies i1 and i 2. Trait divergence would occur
when organisms consume the resources in a manner that would systematically cause
one type of evolving organism to consume one resource, while the other consumes
the other resource. In the simpler model of Eq.(6.5.5) the same effect would be mod-
eled by introducing more than one fitness parameter per organism. We will not ex-
pend effort to build and simulate such models here. In Chapter 7, models will arise
naturally that contain the essential features discussed here.
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Question 6.5.10 Let us try one more time to create a global fitness
model using an equation similar to Eq. (6.5.4) to define what we mean

by fitness in the most direct and natural way. The fitness K is the rate of in-
crease in the population of the organism defined as:

(6.5.52)

In what way might this be a useful definition? In what way is it not?

Solution 6.5.10 The concept of a fitness assumes that it can be expressed
in terms of the organism properties—in particular, as a function of the
genome s. To the extent that we can obtain K(s) independent of the evolu-
tionary dynamics we wish to describe, it is useful. If we use the definition in
Eq. (6.5.52) in the context of the model of Section 6.5.3, we see that for any
fitness class, K(s) starts out greater than one,passes through unity when it is
populated and becomes smaller than unity as it disappears. This shows that
the fitness defined in this natural way is a strong function of time through
changes in the environment, which also consists of other organisms.

Using Eq . (6.5.52) as a model for gl obal evo luti on , we imagine a fitn e s s
l a n d s c a pe −K(s) (the nega tive sign is for con s i s tency of up and down with the
en er gy model ) .O r ganisms do not diffuse downw a rd on the landscape ; i n s te ad
the landscape itsel f m oves upw a rd . This is not an essen tial differen ce . What is
d i f ferent is that all the or ganisms at any time are points loc a ted on a band near
unit fitn e s s .O r ganisms increasing in nu m ber have sligh t ly high er fitnesses (are
l ower on the landscape) and those dec reasing have sligh t ly lower fitn e s s e s . Th i s
p i ctu re would be appealing and simple if the landscape were ri gi d . It would then
corre s pond to all or ganisms evo lving uniform ly in lock s tep.However, i f we con-
s i der an or ganism that persists for long times and or ganisms that under go dra-
m a tic evo luti on a ry ch a n ges du ring the same ti m e , we see that the landscape it-
s el f is ch a n ging shape (morph i n g ) . Regi ons of the landscape wh ere or ga n i s m s
a re evo lving move qu i ck ly, while other regi ons remain fixed in place . This illu s-
tra tes how the ex i s ten ce of mu l tiple re s o u rces manifests itsel f in this model . ❚

The necessity of considering multiple resources in the study of multiple organ-
ism types is an indication that an essential problem in studying evolution is under-
standing the dynamics of the resources and their categorizations and distinctions.
Since most of the time, aside from sunlight and space, the resources that are con-
sumed are themselves organisms or related to the existence of organisms,this creates
an interdependence between the evolution of one organism and the evolution of oth-
ers. For our limited purposes here, we need only recognize that without a model for
the dynamics of the resources, a dynamics of organism types cannot be understood.
Within such a model, formation of distinct organism types can be readily understood.

Another process that may be understood within this picture is extinction. There
are various times in evolutionary history where organism types that existed become

  

dN

dt
= KN
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extinct. We can understand this by assuming that after multiple organism types are
created, there is parallel evolution of organisms that are consuming different re-
sources. Some time later, one organism t ype may have a mutation that enables it to
better consume a resource that the second organism type depends upon. This leads to
extinction of the second organism type.

A process that is rarely considered is true convergent evolution: two organisms
evolve by mutation and become the same organism. This is the opposite of divergent
evolution. There are several reasons why it is not likely. The first is the large space of
possible organisms.Moving around in this space,two evolutionary tracks are unlikely
to encounter each other. Another reason that this is not likely can be seen from the
multiple-resource model. As two organisms become similar they become competitors
for the same resource. However, as this occurs they are still different enough so that
one should have a lower fitness than the other and will become extinct.

In order to understand the role of different resources in causing multiple organ-
ism types, it is helpful to consider the notion of organism complexity, which will be
developed further in Chapter 8. We can think about a particular environment and re-
source as establishing a particular demand on organisms. As discussed above,associ-
ated with an amount of resource is a minimum fitness that corresponds to the first vi-
able organism that can survive by utilizing it. This also means that there is a minimal
complexity for viable organisms. This is the minimum complexity of organisms that
have sufficient fitness to survive in the environment by consuming this resource. For
example,it appears that there are photosynthetic organisms that can exist in the ocean
which are simpler than photosynthetic life on land. We might imagine a map of the
minimal complexity of viable organisms at every location on the two-dimensional
surface of the earth, for each of multiple resources present there. We can view the
process of evolutionary progress as the creation of new organisms that are complex
enough to exist in a certain environment and consume a particular resource. Progress
enables organisms to spread from one environment to another. One example is the
often discussed emergence of life from ocean to land. Once life exists that consumes
a particular resource in a particular place, evolution continues until it reaches the
maximal fitness for the resource. This maximal fitness is the lowest fitness that enables
organisms to consume all of the resource. It also corresponds to a maximum com-
plexity that would be reached by evolution in this environment. This picture may be
described as the evolution of organisms to fill ecological niches that exist due to the
presence of resources. We can intuitively understand that in order for an organism to
be able to consume more than one type of resource it must be more complex than an
organism that consumes only one type of resource. Qualitatively, this explains why
evolution created progressively more complex organisms but did not systematically
eliminate the previous organisms.Organisms that existed and filled ecological niches
remain. This also includes the prokaryote single-celled organisms that may have ini-
tiated the process of organism evolution.

This description of evolution enables us to compare and contrast human beings
with the most closely related species—the apes. Apes occupy small ecological niches
and consume limited resources. In contrast, human beings utilize a significant frac-
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tion of many different resources in many distinct environments. This suggests that
apes evolved in order to be able to utilize resources that can only be consumed by such
highly complex organisms. Human beings break this pattern by being sufficiently
complex to meet the challenges of consuming a large variety of resources. Within this
context, we can understand the potential and actual extinction of various organisms
as a result of the actions of mankind in consuming resources. Human consumption
of plants and animals is in part a predator-prey situation where overconsumption can
lead to decline of the predator (human beings) as well as the prey. On the other hand,
the direct competition for resources (prey or space) causes extinction or danger of ex-
tinction to many animals and plants. This is consistent with considering human be-
ings as part of the evolutionary process where the increased fitness of human beings
through their ability to consume resources is an advantage over animals and plants
and may cause extinction of the latter. Of course, an explanation for extinction does
not mean that it is in the best interest of human beings. However, we see that the wide-
spread ability to cause extinction for many different organisms signals a qualitative
change in what is more typical of evolution.Organisms typically evolve and are com-
plex enough to occupy only specific ecological niches.

The discussion of multiple resources allowed us to introduce spatial variation in
resources and thus in fitness. It is also relevant to discuss temporal variation in re-
sources. We consider the possibility of a fluctuating base line resource r0(t) for the re-
newable-resource model. This can be seen to cause a variation in the selection pres-
sure. Without any variation,the selection pressure is great due to consumption of the
available resource by the fittest organisms present. If,however, the resource suddenly
becomes more plentiful, then the amount o f resource r(t) is more than the equilib-
rium value ri(∞) for organisms in lower fitness classes. The organisms in these classes
then increase in numbers. It is less significant that the fittest organisms multiply faster.
The increase in population of lower-fitness organisms allows, in principle, for the
possibility of escape from valleys in the fitness landscape. This solves a major prob-
lem of describing evolutionary progress in the reproduction-and-selection model. An
illustrative example is the effect of forest fires. Originally thought to be solely harm-
ful, the occasional loss of old trees is now understood to have many benefits. We dis-
cussed the effects of forest fires in the context of interdependent networks of organ-
isms in Section 6.4.5. Here,the effect of such catastrophes is direct. We can recognize
that a fire enables a larger variety of plant life and other organisms to grow in the plen-
tiful resource (sunlight) whose consumption is not dominated by a particular type of
optimal-fitness tree. This increase in diversity of organisms participates in the process
of evolution through creation of variety that can then be the subject of selection as
the forest matures.

One final temporal consideration is important when we consider the competi-
tion that causes extinctions. If we consider competition between two species, we see
that the organism type that evolves faster has an advantage when competition for the
same resource occurs. Thus,fitness of a species can depend not only on the fitness of
a particular organism but also of the rate of organism evolution. This can be directly
affected by the lifetime of a generation that sets the time scale for the models of
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evolutionary progress. We see that selection may cause organisms to have short life
spans—a possible reason for senescence. Even more significantly, considering these
effects causes us to look beyond the individual to the effects of selection on species,
since the rate of evolutionary progress is not part of the fitness of a particular organ-
ism. This will be the topic of the following section.

Collective Evolution: Genes, Organisms 
and Populations

Our objective in this section is to reconsider the p roperties of components in com-
plex systems and their relevance to evolution. Sexual reproduction involves an entire
species in an evolutionary process rather than each individual organism.Interestingly,
it is possible to take another approach in which sexual reproduction decouples the
evolution to a process that pertains to individual genes that are parts of the organism.
We will discuss this approach in Section 6.6.1, developing an understanding of when
(and in what sense) it is valid and when it is invalid,since we are interested in the na-
ture of interdependence of components of complex systems. In Section 6.6.2 we will
approach more generally the problem of understanding why systems built out of
components are formed in evolution. Why don’t the components just fend for them-
selves? This question is related to philosophical questions about selfish and altruistic
individuals in a society, and conceptual problems of understanding the appearance of
altruism in evolution. By addressing these questions, we will gain an intuitive under-
standing of the process of formation of collectives in evolution.

6.6.1 Genetic mixing in sexual reproduction
One of the interesting phenomena of biology is the existence of sexual reproduction
in all but relatively simple organisms. Sexual reproduction mixes hereditary traits.
This mixing poses serious philosophical problems for the understanding of evolution.
Simply stated,the problem is that in sexual reproduction the organism that is selected
for is not the same as its offspring. How is this consistent with the concept of selec-
tion as a mechanism of evolution?

One of the approaches that has been taken to deal with this issue is the gene-
centered view of evolution. In this view there are assumed to be indivisible elemen-
tary units of the genome (often thought of as individual genes) that are preserved
from generation to generation. Different versions of the gene (alleles) compete and
mutate rather than the organism as a whole. Thus the genes are the subject of evolu-
tion. We will show below that this view is precisely equivalent to a mean field ap-
proach (Section 1.6) where correlations between the different genes are ignored.Each
gene evolves in an effective environment formed within the organism and its envi-
ronment. This effective environment is an average environment (mean field) within
a sexually reproducing population (species). By showing that the gene-centered view
of evolution is a mean field approach, we can recognize why it is useful and we can
also recognize when it is invalid—when correlations between genes are significant.

6.6
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Correlations between genes arise when the presence of one allele in one place in
the genome affects the probability of another allele appearing in another place in the
genome.One of the confusing points about the gene-centered theory is that there are
two stages in which correlations must be considered: selection and sexual reproduc-
tion (gene mixing). Correlations occur in selection when the probability of survival
favors certain combinations of alleles, rather than being determined by a product of
terms given by ea ch allele separately. Correlations occur in reproduction when par-
ents are more likely to mate ifthey have certain combinations of alleles. If correlations
only occur in selection and not in reproduction, the mean field approach continues
to be at least partially valid. However, if there are correlations in both selection and
sexual reproduction, then the mean field approach and the gene-centered view be-
comes completely invalid. It is sufficient for there to be very weak correlations in sex-
ual reproduction for the breakdown to occur. This turns out to be particularly rele-
vant to trait divergence of populations.

In order to understand the gene-centered view we will study a simple model of
the process of sexual reproduction that explicitly eliminates correlations in reproduc-
tion. Two specific examples will be worked out in some detail. Then we will discuss a
more complete theory showing that the simple theory is a mean field approach.Later
we will present reasons for the existence of sexual reproduction. It is helpful to recall
that during sexual reproduction an offspring obtains half of the chromosomes of nu-
clear DNA from each parent. The chromosomes are paired in function—homologous
pairs. Each homologue chromosome of the offspring is formed in a parent by a
process (crossover during meiosis) that combines segments of DNA from both of the
parents’ homologues.

A first model of sexual reproduction begins by assuming that recombination of
the genome components during sexual reproduction results in a complete mixing of
the possible alleles,not just in the organism itself but rather throughout the species—
the group of organisms that is mating and reproducing. Thus the offspring represent
all possible combinations of the genomes from reproducing organisms. From the
point of view of a particular allele at a particular gene, the complete mixing means
that at all other genes,alleles will be present in the same proportion that they appear
in the population—there are no allele correlations after reproduction.

In the simple model, selection operates on the entire genome of the organism.
Thus,after selection there may be correlations in the allele populations. It is assumed
that the reproducing organisms are the ones that have successfully survived the
process of selection. If we would further simplify this model by assuming that each
gene controls a particular phenomic trait for which selection occurs independent of
other genes, then each gene would evolve independently; a selected gene reproduces
itself and its presence within an organism is irrelevant. The existence of a gene as part
of an organism means,however, that selection occurs on the genome,not on individ-
ual genes,and allele correlations after selection will occur. This means that fitness de-
pends not on individual genes but rather on gene combinations. As the proportion of
one allele in the population changes due to evolution,the fitness of another allele at a
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different gene will be affected. However, due to the assumption of complete mixing in
sexual reproduction, only the average effect (mean field) of one gene on another is rel-
evant. We could consider the organism to be part of the changing environment in
which the gene evolves. The following two examples will help us examine this more
carefully.

The first example we discuss is the special case of interdependence of two homo-
logue genes. This is special because the same alleles are found in both genes. We allow
there to be only two different alleles . The evolutionary dynamics describes the pro-
portion of genes with each allele in the population. The proportion of the alleles is
given by P1(t) and P−1(t) = 1 − P1(t). An individual organism has two homologue
genes and may be either homozygous with both of the same kind or heterozygous
with one of each. Using our assumption of random mixing during reproduction, off-
spring represent the ensemble of possible combinations of the alleles; the specific
composition of the parent generation cannot matter to the composition of the off-
spring. Thus the offspring organisms are in proportions:

P1,1(t) = P1(t − 1)2

P1, −1(t) = 2P1(t − 1)(1 − P1(t − 1)) (6.6.1)

P−1, −1(t) = (1 − P1(t − 1))2

where Pi, j is the proportion of an organism with i and j alleles. If there is no selection
bias, these organisms will reproduce to form the subsequent generation. We confirm
that the proportion of alleles is unchanged from generation to generation (Hardy-
Weinberg theorem). The proportion of one allele is given by

(6.6.2)

where the prefactor of 1/2 comes from normalization of the probability because there
are two alleles per organism. From Eq. (6.6.1) this is:

(6.6.3)

To introduce selection we assume that it acts on the organisms,and assign a fit-
ness to each of the organisms, not each of the alleles. We use the simplest selection
model of Eq.(6.5.5) where number of offspring determines fitness. The parameters
are indexed by the two alleles 11, 1,−1, and −1,−1. We have a two-step dynamics con-
sisting of reproduction and selection. In generation t the population proportions af-
ter selection (indicated by primes) are:

(6.6.4)

    

′ P i ,j (t) = i,j

< >
Pi, j (t)

< (t) > = i ,j Pi ,j (t)
ij
∑ = 1,1P1(t)2 + 2 1,−1P1(t)(1− P1(t))+ −1,−1(1− P1(t))2

    

P1(t) =
1

2
2P1(t −1)2 + 2P1(t −1)(1− P1(t −1)) 

 
 
 

= P1(t − 1)

    
P1(t) =

1

2
2P1,1(t)+ P1,−1(t)( )
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The reproduction step that determines P1(t) is given by Eq. (6.6.2) with primed
probabilities:

(6.6.5)

We can find the steady state where P1(t) = P1(t − 1) = P1. Multiplying Eq. (6.6.5) by
< > gives the equation:

1, 1P1
3 + 2 1, −1P1

2(1 − P1) + −1, −1P1(1 − P1)2 = 1, 1P1
2 + 1, −1P1(1 − P1) (6.6.6)

We have two trivial solutions P1 = 0, 1. Dividing this equation by P1(1 − P1)—the eas-
iest way is to combine together the first term on both sides—enables us to obtain the
third root, which is given by:

2 1, −1P1 + −1, −1(1 − P1) = 1, 1P1 + 1, −1 (6.6.7)

or:

(6.6.8)

The two trivial solutions occur when either 1,1 or −1, −1 is the highest fitness. In this
case we can say that one of the alleles is more fit than the other. If 1, −1 is the highest
fitness,then the third solution that corresponds to a mixed population results. This is
the circumstance where an organism with one allele of one type and one allele of the
other type is most fit.A well-known example is the sickle-cell allele which,when com-
bined with a normal allele, has higher fitness in the presence of malaria. To see how
this mixed solution functions, we can assume that the fitness for homozygous organ-
isms is zero, so that none of them reproduce. Then we have 1, 1 = −1, −1 = 0. From
Eq. (6.6.8) P1 = 1/2. Even though the organisms that are homozygous do not repro-
duce,they still exist in every generation and comprise half of the population at birth.
Thus, selection in favor of heterozygotes creates a mixed population.

In a sen s e , this is a stra i gh tforw a rd example of the cre a ti on of correl a ti ons bet ween
a ll eles that might be ex pected to vi o l a te a mean field theory. Sel ecti on imposes a cor-
rel a ti on by requ i ring the ex i s ten ce of d i f ferent all eles at the two gen e s . However, i f we
on ly con s i der the com po s i ti on of of fs pri n g, t h en the all eles become uncorrel a ted du e
to sexual mixing. The depen den ce of one all ele on the other all ele for su rvival is ob-
s c u red by the avera ging due to reprodu ctive mixing. In Questi on 6.6.1 the rep l acem en t
of the fitness of an or ganism with an ef fective fitness of an all ele is discussed . No te also,
that the way the model is formu l a ted so that the pop u l a ti on is alw ays norm a l i zed , ob-
s c u res the need to overcome sel ecti on by having gre a ter nu m bers of of fs pri n g.

This example can be generalized. We could consider two genes with two alleles
each, where the only reproducing organism has a combination of all different alleles.
Each of the alleles on each gene would be present half of the time and the reproduc-
ing organism occurs only one-quarter of the time. Three-quarters of the organisms

    
P1 = 1,−1 − −1,−1

2 1,−1 − −1,−1 − 1,1

    

P1(t) = 1

2
2 ′ P 1,1(t − 1) + ′ P 1,−1(t − 1)( )

= 1

< (t − 1) > 1,1P1(t − 1)2 + 1,−1P1(t − 1)(1− P1(t − 1)) 
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do not reproduce. We can see that survival would become poor for organisms if there
is such severe selection for particular combinations of genes. Since there are estimated
to be of order 105 genes in mammals,this is an unlikely scenario. Specifically, if many
individual genes strongly affect selection,then the number of organisms surviving to
reproduce becomes very small. This problem will become more significant when we
consider correlations between nonhomologue genes.

As a second example, we consider a case of selection in favor of a particular com-
bination of alleles on nonhomologue genes.Specifically, when allele A1 appears in one
gene,allele B1 must appear on a second gene,and when allele A −1 appears on the first
gene, allele B−1 must appear on the second gene. We can write these high fitness or-
ganisms with the notation (1,1) and (−1,−1); the organisms with lower fitness (for
simplicity, = 0) are (1,−1) and (−1,1). It is clear that there are two stable states of the
population with (1, 1) or with (−1,−1). If we start with exactly 50% of each allele,then
there is an unstable steady state. In every generation,50% of the organisms reproduce
and 50% do not.Any small bias in the proportion of one or the other will cause there
to be more and more of one type over the other, and the population will eventually
have only one set of alleles.

We can solve the example directly. It simplifies matters to realize that the repro-
ducing parents must contain the same proportion of the correlated alleles (A1 and B1)
so that:

P1, 1(t) + P1, −1(t) = P1, 1(t) + P−1,1(t) = P1(t)

P−1,1(t) + P−1, −1(t) = P1, −1(t) + P−1, −1(t) = P−1(t) = (1 − P1(t))
(6.6.9)

The reproduction equations are:

P1, 1(t) = P1(t −1)2

P1, −1(t) = P−1,1(t) = P1(t − 1)(1 − P1(t − 1)) (6.6.10)

P−1, −1(t) = (1 − P1 (t − 1))2

The proportion of the alleles in the generation t is given by the selected organisms:

(6.6.11)

Since the less fit organisms (1,−1) and (−1, 1) do not reproduce this is described by:

(6.6.12)

This gives the update equation:

(6.6.13)

which has the behavior described above and shown in Fig. 6.6.1. This problem is rem-
iniscent of the ferromagnet at low temperature as studied in Section 1.6.Starting from
a nearly random state with a slight bias in the number of UP and DOWN spins, the
spins align, becoming either all UP or all DOWN.

    

P1(t) =
P1(t − 1)2

P1(t − 1)2 +(1 − P1(t − 1))2

    

P1(t) = ′ P 1,1(t) =
1

P1,1(t) + P−1,−1(t)
P1,1(t)

    
P1(t) = ′ P 1,1(t) + ′ P 1,−1(t)( )
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In order to relate the examples and assumptions we have used to a more general
formulation of sexual reproduction, we write a two-step general model for sexual re-
production:

{N(s ;t)} = R[{N ′(s; t − 1)}] (6.6.14)

{N ′(s; t)} = D[{N(s; t)}] (6.6.15)

The first equation describes reproduction. The number of offspring N(s; t) having a
particular genome s is written as a function of the reproducing organisms N ′(s;t − 1)
from the previous generation. The second equation describes selection. The repro-
ducing population is written as a function of the offspring. The brackets on the left
indicate that each of these equations represents a set of equations for each value of the
genome. The brackets within the functions indicate, for example,that each of the off-
spring populations depends on the entire set of parent populations.
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Figure 6.6.1 Time evolution of the allele population in sexual reproduction when selection
enforces a correlation between alleles on two genes, Eq. (6.6.13). The proportion of the first
coupled pair of alleles P1(t) in successive generations is shown by the dots, and connecting
lines are included for clarity. The starting proportions P1(0) are indicated by the labels. The
figure shows that the pair of alleles which starts with a larger proportion eventually domi-
nates. For P1(t) = 0.5 there is an unstable equilibrium. The text discusses a species that has
nonuniform composition in physical space. In one area one allele pair dominates and in an-
other area the second allele pair dominates. Under the influence of correlated selection linked
to correlated reproduction, two distinct populations arise. ❚
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A mean field approximation is performed by assuming that the reproduction
step depends only on the proportion of alleles and not on their specific combinations
in the reproducing population. This proportion can be written as:

(6.6.16)

where we use s = (s1, ..., sN) to represent the genome in terms of alleles,and the sum is
over all gene alleles keeping si fixed. N ′0(t) is the total reproducing population at time
t . According to our assumption about reproduction, the same offspring would be
achieved by a population with a number of reproducing organisms given by

(6.6.17)

since this has the same proportions as Eq. (6.6.16). The form of this equation indi-
cates that the probability of a particular genome is a product of the probabilities of
the individual genes—they are independent. Thus complete reproductive mixing as-
sumes that:

(6.6.18)

Once this is assumed,then a complete step including both reproduction and selection
can also be written in terms of the allele probabilities in the whole population. The
update of an allele probability is:

(6.6.19)

Given the form of Eq. (6.6.17) we could write this as an effective one-step update

(6.6.20)

which describes the allele population change. Thus the assumption of complete mix-
ing allows us to write the evolution of a single allele in this way. However, because
Eq.(6.6.20) is a function of all the allele populations,the fitness of an allele is coupled
to the evolution of other alleles.

Eq.(6.6.17) describes the neglect of allele correlations in reproduction consistent
with a mean field approximation. It should be apparent that this is only a rough first
approximation. It is valid only when the gene appears with sufficiently many differ-
ent combinations of other genes so that correlations are unimportant. In more real-
istic models, correlations between genes affect both reproduction and selection.

We can provide a specific example of breakdown of the mean field approxima-
tion using the previous example of selection of gene combinations leading to
Eq.(6.6.13). In this example,if there is a spatial variation in the organism population
that results in a starting population that has more of the alleles represented by 1 in one
region and more of the alleles represented by −1 in another region,and reproduction

    ′ P (s i ;t) = ˜ D [{ ′ P (si ;t −1)}]

    

′ P (s i ;t) ≈
1

′ N 0(t)
D R[{ ′ ˜ N (s ;t −1)}][ ]

{s j }j≠ i

∑

    R[{ ′ ˜ N (s ;t)}]≈ R[{ ′ N (s;t )}]

    

˜ ′ N (s ,t) = ′ N 0(t) ′ P (s i ;t)
i

∏

    

′ P (s i ;t) =
1

′ N 0(t)
′ N (s;t)

{s j }j ≠i

∑
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is correlated by region, then we will form patches of organisms that have (1,1) and 
(−1,−1) after several generations. This symmetry breaking, like in the ferromagnet,is
the usual breakdown of the mean field approximation. Here, we see that it creates cor-
relations in the genetic makeup of the population. When the correlations become sig-
nificant,then the species has a number of types. The formation of organism types de-
pends on the existence of correlations in reproduction that are,in effect,a partial form
of speciation—what is important is whether interbreeding occurs, not whether it is
possible.

Thus we see that the most dramatic breakdown of the mean field approximation
occurs when multiple organism t ypes form. This is consistent with our understand-
ing of ergodicity breaking, phase transitions and the mean field approximation from
Section 1.6. Interdependence at the genetic level is echoed in the population through
the development of subpopulations. We should emphasize,that this symmetry break-
ing required both selection and reproduction to be coupled to gene correlations.
Moreover, if there is a small bias in the fitness of (1,1) over (−1,−1) then the forma-
tion of the two varieties will not persist due to competition between them over many
generations. Thus we still need the existence of multiple resources,as discussed in the
previous section, to enable the distinct types to persist.

Even if we assume that there exist multiple resources,interbreeding of organisms
may continue to mix and force them to remain a single type with diverse individuals.
However, the more correlations are important during selection, the more ineffective
this becomes. When viable organisms are a small subset of the organisms formed by
reproduction,a large number of offspring are required in order to maintain the pop-
ulation.Specifically, the number of offspring grows exponentially with the number of
genes whose alleles are coupled to each other in selection. Strong genomic correla-
tions in selection eventually make reproductive mixing impossible. The actual situa-
tion is not quite so extreme, because meiosis does not result in complete mixing of
parent DNA.Only limited crossover occurs,so that chromosomes do not loose much
of the preexisting allele correlations.

The existence of sexual reproduction implies that from a fitness perspective it is
beneficial. Our next objective is to understand how it might be beneficial and what
this says about fitness. In sexual reproduction, organisms are paired and their off-
spring are not copies of the original organisms but rather composites of them. We use
the term “composites” in the same sense as used in Chapter 2, and its significance
there is related to its significance in the present context. The implication is that or-
ganisms are composites of partially independent components, designed to corre-
spond to partially independent aspects of the fitness. Specifically, distinct physiolog-
ical or behavioral attributes have varying degrees of interdependence in selection. The
approach of trying composite states of previously successful combinations applies in
this case,as it did in the learning of patterns in neural networks. This, however, does
not entirely explain the existence of sexual reproduction.

We have discussed various aspects of the problem of sexual reproduction how-
ever, these have not indicated why sexual reproduction itself improves organism fit-
ness. By conventional argument, sexual reproduction should be a physiological or
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behavioral attribute that increases the ability of an organism to produce surviving off-
spring. On the face of it this seems ludicrous. Asexual reproduction does not depend
on the existence of a mate,and therefore an organism that can reproduce asexually is
more likely to reproduce. Moreover, asexual reproduction seems to require a much
smaller overhead in terms of physiological machinery. This physiological machinery
uses resources that could be utilized for other purposes. In other words,an organism
that had all of the physiological traits of a sexually reproducing organism but could
reproduce itself asexually (e.g., by cloning) would seem to have a fitness advantage.

There are difficulties with this picture that illustrate problems with simple for-
mulations of the theory of evolution. The first is that the ability to produce surviving
offspring depends on a time-varying fitness landscape rather than a static one. Of
particular significance in this variability is the evolution of competing organisms. An
organism that evolves more slowly has a lower probability of producing surviving off-
spring than an organism that evolves more rapidly. This sentence,however, does not
make sense, since an organism does not evolve, only a population of organisms
evolve. In order to understand this we must improve the language that we use to de-
scribe evolution.

We often say that fitness-based selection implies that an organism exists because
of its ability to survive and have offspring. The problem with this statement is that an
organism does not exist because of what happens in the future but rather what hap-
pened in the past.The two are only the same when every generation is the same.Thus
the organisms that exist at any one time are offspring from organisms that survived,
who in turn were offspring of a set of organisms that survived. Thus we must write an
iterative equation of the form

N(s, t) = R[D[R[D[R[D[R[D[.. .{N(s;0)}. ..] (6.6.21)

representing the selection of organisms at every generation. Because selection applies
not to a particular organism but to a chain of ancestors, the rate of fitness improve-
ment is essential to the selection. We see that this causes conceptual problems, because
selection is no longer based only upon the fitness of an organism but rather on the
rate of fitness change, which is a property of generations of organisms.

The process of sexual reproduction accelerates evolution because of the same rea-
son that composite states are useful in pattern recognition. As long as the genes on an
organism cause partially independent effects, it is advantageous to attempt possible
composites and establish more definite relationships only as the correlations are es-
tablished by selection. This process, however, describes not selection of an organism
but selection of the collectively evolving species. Thus we return to the discussion at
the end of the last section, where selection acts not upon an organism but upon
species that evolve in parallel and compete for resources. This should not be overly
troubling because,after all,sexual reproduction does inherently involve the coupling
of past and future generations of any organism with the other organisms that are re-
productively coupled. We will return to this issue in the next section.

Our remarks about the relevance of sexual reproduction to fitness suggest that
evolution is a process that is far from equilibrium, which is quite reasonable. In such
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a far-from-equilibrium process, we are not only selecting for the static properties but
also for the dynamic properties.Earlier our treatments assumed that selection applied
to a persistent property rather than a dynamical property. Thus, to include the dy-
namic property in Section 6.4 we would assume that different parts of the landscape
have walkers that take steps at different rates. In section 6.5.3 we would assume that
organisms have higher or lower rates of mutation as determined by part of the genome
itself. An analogy to a car race may be helpful.Our previous discussion assumed that
the race is won by the car that is farther along on the road,as opposed to the car that
is faster. Of course it makes sense that the faster car is farther along the road,since we
assumed in evolution,like in a usual car race,that all started from the same place. The
point is that the nature of selection causes the properties of the organism not only di-
rectly through fitness but also self-consistently through the process of selection itself.

Question 6.6.1 Criticize the following statement: Since we can define
the proportion of a gene in generation t and in generation t + 1, we can

always write an expression for the allele evolution in the form:

(6.6.22)

so that we always have evolution that can be described in terms of genes.
Does it matter if Eq. (6.6.17) applies?

Solution 6.6.1 The difficulty lies in the dependence of the coefficients on
time t through its dependence on the changing population. In steady state,
values would not change. Of course, in steady state there is no need to de-
scribe the dynamics. The equation is only useful as a description of the dy-
namics if the values of are slowly varying in time compared to the changes
in P. When Eq. (6.6.17) is not valid, neglecting the subpopulation correla-
tions is formally equivalent to considering the average gene dynamics over
all of the organisms on earth despite their differences and the lack of mixing
of species. This is the ultimate form of the gene-centered view of evolution.
Eq.(6.6.17) applies to the two examples given in the text. The coefficients 
can be written explicitly. They can be seen to vary significantly when the gene
population is changing. For the first example we obtain the value 1(t)
= 1,1P1(t) + 1, −1(1 − P1(t)) from Eq. (6.6.5). For the second example we
read the value 1(t) = P1(t) from Eq. (6.6.13). ❚

Question 6.6.2 Discuss the existence of nonreproducing organisms such
as mules in light of Eq. (6.6.21).

Solution 6.6.2 The problem with nonreproducing organisms is under-
standing why they should exist,since they do not have offspring and there-
fore by usual concepts are completely unfit—nonviable. Eq. (6.6.21) solves
the formal problem of their existence by indicating logically that the exis-

    

P(s i ;t) = s i
P(si ;t −1)

si

s i

∑ = 1
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tence of a mule depends only on the existence of its parents. However, it does
not explain why evolutionary changes have not caused horses and donkeys
to avoid coupling. By coupling, their ability to produce reproducing off-
spring and therefore their fitness would seem to decrease. In this light we can
only remark that the existence of mules suggests the importance of the dy-
namics of the evolutionary process over the equilibrium view. ❚

There are several concepts that relate to sexual reproduction that we briefly men-
tion here. An implicit issue in sexual reproduction is identifying the region of genome
or phenome space that can interbreed, which defines the boundaries of possible
spread of a single species. We generally assume that for each species this is a well-
defined domain separate from other species. In principle, the domains might inter-
leave; however, the large size of phase space suggests otherwise.

A related issue is the relevance of sexual reproduction to our earlier discussion of
interactions between organisms in the space. We first recognize that sexual reproduc-
tion represented in terms of walkers in the genome space on a fitness landscape cor-
responds to a step that starts by selecting two walkers at different locations and cre-
ates new walkers that are related to the original walkers in that some coordinates are
from one and some from the other. The notion of composite states suggests that the
landscape is quite rough; however, the selection of composites tends to place organ-
isms into valleys that may be separated from each other by high ridges.Such steps are
efficient nonlocal Monte Carlo moves. In effect these steps enable the population to
move and spread in what is likely to be a fragmented space. Indeed,if the space were
smooth the formation of composites would not be an improvement over standard
Monte Carlo steps.

We can think about the impact of sexual reproduction on the effective interac-
tions such as attraction and repulsion. Because of the boundaries of the domain of
sexual reproduction, the species inherently evolves together. This corresponds to an
attractive interaction within this domain and a repulsive interaction outside of it.
Organisms that are similar but located outside the domain of reproduction would be
impeded from reproducing if they are present in small numbers because of the preva-
lence of organisms with which they cannot reproduce. The need to identify organisms
with which one can reproduce may be a motivation for the creation of patterns on an-
imal skins discussed in Chapter 7, as well as bird calls and mating behavior.

6.6.2 Genes, organisms and groups—
the evolution of interdependence

The partial independence of genic evolution in the evolution of sexually reproducing
species has led to a gene centered view of evolution where the gene, rather than the
organism of which it is a part, is the “entity of interest.” One way to react to this is to
consider this approach as the result of a too seriously taken mean field approxima-
tion. However, there are important philosophical issues that are raised in discussions
of this point that have direct relevance to our understanding of complex systems,so
we will spend some time discussing them.
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The fundamental philosophical difficulty that appears to give impetus to the fo-
cus on gene evolution is the concept of interdependence. Ironically, interdependence
that is so essential to the concept of a complex system appears to be at odds with the
evolutionary concepts of competition and selection that are supposed to create them.
If we consider phenomenologically the evolution of molecular fragments (e.g.,
genes), or molecules,or cells, or organisms,we find the formation of collections of in-
terdependent individuals. The real problem is understanding the reason for the emer-
gence of interdependence in the context of evolution. Why, after all, would the selec-
tion of fit individuals give rise to the appearance of a collective interdependence? We
see this problem in discussions of altruism and selfish or even aggressive social be-
havior. Why would organisms develop altruistic behaviors in a competition for sur-
vival? It appears straightforward to assume that selfish or aggressive social behavior
provides selective advantage and altruism selective disadvantage when competition
for a resource determines survival. The same problem arises at the molecular frag-
ment level when we consider why genes should assemble into interdependent chro-
mosomes. We might easily imagine that the gene that is responsible for coding a repli-
case could replicate itself many more times with the available resources without the
other genes of a complex organism. Until this point we have been concerned with the
processes of incremental modification of organisms and speciation. In order to de-
velop an understanding of evolution, we must also understand the formation of in-
terdependent communities of organisms.

In order to make progress, we use the language of organisms evolving on a fitness
landscape and the interactions between them as discussed in Section 6.4.5. We con-
sidered interactions between organisms that caused either a mutual lowering or a mu-
tual raising of fitness. We argued that organisms would aggregate in regions of space
where there was a mutual raising of fitness. We can understand this simply in the con-
text of genic interactions or human social interactions: when there are similar organ-
isms,that help each other, this mutual assistance increases their fitness or success. This
model of a mutually supportive community of organisms is not, however, complete,
as we now discuss.

Let us imagine introducing into this community a single selfish or aggressive in-
dividual (gene, cell, organism or human). The selfish individual benefits from the help
that others give, while not providing help to them. Instead it utilizes the additional ef-
fort for self-benefit. It is important to recognize that in the language of interactions
this is an asymmetric interaction. The existence of the selfish individual does not im-
prove the success of the other individuals, while their existence improves the success
of the selfish individual. Similarly, an aggressive biological organism is assumed to de-
crease the fitness of the other organisms, while they do not decrease its fitness. We
might also add that an altruistic individual is assumed to increase the fitness of other
organisms while decreasing its own.

This interaction asymmetry means that analysis of this problem does not fit
within the framework of energies and equilibria. Instead it must be analyzed as a dy-
namical system such as a predator-prey problem. This conclusion has important con-
sequences for the idea that selfish or aggressive behavior cause benefits for the
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individual. It is not generally reasonable to analyze a dynamical system with the con-
cepts of a model of energies and equilibrium. In the latter we assign definite steady
state properties to the entities involved. In the former this is not generally possible.
For example, in what way can we compare the fitness of a predator and its prey?
However, just because we cannot analyze the model in the same way does not mean
that we can avoid dealing with this problem.

With this in mind, let us continue our introduction of selfish individuals.
Assuming there is benefit to the individual in being selfish,then such individuals will
proliferate. The fitness and success of mutually supportive individuals will decrease.
Moreover, as the proportion of the selfish individuals in the population increases they
encounter each other, and their fitness and success will also decrease even as their ad-
vantage over the mutually supportive individuals continues to exist. We should not
analyze this as a static situation but rather introduce a dynamic model that describes
possible fluctuations in the numbers of the different types of individuals. However,
we can take a step further without considering the dynamic aspect of the model.

We know from direct consideration of the interactions that a completely mutu-
ally-supportive collection of individuals consists of individuals that are more fit than
the mixed community that has been created by introduction of selfish individuals.
Nevertheless, we also know that the former is unstable to the introduction of such
selfish individuals. Thus,if we can modify the community of mutually supportive in-
dividuals in such a way that can stabilize it to the introduction of selfish individuals,
then the mutually supportive group will be more successful win—in a competition
with the mixed group.

What is completely essential to realize in this discussion is that we have made the
step to the competition between communities of organisms rather than competition
between individuals. It is only at the level of community competition that the success
of mutual support is sufficient to eliminate the selfish individuals. Thus, it is only
when we have several communities of organisms,some of which have selfish individ-
uals in them and some of which do not, that we will have selection in favor of the
community of mutually-supportive individuals over the communities with selfish
individuals.

How can we stabilize the community of mutually supportive individuals to the
introduction of selfish or aggressive individuals? Social behaviors that prevent the in-
troduction of selfish individuals are not necessarily individually based, because they
only arise in the context of the selection of collections of individuals. However, they
may be individually-based behaviors such as recognition and rejection (ostracism) of
selfish individuals. As has often been noted, this rejection causes extrinsic conse-
quences to the selfish behavior. Rejection is not inherent in the selfish behavior. Its
presence results from feedback through the process of community selection that pro-
motes such extrinsic consequences. In the context of the individual, these conse-
quences may not appear causally related to the behavior itself but are manifest as in-
direct social consequences.One way to think about this is that the action of selection
at the higher level of organization modifies the influence of selection at the lower level
of organization. This is because inherently the environment of the individual includes
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the social environment,and selection cannot be considered independently of this so-
cial environment.

We can see such social mechanisms at all levels of collective organization.Cellular
systems provide for regulation of gene expression or replication. Physiological sys-
tems provide for prevention of cancerous growths. More generally we can consider
the immune system as combating selfish or aggressive individual cells that appear as
infections. Social systems ranging from spousal selection in sexual reproduction to
ostracism to human legal systems provide for regulation or reward of individual
behaviors.

Once a collective community identity is formed and it is competing for resources
and survival at the next level of organization,then various other properties of the col-
lective entity may be introduced through incremental evolutionary change. These in-
clude specialization and more elaborate forms of interdependence that are found in
complex systems. These arise as improvements in the capabilities of the community.

In this discussion we have given support to the emergence of mutually supportive
behaviors and the elimination of selfish or aggressive behaviors. However, we must
emphasize that in our argument these behaviors arise only when there is competition
and selection at the higher level of organization.Specifically, only when there is com-
petition between communities of organisms. There is no direct mechanism to sup-
press selfish or aggressive behaviors at the highest level of organization present at a
particular time. Ultimately, this is also tied to the statement that evolution applies to
members of a population—a single organism cannot evolve by itself.

Questions 6.6.4 and 6.6.5 focus on these concepts in the context of human soci-
eties. This follows from the recognition that social evolution has similar properties to
biological evolution through the existence of heritable behavioral traits that are trans-
mitted by education. This should not be too much of a surprise, since biological se-
lection is also based on information. It is not the atoms that are selected, but rather
the sequence of base pairs—information—that is selected.

Question 6.6.3 What is wrong with this seemingly logical statement:
“Survival of the fittest is based upon a competition for survival.

Therefore an organism that competes by eliminating its competitors is more
likely to survive”?

Solution 6.6.3 The solution was articulated in this section as a difficulty
with analyzing a dynamical system with equilibrium concepts. The analysis
shows that a system of mutual support is unstable to the introduction of an
organism or individual that acts aggressively. The problem is that this situa-
tion is not stable either. From an equilibrium model we can only say that mu-
tually supporting individuals are better off than mutually destructive indi-
viduals. Once there are asymmetric relationships,the system has a dynamic
population that may, for example, display population fluctuations like the
predator-prey mo del unless the system is stabilized by additional interac-
tions that create social consequences for the behavior of “eliminating its
competitors.” ❚
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Question 6.6.4 Consider bravery and altruism in the context of human
societies. Discuss these behaviors in the context of the discussion of the

appearance of collective social behaviors. How do they persist from genera-
tion to generation? For simplicity, define “altruism” as a behavior that in-
creases the reproductive success of others at the expense of reproductive suc-
cess of the altruistic individual.

Solution 6.6.4 Bravery is actually an example of altruistic behavior, since it
implies facing danger to oneself for a cause that is generally of collective ben-
efit. The soldier facing danger in war is a prime example. Such behavior
causes a lower probability of individual survival. It should thus be selected
against and disappear from civilization. As discussed in Chapter 3, human
behavior has both a genetic and a learned component. In order to promote
the existence of bravery, there appear to be social behaviors that promote its
presence. If we assume a persistence of bravery, the social behaviors that pro-
mote bravery must be sufficiently strong to compensate for both the genetic
losses (death before reproduction) and the loss due to experience (cessation
of bravery due to learning). In general, spousal selection may promote al-
truistic behaviors by increasing the probability of reproduction or average
number of offspring of subgroups that are less likely to survive. Socialization
in pedagogy may serve to compensate for the effects of experience, and so-
cial rewards for altruistic behavior may mitigate their effects. As discussed
previously, these must manifest their benefit in the action o f competition
and selection of groups. ❚

Question 6.6.5 Consider war in the context of human societies. Is war
necessary for the creation of altruistic behavior?

Solution 6.6.5 It is not clear that competition between groups requires
war. However, war is a mechanism of group competition that, by the argu-
ments presented here, should promote interdependence within societies.
Thus it can also promote altruistic behavior. Some other mechanisms such
as mass starvations due to competition for resources are not more appeal-
ing. Our arguments suggest that whatever the mechanism, the emergence of
complex social behaviors must arise as a result of competition of popula-
tions that can only be manifest in the (selective) demolishing of whole pop-
ulations. In this regard we note that wars are manifest in ants, which have
complex social structures, sometimes called superorganisms. When social
behaviors are learned rather than genetically based, then other possibilities
for competition arise. This is because one form of reproduction is the trans-
fer of learned social behaviors. Defeat in economic competition can cause
one group to adopt social behaviors of a second group, which is equivalent
to its reproduction. ❚

Question 6.6.6 Evolution is often separated into two parts; the forma-
tion of self-reproducing organisms from molecules and the evolution of
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these organisms into their present form. Argue that a distinction is not nec-
essary. Why would it seem a natural distinction if it is not really one?

Solution 6.6.6 Under certain environments, molecules can also be self-
reproducing organisms. However, these conditions are much more limited
than the conditions under which individual cells can self-reproduce. This is
because the cell membrane creates a distinction between inside and outside
environments that allows an artificial environment for reproduction of mol-
ecules to exist. If the internal environment of the cell was typical of the fluid
in which the cells were found,then the cell membrane would not be neces-
sary. We can imagine that at some time and place there was such an envi-
ronment that was conducive to molecular reproduction. Molecules evolved
within this environment, forming various molecular types. At some point
the molecules formed collective entities that were able to move out of this
limited environment in the same way that organisms left the ocean for the
land. Several stages of such processes gave rise to cells. The formation of cells
expanded greatly the possible environments/resources that could be con-
sumed by self-reproducing organisms. ❚

We have focused on the formation of collectives in order to describe interdepen-
dence. In a sense,the interdependence was already explained previously in this chap-
ter in two steps. First we noted the necessity of increasing complexity through in-
creasing the genomic space. This provided a selective advantage for long genomes but
did not explain the existence of subcomponents. The second step was arguing that
there are partially independent traits of organisms and therefore that a composite
genome would be effective in accelerating evolution. This completes our argument,
because we now have both an argument for the creation of collective communities
and an argument for the retention of substructure.

The development of higher levels of organization might be thought to create ad-
ditional problems for our discussion of the global evolutionary process in the context
of a single fitness parameter. Do we need to introduce a separate parameter to con-
sider the fitness of the collective? Actually this is not the case. Any parameter that de-
scribes replicative proliferation of a collective organism which has a well-defined
number of components is the same parameter as that of any one of its components.
In a sense this manifests exactly what we mean by a complex system that is collectively
and individually interdependent.

Conclusions

Our primary effort in this chapter has been to develop an understanding of the con-
text in which incremental evolutionary processes relate to global phenomena of evo-
lution.A problem we encountered is that it is hard if not impossible to define fitness
so that it can compare E. coli and human beings. We began with a model of Monte
Carlo walkers on a fitness landscape. While there were problems with this model, we
were able to discuss incremental changes including trait divergence and augment the
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model to include population interactions. Difficulties with global phenomena were
compounded, however, when we introduced models of reproduction and selection
through competition. Specifically, we were left with the problem of understanding
trait divergence when competition would eliminate distinct organisms. We came to
the conclusion that in order to think about fitness we must limit the scope of selec-
tion by considering multiple resources. When selection occurs with multiple re-
sources, it acts more broadly than in the Monte Carlo model and in a more limited
fashion than in a single-resource model. The introduction of multiple resources sug-
gests that in order to understand global evolution we must have a clear understand-
ing of the properties of resources as well as organisms,and a consideration of the lat-
ter separately is not adequate. At every stage of our discussion we found that
interactions between organisms were an essential part of understanding evolution.
Mean field approaches that may be used in incremental evolutionary theory break
down and are deceptive if we want to understand global evolution. In particular, in
the context of discussing sexual reproduction and collective behavior we developed
an understanding of the creation of various levels of structure and interdependence
in organisms.

How can we develop a better understanding of the processes associated with the
evolution, and thus creation, of complex systems? In recent years several additional
examples of evolution have been studied. In our immune system, an evolutionary
process enhances the recognition and removal of antigens—foreign and/or harmful
cellular or molecular entities. The immune system creates molecular receptors and
antibodies that bind antigens and enable them to be eliminated. To achieve this, re-
ceptors undergo reproduction and selection for high-affinity binding. This process
includes rapid genetic mutation of immune cell DNA that codes for the receptors.
Our understanding of this process and the development of mechanisms for rapid
replication of DNA in a test tube have led to recent implementation of artificial mol-
ecular evolution. In this process DNA or RNA is itself used as a reacting molecule or
enzyme. The desired molecular action is obtained by repeated test tube selection and
replication. There is hope that molecular evolution will enable the formation of tar-
geted medical drugs. Finally, there are increasing efforts to implement evolutionary
processes for the creation of software algorithms. This requires representation of al-
gorithms in a manner that allows them to undergo mutation and selection. The im-
mune system maturation, test tube molecular evolution and software evolution all
provide opportunities for further study and for application of knowledge gained
about evolution.
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7
Life II: Developmental Biology—
Complex by Design

Conceptual Outline

Developmental biology strives to understand the sequence of events by
which a single cell becomes a system of many differentiated interacting cells. This
process involves placing different structures in particular locations and intercon-
necting them.

To model differentiation we focus on the formation of color patterns on an-
imal skins that have a variety of forms. Cellular automaton models show the rele-
vance of local activation and long-range inhibition of pigment production to the for-
mation of patterns. Chemical reaction-diffusion systems illustrate similar patterns
using slow- and fast-diffusing species.

Other elements of the tool kit for developmental processes include mech-
anisms for changes in cell structure, cell motion, timing and counting. Of particular
interest are sequential steps (programs) that can form branching structures. 

Theoretical modeling can better complement phenomenological studies of
biological systems if the different objectives of theory and experiment are recognized.

The approach of developmental biology to the design of complex systems
may be a useful framework for considering the design of complex artificial systems.

Models of pattern formation may be better suited to discussions of global
properties of the evolution of organisms than the models discussed in Chapter 6.

Developmental Biology: Programming a Brick

Reproduction in multicellular organisms, animals and plants, occurs through a
process of development from a single cell. The fundamental objective of develop-
mental biology is to understand how an individual cell through cell division, differ-
entiation and growth results in a complex physiology. The controls for this process of
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development are present within the initial cell and also in the environment in which
the cell develops.

Our concern in this chapter is largely with the cellular behavior in development
rather than with the internal functioning of the cell. However, in the following para-
graphs we discuss briefly models for the mechanisms that exercise control over the de-
velopmental process as part of the internal functioning of the cell.

It is generally believed that the design of plant or animal physiology is contained
within the nuclear DNA of the cell.DNA is often called the blueprint for the biologi-
cal organism. However, it is clear that DNA does not function like an architect’s blue-
print because the information does not represent the structure of the physiology in a
direct way—there is no homunculus there. For our purposes it is convenient to think
about the DNA blueprint as a program that specifies the interaction between a cell
and its environment,including cells in its vicinity, as well as the internal functioning
of the cell. However, in describing DNA as a program we are implicitly subsuming the
functions and description of the entire cellular machinery in the DNA. For our ab-
stract purposes, there is no difference in various sources of information,as there is no
essential difference between information that is found on the tape of a Turing ma-
chine and information in the table of the read-write head (see Section 1.9.4). There
are, however, other conceptual issues to address.

First, we must clarify the nature of DNA function within the cell.DNA serves at
least in part as a collection of templates (genes) that may be thought of as blueprints
for protein chains. These templates are sometimes being transcribed (active) and
sometimes not being transcribed (inactive). Thus, the role of DNA at a particular
time is described by a set of transcription activities. The activity of a particular gene
depends on the activity of other genes. Thus, a useful analo gy may be a neural net-
work model where the transcription activities are analogous to the neuronal activi-
ties in the network. Like the synapses of the network, the molecular machinery of
the cell mediates the activities (and performs the transcriptions) of the DNA. The
patterns of activity of the transcription of DNA are a part of the patterns of activity
of the cell as a whole which constitute possible behaviors of the cell. Thus it may be
reasonable to consider the relevance of attractors of patterns of activity, as in the
neural network models discussed in Chapter 2, to the study of cellular function. The
development of an organism consists of a temporal sequence of such patterns of cel-
lular function.

Second, we must clarify the relationship of information and behavior. It is likely
that the DNA in a cell contains a large proportion of the information needed to de-
scribe the function of the cell, the developmental dynamics and the physiological
function of the organism. However, this does not mean that the DNA should be
thought of as controlling the processes in the conventional sense of the term “control.”
A useful analogy is the role of a library in society. It is quite likely that most of the in-
formation about the function of society in one way or another may be found in the
Library of Congress. However, this does not mean that the library controls this func-
tion. It may, indeed, be better to think about the molecules in the cell as akin to a so-
ciety of entities that act upon each other and respond to external stimuli.DNA then
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serves this society as a source of information—in part as a repository of blueprints for
the manufacture of cellular machinery.

In this regard it may be helpful,though somewhat subtle, to recognize that DNA
is not by itself a complex organism. It does not satisfy our criteria of nondivisibility,
since its structure and behavior (including transcription) is essentially local. It is only
when the information in DNA takes form in the context of cellular or organismal be-
havior that the behavior is itself complex,and the system as a whole satisfies the con-
ditions of a complex organism. Incidentally, this is also a reason that the structure of
DNA does not satisfy the 7±2 rule—there are 23 pairs of homologue chromosomes in
most human beings, and a wide variation in the number of chromosomes in other
organisms.

Returning to our central focus in this chapter, for our purposes development is a
largely deterministic sequence of cellular states that results in a multicellular organ-
ism. In this sense the organism can be described as the result of a program, since all
deterministic processes can be so described. The program is largely contained in the
original cell. It is essential to recognize that all cells of an organism begin from one
cell in a unique state,and therefore inherit all or parts of the same set of information,
and thus the same program.

The central problem of developmental biology is to describe how the cells differ-
entiate in such a way as to place par ticular functions in particular locations in the
body—not to describe the specific eventual function of each cell. Part of this problem
is to describe how cells become interconnected by necessary structures formed out of
individual cells such as long branching neurons, or many-celled structures such as
blood vessels.This must be achieved by the program that specifies the sequence of cell
states and cell interactions. The overall process of development is shown in Fig. 7.1.1.

Biological development is a systematic approach to the very difficult problem of
designing complex systems. It enables the creation of a large variety of systems. In
studying this approach it may be helpful to think about designing a building in a sim-
ilar manner. Allowing some imagination, we might consider writing a program for a
brick. The program describes how a brick should move and interact with other bricks
in its vicinity. Providing the same program for each brick in a pile, we walk away and
return to find the whole building, with windows, ducts, and utilities in place. Cells,
unlike bricks, are themselves like organisms in consuming resources and producing
waste; they are self-reproducing and mobile. They also have the ability to change
shape. Through shape change and changes in chemical processes they can adopt a
large variety of functions in a multicellular organism. Even if we endow bricks with
similar abilities, it still requires careful thought to understand how the design of a
complex structure can arise from a program describing their interactions.

It is significant that this approach balances design with self-organization. In
Chapter 6 on evolution, we assumed a self-organizing process that occurred by chance
and external selection. In contrast, organism development should reliably achieve a
desired outcome from a preexisting (internal) design. Nevertheless, the built-in de-
sign directs a dynamic process where mutually interacting entities self-organize into
the desired complex structure.
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Figure 7.1.1 Illustration of some of the stages in the development of an animal. The top two
rows are schematic illustrations of the initial stages where a single fertilized cell undergoes
multiple divisions to form a spherical shell with a membrane separating its internal cavity
into two parts that become the primary yolk sack and the amniotic cavity. Cells from part of
the internal membrane then form the growing fetus. The bottom two rows are magnetic res-
onance microscopy images of mouse fetal development from 9 days to birth. All images are
shown at the same size despite a 10-fold increase in fetal dimensions from the first to last
image of this sequence. The multicellular structure of the organism arises through a set of
programmed steps originating in a single cell. The identification of processes and mechanisms
for this development is the subject of developmental biology (magnetic resonance microscopy
images are courtesy of Brad Smith, Elwood Linney and the Center for In Vivo Microscopy at
Duke University [A National Center for Research Resources, NIH]). ❚
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For many who have had occasion to contemplate a newborn, development is
miraculous. From a scientific point of view there are at least two reasons that this re-
action arises. First, the relationship between process and outcome is emergent—the
relationship between individual parts of the dynamics and the whole is difficult to un-
derstand. This is the nature of a complex self-organizing process. Second, designing a
dynamic process that can reliably ar rive at a specific complex outcome is difficult.
When a process involves many steps and an error in any step may give rise to failure,
the likelihood that the process will be successful is vanishingly small. Our analogy
with a computer program is telling, since a single bit error in computer hardware or
software would generally cause failure.It is useful to compare this with our discussion
of protein folding in Chapters 4 and 5, where we were also concerned about arriving
at a definite final structure. In Chapter 4 we considered exploration of conformation
space to find an energy minimum. As long as the dynamics could reach the energy
minimum, its identity was not in question. In Chapter 5 we argued that directed se-
quential steps could arrive at a desired final structure. Here we recognize that in a
strictly directed (deterministic) process, there must be no error in the dynamics so
that there will be no error in the eventual structure. What is particularly remarkable
is that the dynamic process must at the same time be stable to many perturbations,
and yet modifiable through mutations that enable evolutionary changes. To under-
stand how this is possible we must eventually recognize that the dynamics as a whole
must be formed out of a sequence of attractors that are sufficiently stable to be the
outcome of a variety of intermediaries. In this way the nonequilibrium dynamics and
its outcome may be relatively stable to perturbations.

From the most basic com p l ex - s ys tems point of vi ew,the probl em of devel opm en t a l
bi o l ogy is com po s ed out of t wo part s : f i rs t , to iden tify gen eral and specific proce s s e s
that cause a hom ogen eous set of cells to differen ti a te in a con tro ll ed fashion so that
s pecific stru ctu res are loc a ted in specific loc a ti ons with re s pect to each other; and sec-
on d , to iden tify mechanisms for cre a ting stru ctu res that intercon n ect or su pport va r-
ious functi onal regi ons of the sys tem . Mu ch of the qu a n ti t a tive modeling of su ch
processes is rel a tively recen t . In this ch a pter we focus on the probl em of d i f feren ti a-
ti on . In Secti on 7.2 we de s c ri be models of the form a ti on of p a t terns on animal skins.
This probl em captu res an essen tial aspect of d i f feren ti a ti on and stru ctu re . The adva n-
t a ge of su ch patterns is that their stru ctu re is not very specific and therefore lends it-
s el f to a simpler analys i s . However, the interp l ay of su ch patterns with specific bo u n d-
a ry con d i ti ons can give rise to well - def i n ed stru ctu res wh en they are nece s s a ry in
devel opm en t . In Secti on 7.3 we de s c ri be some more tools nece s s a ry for devel opm en-
tal form a ti on of phys i o l ogical sys tem s . O f p a rticular em phasis is the form a ti on of
bra n ching stru ctu res found in plants and animals in the lu n gs , n ervous and va s c u l a r
s ys tem s . In Secti on 7.4 we discuss some of the gen eral obj ectives and met h odo l ogi e s
of t h eory and mathem a tical modeling of bi o l ogical sys tem s . In Secti on 7.5 we discuss
the gen eral properties of or ga n i z a ti on by de s i gn in bi o l ogical com p l ex sys tems and
con trast it with the conven ti onal approaches used in human de s i gn and en gi n eeri n g.
F i n a lly, in Secti on 7.6 we retu rn to con s i der the implicati ons of the models of p a t tern
form a ti on in this ch a pter for the probl em of evo luti on discussed in Ch a pter 6.
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Differentiation: Patterns in Animal Colors

7.2.1 Introduction to pigment patterns
Many animals have patterns of coloration on their external surfaces. Color is the re-
sult of pigment produced in cells. Often the patterns are composed of only two dif-
ferent colors, but in some cases there are more. For our purposes,the examples that
are convenient to think about are the patterns on the fur of both predator and prey
mammals. Zebras, giraffes, tigers,leopards and many others have distinctive patterns
as a species. These patterns also vary in more subtle ways from individual to individ-
ual. Other kinds of patterns are present in some insects—particularly butterflies—
fish—particularly tropical fish—and birds—particularly tropical birds.

The functi onal rel eva n ce of p a t terns or bri lliant co l ora ti on for animals is an inter-
e s ting topic of s tu dy. We can try to understand the re a s ons for co l ora ti on thro u gh the
con cepts of evo luti on discussed in the previous ch a pter. Evo luti on a ry theory su gge s t s
that su ch phys i o l ogical attri butes arise from a su rvival adva n t a ge . It is a com m on prac-
ti ce to of fer ex p l a n a ti ons for the ex i s ten ce of phys i o l ogic or beh avi oral fe a tu res based
on this prem i s e . The ulti m a te difficulty is that these ex p l a n a ti on s , no matter how well
re a s on ed , a re ra rely su bj ect to direct ex peri m ental te s t . However, t h ere appe a rs little
do u bt that a uniform co l or for some animals is used for camouflage within a well - de-
f i n ed envi ron m en t . This is ch a racteri s tic of va rious green , brown or bl ack insects and
l i z a rds that are found on leave s , va rious tree tru n k s , or the gro u n d . Pa t terns of co l-
ora ti on , wh et h er of bl ack and wh i te or of bri lliant co l ors ,a ppear to be direct ly co u n ter
to this purpo s e . Al tern a tive ex p l a n a ti ons rely upon some form of s ocial or co ll ective be-
h avi or. The co l ora ti on of prey su ch as zebras and gi ra f fes might serve to confuse pred a-
tors bec a u s e , in the con text of a herd of a n i m a l s , it inhibits the disti n cti on of one indi-
vi dual from another. The bo u n d a ries bet ween animals become less disti n ct than the
i n ternal co l ora ti on bo u n d a ri e s . Si n ce the herd as a whole is not re ad i ly attacked , the in-
d ivi dual disg u i s ed as part of a larger sys tem is pro tected . This is con s i s tent with the gen-
eral discussion in Ch a pter 6 abo ut the natu re of co ll ective beh avi or. However, this doe s
not explain the co l ora ti on in the pred a tors — ti gers ,l eop a rd s , ch eet a h s , etc . The caref u l
d i s ti n ctness of the patterns of d i f ferent spec i e s ,h owever,su ggests that they serve as iden-
ti f i c a ti on . The abi l i ty to iden tify animals of the same species ei t h er for herding (animals
finding their way back to the herd or small er group) or for mating may be more im-
portant for su rvival than camouflage . It may also be that indivi du a l s — m a te s , young or
o t h ers — a re iden ti f i ed thro u gh the specific disti n cti ons bet ween indivi dual co l oring pat-
tern s . Rega rdl e s s , the functi onal purpose of co l ors is not direct ly rel evant to the prob-
l em of determining a process that can give rise to them—the topic of this ch a pter.

Why are co l or patterns intere s ting as a probl em in devel opm ental bi o l ogy? It wo u l d
s eem that they are qu i te incidental to more important probl ems su ch as the form a ti on
of l i m b s , the devel opm ent of or gans and the form a ti on of n et work s ,n eu ral or va s c u-
l a r. While co l ora ti on appe a rs to be su perf i c i a l , it captu res a basic fe a tu re nece s s a ry for
m a ny of the other proce s s e s — d i f feren ti a ti on . A cen tral probl em in devel opm ent is to
a s s i gn disti n ct tasks. In order for limbs to devel op, at some point in time there mu s t
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be an iden ti f i c a ti on of wh i ch cells are to pro l i fera te in su ch a way as to give rise to the
l i m b s , and wh i ch cells are not to pro l i fera te . This requ i res the form a ti on of a pattern
in the initi a lly undifferen ti a ted cell s .O n ly after a pattern has been establ i s h ed can the
processes assoc i a ted with differen tial functi on of the cells proceed . In a more gen era l
con tex t ,u n derstanding pattern form a ti on as a form of s p a tial and tem poral stru ctu re
is a cen tral issue in the form a ti on and functi on of com p l ex sys tems in gen era l .

Our objective is to construct mathematical models that can result in the forma-
tion of patterns such as those present on the skins of mammals (Fig. 7.2.1). The es-
sentially two-dimensional animal surfaces enable us to illustrate more readily the
models than if they were in three dimensions. The models might use a cellular space
with a variable representing the color of each cell in an array. Since many of these an-
imals have essentially two colors, we can use a binary variable si . This type of model
is suggestive of a simple cellular automaton (CA,Section 1.5) where the individual cell
determines its state (the color at that location) as a consequence of interactions with
neighboring cells. Indeed,the process of intercellular influence in biology is generally
suggestive of a CA—as long as communication between cells is local, and we do not
consider migration of cells or changes in their shape. The most direct model repre-
sents each biological cell by a lattice cell;however, we can also consider a homogenous
region of biological cells to be represented by a single lattice cell. Such CA are often
natural models for processes that take us from the behavior of an individual cell (or
homogenous region) to the inhomogenous behavior of a collection of cells.On a finer
scale we can model the diffusion and reaction of chemical messengers between cells
and their effect on pigmentation. This provides an additional level of detail to mod-
els of such patterns. In Section 7.2.2 we will consider CA models for pattern forma-
tion. In Sections 7.2.3 and 7.2.4 we introduce mathematical treatments of chemical
diffusion and reaction. Section 7.2.5 describes pattern formation in reaction-diffu-
sion systems. Section 7.2.6 discusses the coupling of a patterned chemical to addi-
tional chemical processes.Finally, Section 7.2.7 describes patterns that might form in
vertebrates during development by diffusion of pigment cells from their origin along
the spinal cord.A discussion of the relative benefits of CA and reaction-diffusion ap-
proaches is included later, in Section 7.4.

As will become apparent in the following sections,creating an interacting system
that evolves to a pattern requires us to specify interactions that satisfy various con-
straints. Since systems evolve toward equilibrium, the principle issues are not dy-
namic, but rather revolve around constructing a model with a complex pattern as its
equilibrium or steady-state structure. In simple systems the equilibrium is homoge-
neous and has no distinguishable or controllable features. The ability to make pat-
terns requires the specification of a system that behaves in an unconventional man-
ner in equilibrium or steady state.

7.2.2 Activation and inhibition in pattern formation:
CA models

We begin by thinking about the equilibrium behavior of some simple models. For a
CA,the equilibrium is generally described by a stochastic field such as the Ising model
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Figure 7.2.1 Photographs showing examples of pigment patterns on animal skins. From top
left by row: Grant’s zebra, South African cheetah, Grevy’s zebra, Uganda giraffe, reticulated
giraffe and Masai giraffe. These patterns arise from a process that requires differentiation be-
tween regions that contain pigment-producing cells and those that do not. The study of such
patterns captures one of the essential processes involved in various stages of development
that require differentiation in order to form structures and organs that form a functioning
physiology. ❚
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(Section 1.6). Since the developmental process leads to a long-lived pattern that re-
mains as the color of the animal,this seems a reasonable starting point. Are there in-
dications that such models can give rise to patterns? The seeds of pattern formation
are present in the behavior of an antiferromagnet on a square lattice (Fig. 1.6.7) with
alternating values of the variables si in its equilibrium state. This pattern arises from
simple interactions between neighbors that compel adjacent cells to have opposite
values of the spin variable. Considered as a color pattern, it is a checkerboard—the
simplest of two color patterns (there are only two such patterns). Is there a way to gen-
eralize this to form more elaborate patterns characteristic of animal colors? The most
basic feature of the color patterns of animals that is not captured by the checkerboard
is the existence of a new length scale. This length scale, the size of dots or bands of
color, is characteristic of the pattern. It is not given by the size of the cells or by the
size of the animal but rather is a characteristic length scale of its own. It is important
to consider how such a length scale can arise. An alternating black and white pattern
on the scale of individual cells would appear gray on the scale of the organism.

A straightforward method for creating a new length scale in CA is to extend the
range of the interactions between cells. We will take this approach and investigate the
consequences. Before we do this let us consider what this means from the point of
view of biological cells. It might seem that biological cells interact only with adjacent
cells. This interaction occurs by emitting chemicals into the intercellular fluid. The
chemicals are then detected by the adjacent cells. Such interactions,however, are not
necessarily local,because the distance over which the chemicals travel is controlled by
their diffusion constant and lifetime in the intercellular fluid or, more correctly, in the
matrix of cells and intercellular fluid. Thus an individual cell can interact with a re-
gion of cells in its vicinity, where the size of this region is controlled by the diffusion
constant of the chemical as well as reactions that might affect it. More direct model-
ing of diffusion is discussed in the following section. Here we consider only the effec-
tive interaction that results between cells.

In order to generate patterns that consist of a large number of cells that are either
all black or all white in regions of a characteristic size, we use interactions that extend
a distance typical of the linear dimension of the regions. There are two possible types
of pairwise interactions between cells. When a cell producing pigment causes other
cells to produce pigment we say that the interaction is activating. When a cell causes
others not to produce pigment we say that it is inhibiting. As with the discussion of
nerve cell interactions in Chapter 2, the terminology and mathematics of activation
and inhibition is similar to the use of ferromagnetic and antiferromagnetic interac-
tions that cause the spins in an Ising model to align or antialign.Spins that are UP are
producing pigment, while spins that are DOWN are not. Loosely speaking , a ferro-
magnetic interaction corresponds to mutual activation. An antiferromagnetic inter-
action corresponds to inhibition.

How can we design an Ising type model that will give rise to domains of locally
aligned spins (either ON or OFF) but will have large scale variation so that adjacent to
a region of ON cells there will be a region of OFF cells? The interactions must achieve
two effects.First,they must cause the cells that are nearby to have a bias toward having
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the same color so that the regions of color are formed. Second,they must have the ef-
fect of causing regions that are farther away to have the opposite color. This suggests
a short-range interaction that is mutually activating and a long-range inhibiting in-
teraction or, in magnetic language, a short-range ferromagnetic interaction and a
long-range antiferromagnetic interaction. This is the model we will be using to obtain
various pigment patterns.

It turns out that the magnetic analogy is not without practical application. Real
magnetic materials form magnetic domains. The reason for these magnetic domains
is that the short-range ferromagnetic interaction between spins is a local effect of
quantum mechanics. However, the long-range interaction between spins is through
the magnetic field that tries to antialign the spins—an antiferromagnetic interaction.
This gives rise to domains of magnetization that form a pattern of regions of UP and
DOWN spins that has a large scale compared to the atomic distances. When a piece of
iron is magnetized,it is forced into a metastable state by aligning these magnetic do-
mains. After long enough time,it demagnetizes by returning to its equilibrium state.
Modern use of patterns of magnetization appears in magnetic bubble memories that
vary external fields to manipulate the patterns of magnetic domains very much in the
manner described below.

We will adopt the Ising model terminology of spin variables to describe pattern
formation. In Fig. 7.2.2 the spin-spin interaction for a model of pattern formation is
plotted as a function of distance. The energy of the system would be written as:

(7.2.1)

where si = ±1 is ON and OFF respectively. J(rij) is the interaction as a function of dis-
tance rij between spins. This is similar to Eq.(1.6.52) but includes only a uniform bias
field h that controls how likely a cell is to have pigment (ON) as opposed to no pig-
ment (OFF). Writing explicitly the interaction in terms of two parameters J1 > 0 and
J2 < 0 we have:

(7.2.2)

What should we expect from the equilibrium structure of this model? The main point
is that the existence of long-range antiferromagnetic interactions should cause
patches of color. However, we have already found in some cases that the presence of
antiferromagnetic interactions causes many low-energy states rather than only a sin-
gle unique one. While this was true in Section 1.6 only for nonbipartite lattices,we an-
ticipate that it will be true for this more complicated model. Thus we will avoid try-
ing to describe directly the equilibrium states of this model and focus instead on what
we are more interested in anyway—the outcome of its dynamics. For convenience, we
take a square lattice and start from a random set of values with half of the cells ON.
We construct a dynamics for the system, then run it until there are no changes and
record the resulting pattern.
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The dynamics is the same as that used in Chapter 2 for the neural network—zero-
temperature Glauber or Monte Carlo dynamics.We choose a particular cell to update
and set it ON or OFF according to which gives the lower energy. Stated differently, the
cell is set ON if the net interaction of the cells causes it to be ON. The total influence
of the other cells is given by the effective field:

(7.2.3)

We thus set the value of si(t) to be:

(7.2.4)

This equation is quite similar to the equation describing the update of neural cells
Eq.(2.2.4). The difference between Eq.(7.2.4) and Eq.(2.2.4) is how we set the values
of the interactions between the spin variables, and the presence of a bias h. The pig-
ment cells are locally interacting, while in Chapter 2,neural cells were interconnected

    

si (t) = sign h + J1 s j (t −1)
rij <R1

∑ + J2 s j(t −1)
R 1<rij <R 2

∑
 

 
 
 

 

 
 
 

    

hi = h + J1 s j

rij <R1

∑ + J2 s j

R 1<r ij <R 2

∑
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Figure 7.2.2 A CA model of pattern formation uses interactions that cause short-range acti-
vation and long-range inhibition of pigment. The interaction as a function of distance J(r) in
this model is illustrated. The same model describes interactions that are locally ferromagnetic
and long-range antiferromagnetic in a magnetic system. ❚
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throughout by interactions Jij . In Chapter 2 we considered the update of cells to be
synchronous because in the presence of random interactions this does not generally
cause different results. Here, it is better to update the system asynchronously by se-
lecting cells to update sequentially at random. This avoids oscillations that can occur
when all the cells are updated simultaneously.

There are five parameters in this model:the two interaction ranges R1 and R2, the
two interaction strengths J1 and J2 and the bias field h. Since we have not yet chosen
the scale of the interaction strength, we can choose it so that one of them takes a con-
venient value. We set J1 = 1. It is positive,as required for a ferromagnetic interaction.
J2 takes a negative value. It makes sense to choose a value of J2 smaller than J1 because
J2 acts over a larger area. We choose J2 = −0.1. We set the value of R1, the range of the
short-range interaction, to a nearest-neighbor distance or R1 = 1. Distance is mea-
sured in the cellular space by cell size. The range of R2 should have something to do
with the size of the pattern elements that result. We set this to a value of R2 = 6 to have
a large enough value that will be distinct from the nearest-neighbor distance and
small enough to be comfortably within the space we simulate, which will be 60 × 60
cells. We start by setting the value of the bias field h = 0 and vary it to create patterns
with more or less ON or OFF cells.Fig. 7.2.3 illustrates the generation of a pattern from
a random starting configuration of the cells. The computer program used to generate
these patterns is similar to those used in Sections 1.5 and 1.6 to investigate the dy-
namics of cellular automata and the Ising model respectively. We can see that long-
range inhibition g ives rise to alternating regions of colors at a characteristic separa-
tion distance.

Fig. 7.2.4 illustrates the variation in patterns that can be generated as a result of
changing the value of the bias field h. All of the patterns on the left result from the
same initial random array of dots. Similarly, all of the patterns on the right result from
a single but different random initial array of dots. Considering the left patterns and
the right patterns separately, we can see how the change in the bias field affects the
eventual pattern that is formed. At one extreme there are black dots in a sea of white.
The dots are not regularly spaced or shaped. They are variable in size and some are
elongated. As the value of h is increased, more dots elongate and connect forming
bands that interconnect and eventually become the black background in which white
dots exist. These patterns are reminiscent of some animal color patterns.

In Fig. 7.2.5 we investigate the effect of increasing the value of R1 (right panels)
and R2 (left panels). The most obvious changes occur with R2. The characteristic size
of the pattern increases and is directly controlled by R2. Increasing R1 does not affect
the size of the pattern but rather the shape of the boundaries between regions of ON

and OFF cells. Increasing R1 ensures that the boundaries of dots and stripes are
smoother, with more gradual changes in curvature. This is particularly apparent in
our simulations because the size of R1 is comparable to the size of cells. For more re-
alistic animal color patterns, the size o f R1 should be larger than the size of cells, to
avoid sharp corners.

The initial conditions of the simulation can be important. We started these sim-
ulations with 50% of the cells set ON at random. The effect of the initial random
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Figure 7.2.3 A simulation of a CA model of pattern formation. ON cells (black) produce pig-
ment and OFF cells (white) do not. The initial conditions assign cells to be ON or OFF at ran-
dom with probability 1/2. Five updates are shown and then the unchanging stable limit that
is reached after about 20 updates. The parameters are R1 = 1, R2 = 6, J1 = 1, J2 = −0.1, and
h = 0. ❚
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h=–6

h=–3

h=–1

Figure 7.2.4 Additional simulations of the CA model that illustrate the effect of varying the
bias field h; other parameters are the same as Fig. 7.2.3. All patterns shown are the un-
changing stable limit of a simulation. h biases the system to have more or less ON cells.
Varying h results in patterns with black spots on a white background, white and black stripes,
or white spots on a black background. The left and right panels differ only in the initial
conditions of the simulation. All of the left panels start with the initial condition shown
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in Fig. 7.2.3. The right panels begin from a different random initial condition. We see that
left and right panels share general characteristics but are different in detail. While both ini-
tial conditions have a probability of 1/2 that cells are ON, qualitative aspects of the final pat-
terns are not sensitive to the initial probability, since they are determined by the ensemble
of stable states of the system. ❚
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configuration is apparent from the nonuniform nature of the pattern,and the two dif-
ferent results shown in left and right panels of Fig. 7.2.4. Changing the initial propor-
tion of ON cells has very little effect on the qualitative behavior of the model because
the resulting pattern is essentially an equilibrium pattern—one of many with similar
number and shapes of color regions. However, the specific pattern of dots and their
shapes is sensit ive to the precise starting pattern of ON and OFF cells. If we consider
this as a theory of the origin of animal color patterns, it suggests that individual dif-
ferences may be due to randomness rather than genetic control, while the overall
characteristics are controlled by the underlying mechanism, which is genetic and
species specific. In this case the particular pattern is not heritable,and even identical
twins would have different patterns. This should not be the case with many other
characteristics.

Question 7.2.1 In the model we have just simulated,patterns appear to
arise in equilibrium. We have argued in Section 1.3 that equilibrium sys-

tems have simple behavior. Why doesn’t this apply in our case?

Solution 7.2.1 The thermodynamic limit discussed in Section 1.3 applies
when we take the limit of large enough system size. The results in this sec-
tion do not apply when we take this limit, since then the system would ap-
pear uniform and homogenous, because the size of the spots that we are dis-
cussing would be so small as to be irrelevant. When this limit is not used,
then the conclusions also do not apply.

A more thorough discussion would note that there are actually two con-
ditions that are not met by these systems, consistent with the discussion in
Section 1.3.6.

First,the ergodic theorem does not apply. This means that the ensemble
of possible states of the system is not being explored. This is apparent when
we consider that the system iterates to a steady state and that this steady state
is a unique state that is unchanging even though there are many such possi-
ble states. Moreover, when the ergodic theorem applies,the initial state is ir-
relevant to the final equilibrium state. The reason that this model breaks the
ergodic theorem in such a direct way is that we are modeling it at zero
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Figure 7.2.5 Changing other parameters in the CA model. Each pattern is the steady state of
a simulation with the parameters indicated, and for all cases J1 = 1 and J2 = −0.1. The left
panels show the variation in the spatial scale of the pattern that results from changing the
range R2 of the antiferromagnetic interaction. Simulations for three different values of R2 are
shown. There is a direct relationship between R2 and the size of the stripes. The right panels
show patterns that arise when the range R1 of the ferromagnetic interaction is increased.
Simulations with three values of h are shown all with the same increased value of R1. The top
right panel should be compared with the top left panel. The other two right panels should be
compared to the panels of Fig. 7.2.4 with the same value of h. The effect of the increase in
R1 is to round the corners of the spots and stripes. ❚
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temperature—the temperature is so low that no random changes occur. The
only changes are those dictated by energy reduction. In a system where tem-
perature causes random changes, there would be a time dependence to the
pattern. If our observations of such a system were averaged over a long time,
we would not see any specific pattern, but only a homogeneous average. If
our observations were averaged over a sho rter time, we would see an indi-
vidual pattern.

Second,in these simulations a correlation length exists that is not small
on the scale of the whole system. The length scale that is relevant is the char-
acteristic length scale of the pattern. In some patterns it may actually be
larger than the size of the stripes or dots,since the positions of stripes can be
correlated with each other. We can see the relevance of the pattern length
scale by considering what would happen if we observed a system that was
much larger than this length scale. Then the pattern would b ecome irrele-
vant and the color would be gray on the scale of our observations.

The relevance of temporal and spatial scale to the complexity of a sys-
tem will be discussed further in Chapter 8. ❚

Question 7.2.2 Consider a model using variables ̄si = 0,1 to represent un-
pigmented and pigmented cells. We will use overbars to indicate all

quantities in this model. Set the update rule to be similar to that in Eq.7.2.4
but with the bias field h̄ = 0. When the effective local field h̄i is negative, the
cell is set to 0; when it is positive the cell is set to 1. This is a more intuitive
representation of activation and inhibition since both are effected by cells
that are ON. Cells that are OFF have no influence on the pigment production
in other cells. It is also assumed that there is no tendency for cells to sponta-
neously become pigment producing. Simulate this model and vary the
strength of the inhibition J̄2 to obtain various patterns. How can this model
be transformed back to that given in the text?

Solution 7.2.2 Using the same parameters as the text except for the value
of J2 and h, the results of simulations are shown in Fig. 7.2.6.

To transform this model to that in the text, we can perform the substi-
tution s̄i →(si + 1)/2 so that 0,1→ –1, +1.Once this substitution is performed
in Eq.(7.2.3) we can recognize the parameters that would give the same pat-
terns in the original model:

(7.2.5) ❚

Question 7.2.3 Consider what will happen if R1 = 0, i.e., there is no
activation in the model of the text and R̄1 = 0 for the model of

Question 7.2.2.

    

J1 = J 1 /2

J2 = J 2 /2

h = J 1 /2 1
rij <R1

∑ + J 2 /2 1
R 1<rij <R 2

∑

638 L i f e  I I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 638
Title: Dynamics Complex Systems Short / Normal / Long

07adBARYAM_29412  3/10/02 10:46 AM  Page 638



D i f f e re n ti a t i on :  Pa tt e rn s  i n  an i ma l  c o l o rs 639

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 639
Title: Dynamics Complex Systems Short / Normal / Long
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J2=–0.12

J2=–0.10

Figure 7.2.6 Using a different parametrization of the CA model for pattern formation with si

= 0, 1 and h = 0 in Eq. 7.2.3, we generate patterns that are similar to Fig. 7.2.3 by varying
the strength of the inhibition 

–
J2. The other parameters were taken to be 

–
R1 = 1, 

–
R2 = 6, 

–
J1 =

1. Left and right panels use different initial random conditions similar to Fig. 7.2.4 (see
Question 7.2.2). ❚
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Figure 7.2.6 (continued)
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Solution 7.2.3 Since the pattern formation seems to depend on local acti-
vation and long-range inhibition, we might think that setting R1 = 0 would
eliminate pattern formation. However, in the case of the model discussed in
the text,patterns still form. In order for the long-range antiferromagnetic in-
teraction to lower the system energy, it is necessary for regions to be locally
ferromagnetic. Another way to understand this is that the long-range inter-
action controls the long-range properties of the pattern while, as seen in
Fig. 7.2.5, only the boundary shapes are controlled by the short-range inter-
action. We could even have a short-range antiferromagnetic interaction and
still have patterns, as long as the short-range interaction is not too strong.
However, when we consider the model of Question 7.2.2 we realize that in
order for cells to turn ON there must be a local activation,otherwise cells can
only turn OFF in the dynamics. From Eq.(7.2.5) because J̄2 < 0, J̄1 = 0 would
correspond to a large negative h in the model discussed in the text. The large
negative h would likewise prevent any cell from turning ON. ❚

The patterns that can be generated using the activation-inhibition CA model
suggest that the variability between different species can be readily achieved by vari-
ations in parameters of such models. However, this particular set of patterns does not
capture the appearance of many of the common animals. One example is the giraffe
(specifically the Uganda giraffe), which has patterns of coloration characterized by re-
gions of pigment separated by relatively narrow and straight lines without pigment.
We will discuss an approach to generating such patterns which il lustrates that there
may be other mechanisms for generating patterns of a certain scale. The method be-
gins by noting (Fig. 7.2.7) that giraffe patterns appear to be similar to patterns gener-
ated in two steps.First we choose a sparse set of initial dots. Then we divide the plane
into regions associated with each dot. The region associated with a dot consists of all
points that are closer to it than any other dot. Then the boundaries of these regions
are not colored, while the interiors are.

To generate this pattern, we use a CA that grows regions of color from isolated
points, which are cells initialized ON. The growing regions then stop when they reach
the proximity of another region that is growing. In this rule,the characteristic size of
the pattern is given by the density of the initial ON cells. This would be similar to a
process of nucleation and growth (Section 1.6.8), where nucleation creates the iso-
lated points that expand rapidly compared to the nucleation time. The CA rule we use
is similar to those described in Sections 1.5.2 and 1.5.3, for the condensation model
and Conway’s Game of Life. We will construct the rule step by step.

To allow regions to grow, a cell is set ON at time t if at time t − 1 there were more
than zero cells ON in its neighborhood. This results in growth from a point expand-
ing into the space in a uniform fashion. Because of our square lattice,there is a prob-
lem in the shape of growth—it is not circular as would be expected in a physiological
system. By expanding the range of influence of a single cell, which corresponds to in-
creasing the size of the neighborhood, we can make it more circular, as illustrated in
Fig. 7.2.8.
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In order to leave uncolored the regions between growing dots, cells must recog-
nize when the two growing regions meet. When the pigment grows from a point, the
shape of the ON region is convex. We can identify a cell in the encounter region be-
cause it has more ON cells around it than a cell at the boundary of the growing region.
A cell that has more than a certain number of neighbors with pigment must be in the
encounter region and should not turn ON. Thus, the CA sets a cell ON if it has some
but not too many ON neighbors. Note that in this model we are not allowing cells that
are ON to turn OFF. This is important, because otherwise cells in the interior of a spot
would turn OFF once we impose the condition that stops the growth.

We start the growth by setting cells ON at random with a probability of 1 in 100.
The result of this simulation,illustrated in Fig. 7.2.9, is not very satisfactory. Some of
the cells at the boundaries of growing regions do not turn ON. However, these do not
form continuous lines. To overcome this problem we need to have wider regions of
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Figure 7.2.7 The patterns of coloration on a giraffe can be understood geometrically. They
appear to be generated by dividing the two-dimensional surface according to their distance
from a sparse selected set of points. In this figure the selected set of points are indicated by
circles. Line segments connecting them are shown as thin lines. By coloring areas that are
close to each of the selected points, but not points that are approximately the same distance
from two or more points, we can generate patterns similar to those found on some species of
giraffe. ❚
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OFF cells. To achieve the desired result, we can take a clue from the previous model of
pattern formation and set up two distances,a distance R1 over which the growth is de-
termined, and a distance R2 over which the stopping is determined. Thus, using bi-
nary variables si = 0,1 we turn a cell ON when the value of Eq.(7.2.3) is positive, with
parameter values of R1 = 2.5, R2 = 4.3, J1 = 1 and J2 = –.5. The values of these parame-
ters can be adjusted by trial and error.

The patterns generated in Fig. 7.2.10 using this approach are reminiscent of the
patterns of giraffes;however, they are not entirely satisfactory. While some of the re-
gions follow the convex shape that we expect,other regions are more convoluted. By
looking carefully at the patterns, we see that this occurs because the separations be-
tween the initial ON cells vary in distance. This would not occur if the starting points
were more regularly spaced. There are many ways to consider placing the points at
more regular intervals. A reasonable approach for this case is to use the previous
method of creating patterns using activation-inhibition to generate a pattern of
spots such as those shown in Fig. 7.2.4 and then to apply the growth starting from
these spots. This is illustrated in Fig. 7.2.11, where the initial pattern is generated
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Figure 7.2.8 Starting from a seed pigment cell we can grow outward using a rule that sets
a cell ON if there are any ON cells in its neighborhood. However, the shape of the growing re-
gion on a square lattice depends on the way we grow it. Here, growth of a region is shown
for various sizes of the neighborhood given by its radius R1. A larger R1 leads to more circu-
lar pigmented areas. ❚
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Figure 7.2.9 A first attempt at forming a color pattern similar to that of a giraffe. The ini-
tial conditions are obtained by setting cells to be ON at random with a small probability, here
taken to be 1 in 100. The algorithm updates the cells synchronously and sets them ON if the
number of cells in a neighborhood of radius R1 = 2.5 is nonzero, but also less than 10. The
color grows out from the initial ON cells. When growing regions meet, there are some cells
that do not turn ON because of the limiting condition on the number of cells in the neigh-
borhood. However, these regions of residual OFF cells are not continuous. ❚
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Figure 7.2.10 Better simulations of the formation of giraffe patterns than those in Fig. 7.2.9
result if we use a larger region to set the condition for stopping growth. The parameters, ad-
justed by hand, are inspired by the activation-inhibition model. The growth results from ac-
tivation of cells adjacent to cells that are ON, while too many ON cells in a larger region (long-
range inhibition) cause cells not to turn ON. Here a particular simulation is shown from its
initial condition for seven updates, and then the final stable result. Three outcomes starting
from other random initial conditions are shown in the rightmost column. All initial conditions
were set with a probability 1 in 100 of cells being ON. These simulations are not entirely sat-
isfactory because many of the spots have unusual shapes. ❚
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Figure 7.2.10 (continued)

from a CA activation-inhibition model, resulting in more regular but still randomly
placed spots. By growing out into the OFF regions we form a pattern that is closer to
the patterns on the giraffe coats. More specifically, this coloration is similar to that of
the Uganda giraffe (Fig. 7.2.1). Two other kinds of giraffe—the reticulated giraffe
and the Masai giraffe—would require additional tuning of parameters. The reticu-
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Figure 7.2.11 The giraffe color patterns generated in Fig. 7.2.10 can be improved by start-
ing from points that are more regularly spaced in the plane. They might be placed more reg-
ularly by several processes, one of which is illustrated here. The initial conditions result from
an activation-inhibition CA model simulation with parameters as indicated on the upper left.
This is the starting conformation for the growth outward of pigmented regions. The subse-
quent frames show updates using the same algorithm as Fig. 7.2.10. This results in a more
regular pattern reminiscent of the Uganda giraffe. Other patterns can be generated by vary-
ing the parameters. ❚
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lated giraffe would be generated by a smaller ratio of the line width to the size of the
spots. This requires a finer mesh of points but could be simulated by the same algo-
rithm. The third kind of giraffe, the Masai giraffe, has spots that are blotches with
fingering. Such fingering can also be achieved by varying the parameters in this
algorithm.

7.2.3 Chemical diffusion
We can add an additional layer of detail in our models by considering more directly
the properties of molecules produced in cells and their motion through the matrix of
cells and intercellular fluid. Molecules generally move by a random walk that is not
directed but results from the random thermal motion of the liquid, mostly water, in
which they are located.A single molecule undergoing a random walk travels a char-
acteristic distance proportional to the square root of the time, or √Dt., where D is the
diffusion constant. The probability distribution of the behavior of a single molecule
also describes what happens to a density of weakly interacting molecules. If there is a
localized density of molecules at one place,it will spread over time and the distribu-
tion will approximate a Gaussian that broadens and flattens over time (Section 1.2).
This molecular motion,diffusion,in the continuum limit is described by a differen-
tial equation (Section 1.4.4) that represents the changes in density n(x;t) with time
when it is sufficiently smooth:

(7.2.6)

This discussion suggests that we consider pattern formation arising from a differen-
tial equation representing the evolution of molecular density. This approach was
taken by Turing, more generally known for the invention of Turing machines dis-
cussed in Section 1.9.4. The resulting color patterns are known as Turing patterns.

The CA approach in the previous section treated diffusion as an incidental
process which was summarized by an effective interaction between the cells. This sim-
plified the study of the process of pattern formation so that the activation and inhi-
bition were readily apparent. In this and the following section we construct two es-
sential parts of the differential equation approach—the diffusion and reaction of
molecules. Then we discuss and simulate specific sets of equations that give rise to
patterns.

We derived the diffusion equation (Eq.(7.2.6)) in Section 1.4.4 from the motion
of a particle in a periodic set of wells. It is more usually derived from the motion of a
low-density “gas” of molecules that have a varying density profile as a function of po-
sition as il lustrated in Fig. 7.2.12(a). We consider the current J(x) of molecules at a
particular position x and relate this current to the variation of the density with posi-
tion n(x). In order to obtain the current, we make use of simplifying assumptions. The
result is more general than the assumptions suggest. We assume that molecules un-
dergo instantaneous collisions with a fluid or matrix in which they are embedded. The
characteristic time between collisions is . In between collisions,particles have a char-
acteristic velocity v and travel a distance l = v . v is determined by thermal motion—

      

dn(x;t)

dt
= D∇2n(x;t)
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x x+lx–l

n(x−l)v/2

n(x+l)v/2

J(x+dx)

(a)

(b)

x+dxx

J(x)

Figure 7.2.12 We derive the diffusion equation using a model consisting of a weakly inter-
acting nonuniform density of particles embedded in a medium. The derivation relates the
change in density with time to the spatial variation in density. It takes two steps: (a) the
particle current at a point x is related to the spatial variation in density, and (b) the change
in density with time is related to the spatial variation in the current. Consult the text for
details. ❚
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it is controlled by the temperature—and is related to the interactions with the fluid
or matrix, so neither depend on the density n(x).

When we look at a position x we see molecules t raveling to the right and to the
left. These molecules originated a distance l to the left and a distance l to the right re-
spectively. At these locations their density was n(x − l) and n(x + l) respectively. Since
we expect half of the molecules from n(x − l) to be traveling to the right and half at
n(x + l) to be traveling to the left, we infer that the current at x is given by:

(7.2.7)

where we have expanded in a Taylor series keeping the first term,and thus assuming
that l is small compared to distances over which the density varies significantly.

We want to describe the changes in n(x) as a function of time. To do this we also
need the continuity equation that relates the current to the change in density. From
Fig. 7.2.12(b) describing the change of density in a small box in terms of the currents
at two faces, this is given by

(7.2.8)

where is the area of a face and ∆x is the length of the side. Combining Eq. (7.2.7)
and Eq. (7.2.8) we have the diffusion equation:

(7.2.9)

This is generalized to Eq. (7.2.6) when the density varies in three dimensions.
The many assumptions in this derivation can be avoided if we consider

Eq. (7.2.6) as an expansion in the density and its derivatives (Question 7.2.4). The
right side is the lowest-order term that is not excluded by symmetries of the problem.
It controls the longest spatial and temporal behavior. This is the reason for the ap-
plicability of the diffusion equation under a large variety of circumstances.

Question 7.2.4 We want to write a differential equation describing the
time dependence of the density

(7.2.10)

in terms of various spatial derivatives—local properties—of the density.
Consider including terms that involve up to three derivatives (in three di-
mensions) of n(x ;t):

(7.2.11)
    

d

dx
n(x;t),

d 2

dx 2
n(x;t),

d 2

dxdy
n(x;t),

d 3

dx3
n(x;t),

d3

dx2dy
n(x;t),

d 3

dxdydz
n(x;t)

      

dn(x ;t)

dt
= K

      

dn(x ;t)

dt
= v

2 d 2n(x ;t)

dx 2

    
∆x

dn(x;t)

dt
= −J(x + ∆x /2;t) + J(x − ∆x /2;t)( ) = − ∆x

dJ(x;t)

dx

      
J(x) =

v

2
(n(x −l) −n(x +l)) ≈ −l v

dn(x)

dx
= −v

2 dn(x)

dx
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Argue:

a. That of these terms only the second term can be used.

b. There are additional terms involving four derivatives that can be used.

c. That terms of the form

(7.2.12)

become smaller than the second term in Eq. (7.2.11) when the density
is small enough.

d. That terms that do not involve derivatives—a function of n(x;t) itself or
a constant—cannot be included if the number of molecules is
conserved.

Solution 7.2.4
a. d n(x;t) /dt does not ch a n ge wh en we invert any of the spatial coord i n a te s ,

for example by set ting x → −x. Thus any term on the ri ght-hand side of
Eq . (7.2.10) must also not ch a n ge . Si n ce the invers i on of x ch a n ges the
s i gn of dx no odd deriva tives are ad m i s s i ble and on ly the second term is
po s s i bl e .

b. Additional fourth-order terms are of the form:

(7.2.13)

These terms are corrections to the diffusion equation and must be used
if the spatial variations in the density are large enough, or we are con-
cerned about behavior on a small enough length scale.

c. Consider multiplying the density by a factor . The terms listed in
Eq.(7.2.13) vary as 2 while those in Eq.(7.2.11) vary as . Thus at low
enough density these terms are insignificant.

d. Consider the case of a uniform density n(x;t) = n0. Any function of
n(x;t) that does not involve derivatives will give a changing density that
must be the same everywhere. A uniform changing density does not
conserve the number of molecules. Thus we cannot include such terms.
We are implicitly assuming that x itself does not appear in the equa-
tion—points in space are indistinguishable before molecules are placed
there. Otherwise this argument would not be valid. ❚

Diffusion causes molecules on average to move from higher density regions to
lower density regions. This can be readily understood from the random-walk behav-
ior of the molecules and the discussion in Section 1.2. This motion leads to a more
uniform density profile. Thus if there is a nonuniform pattern of molecular density
initially imposed on a system, diffusion leads to a loss of the pattern through the

    

d 4

dx4
n(x;t),

d 4

dx 2dy 2
n(x;t)

    

n(x ;t)
d 2

dx2
n(x;t),

d

dx
n(x;t)

 

 
 

 

 
 

2
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smoothing of the density. The key problem in discussing color patterns is identifying
how we can cause nonuniform densities to arise out of diffusing molecules. As we re-
marked before,this is related to the fundamental problem that equilibration generally
causes uniformity and lack of structure.

The solution to this problem is through the interaction of more than one type of
molecule. Recognizing this was central to the contribution of Turing. The interactions
are chemical reactions that change the local densities of molecules. In addition to the
reacting molecules, the reactions may involve catalysts that accelerate them. Of par-
ticular importance are autocatalyzing reactions where molecules that are reacting are
also catalysts. Autocatalysis causes a nonlinear dependence of the reaction rate on the
densities. Systems of reacting and diffusing molecules are called reaction-diffusion
systems.

7.2.4 Chemical reactions
Chemical reactions cause molecular densities to change with time even when there is
no diffusion. A reaction may combine different molecules, decompose a molecule
into parts or just change the structure of a molecule. We write the general dynamic
behavior of the molecular densities using a set of coupled equations of the form:

(7.2.14)

where Ri({nj(x;t)}) is the rate of change in the concentration of a molecular species i
due to generation or annihilation in reactions that involve other molecular species. In
order to solve such equations,it is necessary to have an expression for R i({nj(x;t)}) in
terms of the densities of the molecules present.

As with diffusion, a discussion of reaction rates requires some simplifying as-
sumptions. In writing Eq.(7.2.14) we have already assumed that the density is not too
rapidly varying in space,so that the local reaction rate depends only on the local den-
sities and not their g radients. We will also assume that the diffusion time of a mole-
cule between reactions is large compared to the time of a reaction. This assumption
implies that the limiting step in the rate of reaction is the rate at which molecules en-
counter each other. In order to satisfy this assumption, we need three conditions: that
interactions between molecules are short range, that the molecular densities are low
and that once the molecules encounter each other the reaction is fast. For simplicity
we can think of this as a low density limit. As in the discussion of diffusion, violations
of the assumptions can be incorporated in the equations when necessary.

Under these assumptions the rate of a reaction involving molecules A, B and C
(with molecular densities nA, nB and nC of the form

(7.2.15)

is proportional to the probability of encounter of the reagents—it is proportional to:

nAnB (7.2.16)

This follows from our assumptions because each molecule diffuses and reacts inde-
pendently of other molecules of the same type. Thus, the probability of a reaction is

  A + B → C

    

dni (x;t)

dt
= D∇2ni (x;t)+ Ri ({n j (x;t)})
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proportional to the reactant concentrations. Since one molecule of A and of B disap-
pears for every reaction,and a molecule of C appears, the rate of change of the den-
sities, due to this reaction, are given by:

(7.2.17)

where k1 is positive, and called a reaction constant.
The reverse reaction

(7.2.18)

has a rate which is proportional to nC . Including this in Eq. (7.3.17) results in the
equations:

(7.2.19)

Thus, reactions give rise to differential equations coupling the densities of different
molecules.

It is important to emphasize that reactions we write in the form of Eq. (7.2.15)
and Eq.(7.2.18) are to be considered elementary reactions that reflect actual molecu-
lar encounters. In chemistry, the same notation is often used to describe the net con-
sequence of many reactions. The reaction then reflects only the proportions of mole-
cules involved (stoichiometry). The rate of the reaction is not proportional to reactant
density, and therefore must be determined separately.

There are three approximations that can be used to simplify the equations re-
sulting from chemical reactions. These are the condition of quasi-equilibrium,the ex-
treme kinetic regime and the quasi-static regime.

If the two reactions Eq.(7.2.15) and Eq.(7.2.18) are in equilibrium,then the den-
sity of A no longer changes with time and we can set Eq. (7.2.19) equal to zero. This
gives a relationship between the densities:

(7.2.20)

where k ′2 = k 2/k1. When a reaction is close to equilibrium and we disturb the condi-
tions by adding one of them, then the reaction will act to change the densities of the
other chemicals to restore equilibrium. If this were the only reaction we were inter-
ested in,then the equilibrium would describe all of the dynamics. However, the mol-
ecules might be involved in additional reactions that are slower. Then the fast reaction

    nBnA = ′ k 2nC

    

dnA

dt
= −k1nBnA +k2nC

dnB

dt
= −k1nBnA + k2nC

dnC

dt
= k1nBnA −k2nC

  A + B ← C

    

dnA

dt
= −k1nBnA

dnB

dt
= −k1nBnA

dnC

dt
= k1nBnA
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that restores equilibrium always maintains the chemicals involved in a quasi-
equilibrium. Under these conditions we may use the relationship of Eq. (7.2.20) to
simplify the system of equations.

The second simplifying circumstance is when the densities of molecules are far
from equilibrium. Then one of the two terms in Eq.(7.2.19) will be much larger than
the other. In this case we may consider a reaction as proceeding only in one direction.
This is the kinetic regime of the reaction, where equilibrium is essentially irrelevant.

The third simplifying circumstance is the quasi-static regime. It is applicable
when a quantity is slowly varying on the time scale of observations. The simplest way
this can occur is for one of the molecules in a reaction to have a much larger density
than the others. Then the change in its density, as compared to the density itself, can
be negligible. For example, if the density of C in Eq. (7.2.19) is very large compared
to the other molecules,and the value of k2 is not too large, we may be able to approx-
imate the second term and write, for example:

(7.2.21)

where k ′′2 = k2nC assumes that nC is approximately constant. This describes a constant
source of the molecule A implicitly originating from molecule C. nC need not be ex-
plicitly written when it is essentially constant.

We will be interested in two sets of chemical reactions. The first is the activator-
inhibitor system. It represents activation and inhibition more directly, and can be de-
scribed by

(7.2.22)

The second is the activator-substrate system. It is simpler and implements the prop-
erties of activation and inhibition in a more indirect way to be explained later, and can
be described by:

(7.2.23)

We discuss simplifications of our treatment of the reactions using the methods dis-
cussed above. The discussion will justify the functional form of the differential equa-
tions used in the next section.

In both sets of reactions, we have used the convention that 0 represents a chem-
ical species whose density is not of relevance to our discussion. When 0 produces a
relevant molecule (e.g., 0 → B) it has a large enough density so that any change is in-
significant over the time of observation. This is the quasi-static approximation. We

    

A → 0

0→ B

2A + B → 3A

    

A → 0

B →0

2A + D →2A +B

2A +C → 3A +C

C + B ↔ E

    

dnA

dt
≈ −k1nBnA + ′ ′ k 2
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also denote by 0 a molecule produced by a reaction that is inert (A → 0). This is one
way the extreme kinetic limit manifests itself in the reactions. Another way it does so
is in all the reactions that have only one direction indicated. The reverse direction is
assumed to be irrelevant. There may be other molecules involved in reactions that are
not indicated at all. For example we could also write the third reaction in Eq.(7.2.23)
as 2A + B + 0 → 3A + 0, where the two 0s indicate molecules whose density is un-
changing (the first) or that are inert (the second). Indeed, one of the reactions would
definitely not make sense without additional reactants. (Which one?) We will also use
the quasi-equilibrium approximation to describe the last reaction in Eq.(7.2.22).Before
we describe this, we will discuss the nonlinear reactions that appear in these systems.

Both activator-inhibitor and activator-substrate systems have reaction rates that
depend in a nonlinear fashion on molecular densities. The simplest example of a non-
linear dependence is a molecule that reacts with itself:

(7.2.24)

which would give rise to two coupled equations of the form:

(7.2.25)

The value of k3 would be twice as large as k4 because of the loss of two molecules of
A per reaction.

More complex examples of nonlinear dependence result from autocatalysis.First
we describe simple catalysis.A catalyst accelerates reactions by creating an additional
pathway for the reaction. An example would be:

(7.2.26)

where D is a catalyst since, regardless of intermediate stages,it reappears at the end of
the reaction. The density of the catalyst affects the rate of the reaction, but the reac-
tion does not affect the density of the catalyst. An example that appears in Eq.(7.2.22)
with A as a catalyst is:

(7.2.27)

This would give rise to two coupled equations of the form:

(7.2.28)

Since there is no change in number of A molecules, there is no effect on dnA/dt.
In autocatalyzed reactions one of the reactants also acts as a catalyst. An example

from Eq. (7.2.23) is:

(7.2.29)    2A + B → 3A

    

dnD

dt
= −k5nA

2 nD

dnB

dt
= k5nA

2nD

    2A + D →2A + B

  A + B + D →C + D

    

dnA

dt
= −k3nA

2

dnB

dt
= k4nA

2

    2A →B
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Each reaction results in the gain of a molecule of A and the loss of a molecule of B. A
also acts as a catalyst. The related differential equations take the form:

(7.2.30)

If two new molecules of A appeared in the reaction, 2A + B → 4A, we would still have
the same functional dependence nA

2nB. However, the coefficients in the two equations
would differ by a factor of 2.

We now consider the last reaction in Eq.(7.2.22) that we will treat using a quasi-
equilibrium condition. Some care must be exercised in simplifying equations based
upon the interplay between fast processes and the dynamics we are observing. This
example is relatively simple because the density of C is only affected by the last reac-
tion. It acts as a catalyst in the second to last reaction. We assume that the last reaction
is rapid and therefore maintains a relationship between nC , nB and nE similar to that
in Eq. (7.2.20):

nBnC = k′2nE (7.2.31)

To simplify matters further, we assume that nE is always very large and effectively con-
stant. Then nC would be inversely proportional to nB.

(7.2.32)

We can use this relationship in other equations. To illustrate this we write an equation
for the time dependence of nA from the first reaction and the second to last reaction
in Eq. (7.2.22):

(7.2.33)

We see that increasing the density of B reduces the rate of the reaction of A through
mediation by C. We can say that B inhibits the reaction that affects the density of A.
The next problem is to describe the rate of change of nB . Since B is affected by sev-
eral reactions in addition to the fast, quasi-equilibrium one, this is more compli-
cated. We can think about the problem as writing a set of equations that no longer
contains the variable nC . While it is not overly difficult to do this, we can simplify
matters further by assuming conditions that decouple the behavior of nB from
the quasi-equilibrium equation. This requires that nB is significantly greater than 
nC (nC << nB). To see how this works we write the complete equations (from
Eq. (7.2.22)) that affect nB and nC :

(7.2.34)
    

dnB

dt
= −k4nBnC +k5nE + (k3nA

2 nD −k2nB)

    

dnA

dt
= −k1nA + k3nA

2nC ≈ −k1nA + ′ k 3nA
2 /nB

    
nC =

′ ′ ′ k 2
nB

    

dnA

dt
= k3nA

2nB

dnB

dt
= −k3nA

2 nB
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(7.2.35)

The density nC changes only through the reaction that is in quasi-equilibrium. nB has
the same terms, but also the terms in parenthesis reflecting the additional reactions
that include B. If nC << nB then any change in nC is also much smaller than nB. Thus
we can neglect the first two terms in the rate of change of nB which are the same as the
rate of change of nC . Then we are left with only the terms in parenthesis:

(7.2.36)

A more complete treatment is discussed in Questions 7.2.5 and 7.2.6.

Question 7.2.5 Write an expression instead of Eq. (7.2.32) for the de-
pendence of nC on nB when we cannot assume that nE is unchanging.

Solution 7.2.5 In order to obtain the more general form of Eq.(7.2.32) we
must recognize that the sum nE + nC is conserved in the reactions of Eq.
(7.2.22). We can define this sum to be n0 and write the quasi-equilibrium
condition Eq. (7.2.31) as:

(7.2.37)

or

(7.2.38)

We see that as long as nB is larger than k ′2 this correction can be ignored. The
correction will be important when we do simulations later because it is un-
physical that the rate of change of nA given in Eq.(7.2.33) diverges when the
density of nB is small. ❚

Question 7.2.6 Derive an equation instead of Eq.(7.2.36) that incorpo-
rates an approximate quasi-equilibrium relationship but doesn’t assume

nC <<nB. Assume nE is essentially constant.

Solution 7.2.6 We start from the quasi-equilibrium relationship
Eq.(7.2.31). To use this relationship we recognize that the equality is not ex-
act, but holds approximately. The difference between the two sides, which ap-
pears in Eq. (7.2.35), ensures that nC changes when nB does. Any change in
nB must be matched by a change in nC to maintain the quasi-equilibrium re-
lationship itself. Thus an incremental change of Eq. (7.2.31) can be written:

(7.2.39)

where we have assumed nE is essentially constant. Dividing by a time incre-
ment dt and using the approximate quasi-equilibrium relationship we relate
the rate of change of nC to that of nB :

    nBdnC + nCdnB ≈ 0

    nC = ′ k 2n0 /(nB + ′ k 2)

    nBnC = ′ k 2(n0 − nC )

    

dnB

dt
= k3nA

2 nD − k2nB

    

dnC

dt
= −k4nBnC + k5nE
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(7.2.40)

We use this expression instead of the first two terms on the right side of
Eq. (7.2.34):

(7.2.41)

or

(7.2.42)

or finally:

(7.2.43)

The precise conditions under which this equation is valid can be understood
by recognizing that Eq.(7.2.40) can be obtained from the time derivative of
Eq. (7.2.35) by neglecting the second time derivative of nC . ❚

7.2.5 Pattern formation in reaction-diffusion systems
The com bi n a ti on of re acti on and diffusion terms in a differen tial equ a ti on can give ri s e
to pattern form a ti on under particular circ u m s t a n ce s . Ul ti m a tely the source of the pat-
tern form a ti on may be the same as that of the CA ru l e s — s h ort - ra n ge activa ti on and
l on g - ra n ge inhibi ti on . However, this is not as tra n s p a rent in the differen tial equ a ti on
form . Th ere are two ways to think abo ut the form a ti on of d i f feren tial equ a ti on pat-
tern s . The first is a con ceptual one that con n ects with activa ti on and inhibi ti on . Th e
s econd is thro u gh the analytic properties of the differen tial equ a ti ons that can give ri s e
to a pattern . To understand the con ceptual approach , we must rel a te the noti on of ac-
ti on at a distance of the CA model to the re acti on - d i f f u s i on model . The influ en ce of
one molecular species over a distance is ach i eved by diffusion . Typ i c a lly, wh en diffu-
s i on is faster the influ en ce is lon ger ra n ge . Si n ce there are two proce s s e s — activa ti on
and inhibi ti on—that occur over different ra n ge s , it makes sense to con s i der the ef fect s
of t wo types of m o l ec u l e s , one with a short - ra n ge influ en ce corre s ponding to a small
d i f f u s i on con s t a n t , and one with a lon g - ra n ge influ en ce corre s ponding to a large dif-
f u s i on con s t a n t . Activa ti on is a process by wh i ch one cell produ ces a signal molec u l e
that causes other cells around it to produ ce the same molec u l e . From the point of vi ew
of the molec u l e s , this is a sel f - c a t a lyzing re acti on that causes a nonlinear increase in the
m o l ecule den s i ty. Thus we ex pect that the molecule with a small diffusion constant au-
toc a t a ly zes a re acti on that increases its own den s i ty. Cell pigm ent is then co u p l ed to its
den s i ty. The second molec u l e , with a lon ger- ra n ge influ en ce , must perform an inhibi-

    

dnB

dt
≈

1

1+ ′ ′ ′ k 2 nB
−2

(k3nA
2 nD − k2nB)

    

1+
′ ′ ′ k 2

nB
2

 

 
  

 

 
  

dnB

dt
≈ (k3nA

2nD −k2nB)

    

dnB

dt
≈ −

′ ′ ′ k 2

nB
2

dnB

dt
+ (k3nA

2nD −k2nB)

    

dnC

dt
≈ −

′ ′ ′ k 2

nB
2

dnB

dt
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ti on of the re acti on that forms the first molec u l e . We wi ll see that the equ a ti ons devel-
oped to dem on s tra te pattern form a ti on have these properti e s .

E f forts have been made to con s tru ct models of actual phys i o l ogical re acti on -
d i f f u s i on proce s s e s . It is to be ex pected that su ch sys tems invo lve more than two type s
of m o l ec u l e s ,t h o u gh qu a s i - s t a ti c ,k i n etic and qu a s i - equ i l i brium approx i m a ti ons may
a ll ow their de s c ri pti on to be simplified . We wi ll discuss two sets of equ a ti ons that are
not spec i f i c a lly obt a i n ed from the phys i o l ogy of p a t tern form a ti on but are used to il-
lu s tra te how the patterns can form . The equ a ti ons have on ly two types of m o l ecules A
and B whose den s i ty nA(x,y ;t) and nB(x ,y ;t) in space and time we wri te for simplicity
as a(x;t) and b(x;t) . The molecules diffuse with different diffusion constants Da a n d
Db. The differen tial equ a ti ons de s c ri bing their beh avi or can be wri t ten gen era lly as

(7.2.44)

The functions f (a,b) and g (a,b) reflect the effects of chemical reactions. They describe
the time dependence of the densities when the density is uniform.

We now write down and simulate two sets of equations that form patterns. The
first set of equations may be obtained from the activator-inhibitor reactions in
Eq. (7.2.22) as discussed in the previous section (see Question 7.2.7). They are de-
scribed by:

f (a,b) = k1a
2/b − k2a

(7.2.45)
g(a, b) = k3a

2 − k4b

The first term k1a2/b describes the autocatalytic formation of the activator A which is
inhibited by the presence of B. The inhibitor B is produced by A in the term k3a2. If
the molecules of B are rapidly diffusing, the creation of B in regions where a is large
causes long-range inhibition of the formation of A. The densities of both A and B are
limited by decay processes responsible for the second term in each equation. Patterns
formed from this set of equations are shown in Figs.7.2.13 and 7.2.14. We will discuss
the methodology of these simulations in greater detail below.

The second set of equations that we use to generate patterns may be obtained
from the activator-substrate reactions in Eq. (7.2.23) (see Question 7.2.8):

(7.2.46)

In this set of reactions,the presence of B is necessary for the autocatalytic reaction that
creates A, as is evident in the expression k1a2b. The same reaction causes the disap-
pearance of B and the formation of A. B is spontaneously created by a process, given
by k3, that is independent of the density of A or B. Finally, the density of A is limited
by decay, as evident in the term –k2a. We can consider the autocatalytic increase of A
as local self-activation. Long-range inhibition arises when the diffusion constant of B

    

f (a,b) = k1a
2b −k 2a

g(a,b) = k3 −k4a 2b

      

da(x ;t)

dt
= Da∇2a(x;t)+ f (a(x ;t),b(x ;t))

db(x ;t)

dt
= Db∇2b(x ;t)+ g(a(x ;t),b(x;t))
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Figure 7.2.13 Simulations of the first set of reaction-diffusion equations, the activator-in-
hibitor system. At each time two panels are shown. The left panel shows the density a of the
activator A. The right panel shows the density b of the inhibitor B. The parameters were cho-
sen as described in the text with k1 = k2 = k3 = k4 = 1. The initial conditions, shown as the
first panel, consist of density values either of 1 or of 1.3 placed randomly with equal proba-
bility. The same initial conditions are used for Figs. 7.2.14 - 7.2.16. Note that since B is cre-
ated by A they both have maxima and minima at the same locations. The more rapid diffu-

07adBARYAM_29412  3/10/02 10:46 AM  Page 660



D i f f e re n ti a t i on :  Pa tt e rn s  i n  an i ma l  c o l o rs 661

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 661
Title: Dynamics Complex Systems Short / Normal / Long

600

800

10,000

sion of B causes the regions around the maxima to be depleted of A. The plots show the den-
sity using a representation (gray scale) that uses gray values ranging from white for 0 to black
for 2. The figures are labeled by the time in units of updates. Since our convention is that
the time per update is ∆t = 0.01 the frame marked 200 would correspond to t = 2. A steady
state is essentially reached by 10,000 updates. This was verified and used throughout for the
other reaction-diffusion simulations in Figs. 7.2.14–7.2.16. Note the difference between this
and the number of updates (20) necessary for the CA models of Section 7.2.2. ❚
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Figure 7.2.14 Simulations of the activator-inhibitor reaction-diffusion system for different
values of the reaction constants. The left panels show the density a of the activator A. The
right panels show the density b of the inhibitor B. All frames show the steady-state result af-
ter 10,000 updates. The parameters for the frames are k1 = k2 = 1 and k3 = k4 = 1,2,4 re-
spectively. The parameters for the top frames are the same as Fig. 7.2.13 and reproduce the
last time step of that figure. ❚
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is much larger than the diffusion constant of A. Because B moves rapidly and is
consumed by reaction with A, the density of B is depleted not only where A is high in
density, but also in the surrounding region. Since B is necessary for the creation of A,
this inhibits the formation of A in this larger region. Patterns formed from this set of
equations are shown in Fig. 7.2.15. In the activator-inhibitor set of reactions,the max-
ima of b occur at the same locations as the maxima of a. In the activator-substrate sys-
tem, the minima of b are at the maxima of a.

Question 7.2.7 Identify the relevant equations and approximations
from Section 7.2.4 used to obtain Eq. (7.2.45) from the reactions in

Eq. (7.2.22).

Solution 7.2.7 The two most directly relevant equations are Eq. (7.2.33)
and Eq. (7.2.36). The approximations leading to them are relevant, includ-
ing the quasi-equilibrium approximation for the last reaction in Eq.(7.2.22).
The only additional modification is that nD , which plays no real role in the
discussion of the last section, is assumed to be essentially unchanging. ❚

Question 7.2.8 Identify the approximations used to obtain Eq.(7.2.46)
from the reactions in Eq.(7.2.23). There is an inconsistency between the

reactions and the equations. In the activator-substrate system the reaction

(7.2.47)

is the on ly re acti on that is re s pon s i ble for two terms in the differen tial equ a-
ti on s .These two terms in Eq .(7.2.46) have the coef f i c i ents k1 and k4. This wo u l d
mean that k1 = k4, s i n ce one A is ga i n ed and one B is lost. De s c ri be a mod i f i ed
re acti on in wh i ch k1 = 2k4 (easy) and a re acti on in wh i ch k4 = 2k1( h a rd ) . One of
our assu m ed cases in the simu l a ti ons corre s ponds to the latter.

Solution 7.2.8 For the case k1 = 2k4 we produce twice as many A in each re-
action as B is lost, this can be done using:

(7.2.48)

The difficulty in the case k4 = 2k1 is that the left side of the equation must
have only one B, but we want to make twice as many B disappear as A ap-
pears. To do this we need to have A be a composite molecule formed by a fast
reaction from two equivalent parts (ligands) that bind together to form a
complete A. We call each part D, then we have the reactions:

(7.2.49)

where the second is a fast reaction. This combination gives the desired result.
Another possible solution is to use two catalyzed reactions. One causes

A to appear and is catalyzed by B. The second causes B to disappear and is
catalyzed by 2A. Then the coefficients can be set independently. This suggests
some of the subtlety necessary to create actual pattern-forming systems. ❚

    

2A + B → 2A + D + C

2D → A

    2A + B → 4A +C

    2A + B → 3A
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Figure 7.2.15 Similar to Fig . 7.2.14, but for the activator-substrate system. The right panels
show the substrate B, which is consumed by the activator A. B is depleted and has its minima
where A has its maxima. Due to the more rapid diffusion of B, it is depleted in a region around
maxima of A. Thus, the growth of A is inhibited in regions surrounded by maxima of A. ❚
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Eqs. (7.2.45) and (7.2.46) involve many parameters,six different ones including
the two diffusion constants and four reaction constants. Exploring the six-
dimensional parameter space would involve much effort. Exploring large dimen-
sional spaces to discover particular pattern-forming regions of the space can give in-
sight into the difficulty of evolutionary processes that form these systems. However,
we can significantly simplify our problem mathematically by recognizing that each of
the densities a and b and the variables x and t can be measured in convenient units.
By normalizing these variables we do not change the form of the pattern, only its scale.
Full use of this would reduce the number of independent parameters to only two. For
our simulations,the time and length scale must be related to the time step and lattice
size. However, we can conveniently scale the densities a and b.

It is easier to scale the densities if we make use of the observation that these equa-
tions have a solution that is uniform and does not change in time. This solution, ob-
tained by setting f (a,b) = g(a,b) = 0, is unstable in the parameter domain in whic h
patterns form. Adding any small perturbation leads to the formation of a pattern. We
will discuss this in more detail at the end of this section. In the meantime we use the
uniform solution to choose coefficients—patterns typically consist of positive and
negative excursions from the unstable uniform solution. By normalizing the coeffi-
cients, we can set the uniform solution so that it is a = b = 1. For both sets of equa-
tions, this imposes the same relationships between the coefficients:

k1 = k2

k3 = k4

(7.2.50)

Using these relationships also makes it easier to display simulations,since we can use
a consistent scale for all plots of the densities. All of the figures showing density plots
of the patterns are formed using a scale that begins with white at 0 and ends with black
at 2.

In simulating the behavior of these differential equations, we can use a finite dif-
ference representation of the diffusion operator:

(7.2.51)

or in two dimensions:

(7.2.52)

The time derivative is represented as a time difference:

(7.2.53)

where we use t also as the discrete time index. These substitutions return us to a CA
consistent with a random-walk model of molecular motion. It has the form:

    

da(t)

dt
→

1

∆t
a(t)− a(t − 1)( )

      

d 2a(x)

dx 2
+

d 2a(x)

dy2
→

1

∆x 2
a(i +1, j) +a(i −1, j) + a(i, j +1) +a(i, j − 1) − 4a(i , j)( )

    

d 2a(x)

dx 2
→

1

∆x 2
a(i +1) +a(i −1) − 2a(i)( )
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(7.2.54)

The choice of ∆t and ∆x is coupled to the choice of the remaining coefficients—the
reaction constants k1 and k3 and the value of the two diffusion constants Da and Db.
Their value determines the characteristic time to equilibration and the length scale of
the pattern that is found. The time scale must be set so that significant changes do not
happen in a single increment, because otherwise the differential equation is not being
correctly approximated, and oscillatory or chaotic dynamics of iterative maps may
occur. The inherent time scale of the system is set by the amount of time it takes for a
typical molecular density to change significantly. If we assume that our reaction con-
stants k1 and k3 are set approximately equal to one, and we have already chosen the
characteristic density of both reactants to be one,then the time for the characteristic
density to change is also one. We must ensure that this is much larger than the time
interval ∆t so we choose ∆t = 0.01. For the simulations we choose the length scale to
be approximately one lattice constant, so we set ∆x = 1.

How should we choose the values of the diffusion constants Da and Db ? We can
set their relative values by noting that the range of diffusion √Dt is proportional to the
square root of the diffusion constant. In the CA models, we used a ratio of activation
range to inhibition range of 6:1. Thus we would like the diffusion constants Db : Da to
be approximately 36:1 with Da approximately 1. For the simulations, a ratio of 40:1
was used with Da = 0.5 and Db = 20. Db = 20 was used instead of Db = 40, because for
this value the coefficient of b(i,j;t) in Eq. (7.2.54) is greater than 1 (it is −1.6) which
causes numerical instabilities (see also Question 7.2.9).

With most of the parameters determined,the only remaining choice is the rela-
tive values of the reaction constants k1 and k3 with both approximately one. We fix k1

= 1,and vary k3. Not all values of k3 produce patterns. In Fig. 7.2.13 patterns formed
from the activator-inhibitor system are shown for k3 = 1,2,4. For smaller values of k3,
the spots become sparser as is evident already from the behavior at k3 = 1. For higher
values of k3 (k3 = 8),the pattern disappears and a uniform solution of the differential
equation becomes the steady-state result.Simulations for the same values of k3 = 1,2,4
are shown in Fig . 7.2.14 for the activator-substrate system. However, in this case we
see that at low values of k3 the spots become slightly bigger but not significantly
sparser. For still lower values of k3, the simulations, as described above, become un-
stable and do not arrive at a steady-state result. For higher values of k3 (k3 = 8),a uni-
form solution becomes stable. An analytic approach to understanding the pattern-
forming range of k3, and incidentally why both sets of equations have a similar
pattern-forming behavior, is described in Questions 7.2.7 and 7.2.8.

    

a(i, j;t +1) = a(i, j;t) + ∆t f (a(i, j ;t),b(i, j;t))

+ ∆t

∆x 2
Da a(i +1, j;t)+ a(i −1, j;t) +a(i, j + 1;t) +a(i , j − 1;t) − 4a(i , j;t)( )

b(i, j ;t +1) = b(i, j;t) + ∆t g(a(i, j ;t),b(i, j;t))

+
∆t

∆x 2
Db b(i +1, j;t)+ b(i − 1, j;t) +b(i, j + 1;t) +b(i, j −1;t)− 4b(i , j;t)( )
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The finite difference form of the differential equations in Eq. (7.2.54) is a CA.
This CA is both simpler and more elaborate than the CA in Section 7.2.2. Here the in-
teractions between cells are nearest neighbor and the variables at every site are two
real numbers—a major part of the pattern-forming behavior arises from the on-site
part of the rule. In Section 7.2.2 the interactions were longer range and each cell had
only a single binary variable—the pattern formation arose from the interactions. We
note that CA rules that are derived from differential equations are designed to be stud-
ied in the limit where the cell size is small enough that granularity does not affect the
result. This is not necessarily the case with all CA rules;however, in the case of pattern
formation,a similar limit should be taken where the cell size is small compared to the
typical size of the pattern.

Question 7.2.9 The parameters of the differential equations that give
rise to patterns must,in biological systems,arise out of the properties of

the molecules involved. If we assume that simple diffusion applies, the dif-
fusion constant arises largely from the volume of the molecule, so the slow
diffuser must be much larger than the fast diffuser. Discuss the practicality
of the activator-inhibitor or activator-substrate systems simulated here.

Solution 7.2.9 Using Stokes’ law (see also Section 5.2) for spherical mole-
cules,the diffusion constant is inversely proportional to the cube root of the
volume. For simplicity we can assume the volume is approximately propor-
tional to the mass. Since the diffusion constants were set to have a ratio of
40:1,the masses must have a ratio of 64,000 or approximately 105. Recall that
the characteristic distance traveled is proportional to the square root of the
diffusion constant, which is inversely proportional to the cube root of the
mass. Thus the characteristic distance traveled is inversely proportional to
the sixth root of the mass—a very weak function of the mass.

Since the fast diffuser must be complicated enough to participate in
well-defined ways in specific reactions, we can not expect it to be easy to de-
sign a small molecule to do this. If the small molecule is itself large,the large
molecule must be huge. Thus, either the slow diffuser must be a behemoth
or some other approach must be taken.One solution is that the slow diffuser
is actually a cell rather than a molecule (see Section 7.2.7). Another possibil-
ity is that other effects, such as reactions that temporarily bind molecules, re-
duce its diffusion rate. ❚

Using the reaction-diffusion equations and the chosen parameters, the patterns
formed are those of spots. We have seen from the discussion of the CA activation-
inhibition models in Section 7.2.2 that there are several ways to cause such patterns
to form stripes.One way (Question 7.2.2) is to change the relative strength of the in-
hibition compared to the activation. In the reaction-diffusion systems,the same terms
in the differential equations are responsible for both activation and inhibition (k1 in
Eq. (7.2.44) and k1, k4 together in Eq. (7.2.45)). Thus it does not appear possible to
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control separately the activation and inhibition. However, these terms describe acti-
vation when a is large and inhibition when a is small. Thus we can vary their relative
strength by introducing an additional density dependence to these terms that reduces
the activation at high values of a and maintains the inhibition at low values of a. For
the first set of equations (activator-inhibitor):

(7.2.55)

For the second set (activator-substrate):

(7.2.56)

While we do not discuss the possible chemical origins of this modification in detail,
we can understand it as a saturation (effectively an inhibition) of the autocatalytic re-
action in the presence of high densities of the activator. It could be caused by an ad-
ditional inhibitor whose density is tied to a. Patterns formed from these equations in
Fig. 7.2.16 show the formation of stripes.

In summary, we see that the conditions under which patterns can be generated
include cases where there are two types of molecules, one diffusing rapidly and the
other slowly. The slow diffuser A autocatalyzes a reaction that increases its own den-
sity. The fast diffuser B reacts with the slow diffuser and decreases the density of A in
the vicinity of a high-density region of A. This results in patterns like that of the
activation-inhibition CA model in the previous section. The primary difference be-
tween the two sets of differential equations is that the fast diffuser B acts to inhibit in
two distinct ways, in the activator-inhibitor system through its presence, and in the
activator-substrate system through its absence (depletion).

The discussion of these equations in terms of activation and inhibition can be
augmented by a discussion of their analytic properties. Diffusion in the absence of re-
actions causes the density to become uniform and patterns are not possible. What are
the mathematical conditions under which patterns will form when there are reac-
tions? Central to our understanding of the formation of patterns is the recognition
that a uniform solution of the equations continues to exist even when patterns are
formed. However, this uniform solution is unstable. This means that adding a small
nonuniform density (perturbation) to the uniform solution will cause the system to
evolve to a pattern such as those shown in the figures. An analytic study of the stabil-
ity of the uniform solution is known as linear stability analysis. Using a linear expan-
sion of the equations around the uniform solution, we can determine if it is stable.
When it is not stable then the quadratic terms become important in determining the
solution, which may be a nonuniform pattern.

We can take the analysis one step further by recalling that a key aspect of the pat-
tern is the existence of a length scale characteristic of the distance between spots. This
length scale arises even though a differential equation (unlike the CA) has no cellular
length scale;it is also independent of the size of the system. The characteristic length

    

f (a,b) = k1a
2b /(1+k5a2) −k2a

g(a,b) = k3 −k4a 2b /(1+ k5a2)

    

f (a,b) = k1a
2 /b(1+ k5a2) −k 2a

g(a,b) = k3a
2 −k4b
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Figure7.2.16 The addition of a parameter that causes the rate of growth of A to be decreased
at high density of A and increased at low density causes the formation of stripes in both the
activator-inhibitor (this page) and activator-substrate (p. 670) systems. The parameter val-
ues shown are: for all cases k1 = k2 = 1, for top k3 = k4 = 1, k5 = 0.2, for middle 
k3 = k4 = 1, k5 = 0.3 and for bottom k3 = k4 = 2, k5 = 0.2. ❚
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Figure 7.2.16 (continued)

07adBARYAM_29412  3/10/02 10:46 AM  Page 670



scale arises because of the nature of the instability of the uniform solution. Instead of
being unstable to all perturbations, the system is only unstable to perturbations of a
range of length scales that characterize the patterns. Using the linear expansion
around the stable solution, we can identify the range of length scales over which it is
unstable to perturbations,and thus identify whether a pattern will form (or for what
range of parameters a pattern may be expected to form), and what its characteristic
length scale should be. This analysis is discussed in Questions 7.2.10 and 7.2.11.

Question 7.2.10 Patterns are generated when a differential equation has
a uniform steady-state solution that is unstable to perturbations at the

length scale of the pattern. The instability means that a small addition to the
uniform solution grows in time until it is stopped by a process that limits the
continued growth. To perform an analytical investigation of the reaction-
diffusion equations, expand the reaction part of the reaction-diffusion equa-
tions f (a,b), g (a,b) around the uniform solutions in the form

a = 1 + u
(7.2.57)

using the –(+) sign for the activator-inhibitor (activator-substrate) system of
equations. Then write differential equations for the time evolution of u and
v. It is only necessary to keep the linear terms.

Solution 7.2.10 We expand f (a,b), g(a,b) to second order. We use only the
first-order terms, but the second-order terms will illustrate a point. Inserting
Eq. (7.2.57) and expanding the activator-inhibitor set of equations gives:

(7.2.58)

For the activator-substrate set of equations, we have:

(7.2.59)

        

f (1+ u,1+v) =k1(1 + u)2(1+ v)− k1(1+ u)

= −k1(1+ u) +k1(1+ 2u + u2 + v + 2uv + u2
v)

= k1(u + v) +k1(u
2 + 2uv)+K

g(1+ u,1+v) =k3 − k3(1+u)2(1+ v)

= −k3(2u + v) −k3(u2 + 2uv) +K

        

f (1+ u,1−v) =k1(1 + u)2 /(1−v) −k1(1+ u) +

= −k1(1+ u) +k1(1+ 2u + u2)(1+ v + v
2 +K)

= −k1(1+ u) +k1(1 + 2u + u2 + v + 2uv + v
2 +K)

= k1(u + v) +k1(u +v)2 +K

g(1+ u,1−v) =k3(1+ u)2 −k3(1− v)

= k3(2u + v) +k3u
2

        b = 1m v
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The differential equations for u and v are obtained by inserting Eq.(7.2.57)
and Eq.(7.2.58) or Eq.(7.2.59) into Eq.(7.2.44). After substitution we switch
signs in the second equation, when necessary, to obtain:

(7.2.60)

We have written only the first-order terms, which are the same in both sets
of equations. The second-order terms are not the same. The equivalence of
the first-order terms in part explains the similarity in the results obtained by
simulating the two sets of equations. The inequivalence of the second-order
terms is responsible in large part for the differences. ❚

Question 7.2.11 Eq. (7.2.60) consists of two coupled linear differential
equations. For a uniform solution where u and v are independent of x,

the solution must either be a growing exponential or a decaying exponential.
The two possibilities correspond to an unstable or stable uniform solution
of the original equations. We can also consider nonuniform solutions by us-
ing the trial solutions:

u(x;t) = u0e
t sin( x + )

v(x;t) = v0e
t sin( x + )

(7.2.61)

A one-dimensional spatial variation has been assumed,since there is no y de-
pendence. Substitute and find possible values of . Plot the real part of as
a function of for the parameter values used in the simulations above. When
the real part of is positive,the uniform solution is unstable; when the real
part is negative, the uniform solution is stable.

Solution 7.2.11 Substituting Eq. (7.2.61) into Eq. (7.2.60) we have:

(7.2.62)

To determine the solutions, we must find eigenvectors and eigenvalues of the
matrix:

(7.2.63)

The eigenvalues, which are the possible values of can be obtained with
some algebra:

(7.2.64)
    

± =
1

2
(− 2(Da + Db) +k1 −k3)± (− 2(Da − Db )+ k1 +k3)2 − 8k1k3

 
 
 

 
 
 

    

−Da
2 +k1 k1

−2k3 −Db
2 − k3

 

 
  

 

 
  

      

u0 = − 2Dau0 +k1(u0 + v0) = (−Da
2 +k1)u0 +k1v0

v0 = − 2Dbv0 −k3(2u0 + v0) = −2k3u0 +(−Db
2 − k3)v0

          

du(x;t)

dt
= Da ∇2u(x ;t)+ f (1+ u(x;t),1mv(x ;t)) ≈ Da∇2u(x ;t) +k1(u(x;t)+ v(x;t))

dv(x ;t)

dt
= Db∇2

v(x ;t) m g(1 +u(x ;t),1m v(x;t)) ≈ Db∇2
v(x ;t) −k3(2u(x;t)+ v(x;t))
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We could find the solutions (values of u0 and v0).Our objective,however, is
only to consider the eigenvalues ±. Their real part determines whether the
solutions grow or decay. If they decay, then the uniform solution of the orig-
inal equations a = b = 1 is stable and no pattern will form. If one of the so-
lutions grows,then the system will form a pattern. Without analyzing these
eigenvalues in great detail, we can plot their values for the parameters used
in the simulations to form patterns as a function of 1/ , which is propor-
tional to the length scale of the perturbation. This is done in Fig. 7.2.17. We
see that the real part of + is positive for a range of values around unity but
is negative both at 1/ = 0 and 1/ = ∞. This means there is a limited range
of length scales at which the equations are unstable, and this range deter-
mines the size of the pattern that is formed. ❚

7.2.6 Cellular switches
The patterns of molecular density discussed in the previous two sections may describe
the behavior of patterns of pigment. More generally, in developmental biology it is
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Figure 7.2.17 Plots of the real part of the eigenvalue + as a function of 1/ as obtained in
Question 7.2.8. The real part of – is always negative for the parameters chosen. The plots
are for parameter values: Da = 0.5, Db = 20, and k1 = 1. The value of k3 = 1,2,4,8 is indicated
on each curve. We see that the range of length scales over which the uniform solution is un-
stable decreases with increasing k3 and eventually vanishes, causing the uniform solution to
become stable at k3 = 8. This is consistent with the simulations for k3 = 1,2,4 shown in
Figs. 7.2.14 and 7.2.15. The uniform solution (not shown in Figs. 7.2.14 and 7.2.15) was in-
deed found to be the result of simulations at k3 = 8. ❚
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necessary to use such patterns to activate certain cells to perform specific functions,
change shape or initiate another stage of pattern formation. For any of these to occur,
a chemical process inside a cell must be initiated. The chemical process should persist
independent of the original pattern of molecular density. Then the pattern itself need
not persist as the system further develops. This requires a one-way chemical switch
that can then activate additional cellular functions.

In order to realize the behavior of a one-way switch, what is needed is a chemical
system that has two stable states and can be switched from one to the other by a pre-
specified concentration of the patterned molecule. The prespecified concentration is
genetically encoded to achieve the desired control. We require a new reaction equa-
tion that depends on the concentration a of the patterned substance A and controls
the concentration c of a substance C :

(7.2.65)

h(a,c) must have the property that as a function of c it can have at least two solutions
c−1 and c1 (in a moment we will see that it must have three) of

h(a,c) = 0 (7.2.66)

which are the steady-state conditions in which c does not change. These solutions are
functions of a, and can be assumed to vary smoothly with a. However, above a speci-
fiable density of a, one of the two solutions,say c−1, disappears. This causes the den-
sity of C to switch to c1.

We can analyze the properties o f h(a,c) that are necessary and suggest specific
forms it might take. In order for c−1 and c1 to be stable solutions of Eq. (7.2.66), the
derivative of h(a,c) must be negative at these values:

(7.2.67)

This means that a small positive increment results in a negative dc/dt (see Eq.(7.2.65))
while a small negative increment leads to a positive dc/dt. In either case c = c±1 is
restored.

The burden of creating a switch is on the density c, so we represent simply the ef-
fect of A on C as direct production (A→C), or catalysis of production (A→A+C)
leading to the form:

(7.2.68)

We can now design h̃(c) with the desired properties and consider how it can be gen-
erated using chemical reactions. For simplicity, we set h̃(c) to have its first steady state
at c−1 = 0 so that there is no constant term in h̃(c). Since it must have a negative de-
rivative at c−1 = 0 we have h̃(c) = −k2c +. . . where the ellipsis represents higher-order
terms.

In order to have two solutions of Eq.(7.2.66) with negative derivatives, h̃(c) must
have a form like that illustrated in Fig. 7.2.18(a). In particular, there must also be a

    h(a,c) = k1a + ˜ h (c)

    

dh(a,c)

dc
c ±1

< 0

    

dc(t)

dt
= h(a,c)

674 L i f e  I I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 674
Title: Dynamics Complex Systems Short / Normal / Long

07adBARYAM_29412  3/10/02 10:46 AM  Page 674



D i f f e re n ti a t i on :  Pa tt e rn s  i n  an i ma l  c o l o rs 675

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 675
Title: Dynamics Complex Systems Short / Normal / Long

h̃ (c) = −0.8c + 2c2 − c3
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c

c

Figure 7.2.18 (a) Plots of two possible forms h̃(c). This function describes the rate of change
of the density c used to create a chemical switch. There are two stable solutions (low and
high density) and one unstable solution of h̃(c) = 0. (b) When a is added to the system the
curve is displaced upward, as shown by the dashed lines. For a high enough value of a only
the high density solution is left. If we start with the low-density solution and raise the den-
sity of a the density of c will rise gradually and then switch to the high-density value. When
a is lowered back down, c stays at the high-density solution. This sequence describes turn-
ing the switch ON. ❚
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third solution of Eq. (7.2.66) with a positive derivative. This can be achieved using a
polynomial of the form:

(7.2.69)

For the last term, we can use any power of c that is greater than 2.Writing down reac-
tions that in principle would lead to this form is not difficult. However, they may ap-
pear overly contrived.

Another way to satisfy the conditions is to make use of a system that has the
structure:

(7.2.70)

The third term has the interpretation that it consists of a molecule produced in a sig-
moidal fashion—it increases quadratically by autocatalysis and then saturates at a
maximum value. In both Eq. (7.2.69) and Eq. (7.2.70) the second term represents a
process of molecular decay. Fig. 7.2.18(b) shows the switching action when there is a
change in the concentration of a.

7.2.7 Pigment cell diffusion
The study of the formation of patterns in Sections 7.2.2 and 7.2.5 considered systems
where the initial conditions provided pigment placed at random throughout the
space. The dynamics then caused these pigment molecules to bunch together to form
the pattern. Experiment suggests,however, that vertebrates create pigment patterns by
the migration of pigment-producing cells (melanophores). Early in fetal develop-
ment, the melanophores are formed on the line that eventually becomes the spinal
cord and from there migrate across the surface and aggregate into a pattern that be-
comes the pigment pattern. The number of these pigment-producing cells need not
be conserved during this process,however, they must arise in most regions by migra-
tion, rather than by initial seeding or by spontaneously being produced by other cells.

Thus, we must consider a model where the initial conditions place pigment only
in a limited part of the space,and from there the pigment diffuses through the space
to form the pattern. We consider this process in the context of the reaction-diffusion
systems described in Section 7.2.5. The slow diffusing species is the melanophore,
while the fast species is assumed to be a molecule (Question 7.2.9). In both the acti-
vator-inhibitor and activator-substrate systems, the slow-diffusers (A) are not spon-
taneously generated—some of A is required in order to make more of A—consistent
with the properties of melanophore reproduction. However, both of the models must
be modified to allow the initial conditions to consist of only a single initial band of A
and B (Fig. 7.2.19 (top)).

For the activator-inhibitor set of equations, the problem with the initial condi-
tions arises in regions where b is zero. The first term in Eq.(7.2.45) diverges. This oc-
curs not just because of the initial conditions but also because B is generated by the

    

h(a,c) = k1a − k2c +
k3c2

1 +k4c 2

    h(a,c) = k1a − k2c +k3c
2 −k 4c

3
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presence of A, which is limited in space by our assumptions. Thus, as discussed in
Question 7.2.5 (Eq. 7.2.38), we introduce an additional constant k6:

(7.2.71)

The results of simulations are not very sensitive to the value of k6, which was chosen
to be 0.1.

For the activator-substrate equations (Eq.(7.2.45)),the problem arises from the
uncontrolled growth of B in the regions where A has not yet reached. This eventually
causes the simulation to break down as the gradients in B become too large to be in-
tegrated using the parameters chosen. It makes sense to limit the spontaneous gener-
ation of B using an additional parameter k6 in the following way:

(7.2.72)

A quadratic term rather than a linear term was used so that the first-order expansion
of the function would not be affected. The first-order terms, as discussed in
Questions 7.2.7 and 7.2.8, play an essential role in the existence of patterns, while the
higher-order terms are less crucial. A value of k6 = 0.1 was found to be reasonable and
was used for the simulations. It limits the growth of b to no more than √10.

The simulations of these two systems are quite distinct. Simulations of the
activator-inhibitor system are shown in Figs. 7.2.19 and 7.2.20. For certain values of
the parameters, the pigment does not expand out of the region in which it started.
This can be understood when we think about how this system functions. The pigment
cells A produce the fast diffuser B which inhibits the formation of A. Since the high-
est concentration of B is in the immediate vicinity of high concentrations of A, it be-
comes difficult if not impossible for A to move into additional areas.For other values
of the parameters,the initial line of pigment is unstable to bending, and the pigment
expands to fill the space in spots or stripes, or combinations of spots and stripes. An
example is shown in Fig. 7.2.20.

In contrast, pigment in the activator-substrate system (Figs. 7.2.21 and 7.2.22)
generally expands to fill the space. This occurs because the fast diffuser B, which en-
ables A to increase in concentration,is readily available in regions away from regions
of high concentration of A. The melanophores A diffuse outward and increase in
numbers due to the availability of B. It is helpful to recall that inhibition in the growth
of A arises only when regions of high density of A surround a region of low density.
In the central region, A cannot grow because the density of B is maintained at a low
level due to reaction with the surrounding A.

One of the patterns that appears in these simulations are stripes that run parallel
to each other. In the activator-inhibitor model (Fig. 7.2.20),they form by extension of
each stripe and they are essentially perpendicular to the originating line (spine). In
contrast, the stripes in the activator-substrate system (Fig. 7.2.22) are formed

    

f (a,b) = k1a
2b /(1+ k5a

2 ) − k2a

g(a,b) = k3(1− k6b
2 ) − k4a

2b /(1+ k5a
2 )

    

f (a ,b ) = k1a
2 /(b + k6 )(1+ k5a

2 ) − k2a

g(a ,b ) = k3a
2 − k4b
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sequentially and are parallel to the originating line. Depending on the parameters,the
whole space may become stripes, or stripes may give way to spots.

Many animals have stripes that are better described by these results than by the
patterns formed from random initial conditions of Sections 7.2.2 and 7.2.5. Some
have stripes that run head to tail. These are more easily accounted for by the activator-
substrate model. In particular, patterns with two stripes along the spine and dots be-
low are found (e.g., genets) similar to Fig. 7.2.22. In other animals, such as the zebra,
stripes run perpendicular to the spine. This could be generated by a version of the
activator-inhibitor model where the stripes originate along the spine. Alternatively, if
the pigment cells only originate at the skull,the activator-substrate model might form
the stripes sequentially. We can identify which model is reasonable from the pattern
by noting whether the stripes are continuous across the spine. In the activator-
substrate model the stripes would be continuous across the spine, while in the
activator-inhibitor model the stripes would be broken at the spine.

Developmental Tool Kit

In this chapter we have focused on the modeling of pattern formation as a funda-
mental aspect of developmental biology. In this section we briefly describe other
processes that are important or essential for the process of development. The ability
to cause these processes to occur provides a tool kit for the formation of organisms
with functioning interdependent organs and physical structures designed for partic-
ular tasks.

The formation of physical structures including organs,limbs and tissues involves
various processes that occur both inside and between cells that change the number,
shape and location of cells. Growth in absolute size of the system occurs by cellular
replication (growth and division). Once cells have differentiated in function due to
patterning, diffusion or directed motion of cells in chemical gradients plays an im-
portant role in the relative location of cell types. Programmed cell death also plays a
role in the formation of structures. Changes in external and internal structure of the
organism also arise from changes in the structure of individual cells, particularly the
cell membrane.Oriented adhesion of cells also results from cell membrane behavior.
These processes involve changes at the molecular level in the cellular membrane and
cytoplasm. They are developmental processes within the cell that contribute to the de-
velopment of the whole organism. Among the physiological structures that are
formed are spheroids, balls, membranes, tubes and branching systems. In some areas
intercellular spaces also become filled with various excretions of cells to form support
structures for the cells and the whole organism.

For the study of patterns in growth, the formation of treelike branching struc-
tures (Section 1.10.2) is particularly interesting. In plants, these include external
structures—branches and roots. Internal branching structures occur in plants (veins
in leaves) and animals (veins, nerves, air passages in lungs, and duct systems in cer-
tain organs). Most of these are multicell systems that may be formed by elongation of
tubelike structures through cellular division and growth,then a periodic or occasional

7.3
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(a)

(b)

(c)

Figure 7.2.19 The reaction diffusion activator-inhibitor system simulated starting from ini-
tial conditions of a single linear strip of A (left frame) and B (right frame). (a) illustrates the
initial conditions which are similar to that used in Fig. 7.2.13–7.2.16 but are restricted to a
linear strip as shown. (b) shows the steady-state result of a simulation with parameter val-
ues k1 = k2 = 1, k3 = k4 = 1, k5 = 0, and k6 = 0.1. (c) shows a simulation with the same para-
meters except k5 = 0.1. For the parameter values of both (b) and (c) the pigment remains con-
fined to its initial line. ❚
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Figure 7.2.20 Frames of a simulation of the activator-inhibitor system with parameter val-
ues k1 = k2 = 1, k3 = k4 = 2, k5 = 0.3, and k6 = 0.1. The results are unlike the simulations
shown in Fig. 7.2.19, for the same system but using different parameter values. In this case
the initial line becomes unstable and the pattern of pigment expands to fill the space. Note
that the lines of pigment are extended at their ends into the empty space. They are largely
perpendicular to the line found in the initial conditions. Note also the long simulation time.
The activator-substrate model has different behavior, as shown in Figs. 7.2.21 and 7.2.22. ❚
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Figure 7.2.20 (continued)
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Figure 7.2.21 Frames of a simulation of the activator-substrate system with parameter val-
ues k1 = k2 = 1, k3 = k4 = 2, k5 = 0, and k6 = 0.1. The pigment expands to fill the space with
spots using a process of spot splitting and diffusion. Compare Fig. 7.2.19 for the activator-
inhibitor system. This model may also be relevant to evolution and trait divergence as dis-
cussed in Section 7.6. ❚
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Figure 7.2.21 (continued)
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Figure 7.2.22 Similar to Fig. 7.2.21 except for the parameter k5 = 0.2. We see that spots are
formed when the original stripe diffuses outward. Then new stripes form parallel to the ini-
tial stripe of pigment by merging of the spots. For these parameter values, the spots continue
to form into lines until the lines fill the whole space (not shown). All lines formed run par-
allel to the initial line of pigment. Compare Fig. 7.2.20 for the activator-inhibitor system. ❚
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Figure 7.2.22 (continued)
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initiation of branching. Some networks, such as the plant leaf veins, may also be
formed by direct chemical patterning similar to the patterns shown in section 7.2.
Branching nerve cells discussed in Chapter 2 are an example of individual cells that
branch using molecular changes. Cell elongation and branching must be controlled
through the addition of molecules to the cell membrane. Both multicellular and sin-
gle-cell branching structures also, in general, must include a form of target tracking
that imposes some overall systematic behavior on the branching system. This target
tracking may cause the network to fill space more or less uniformly so that all regions
are served (veins or ducts). Alternatively, a directional bias to growth may be impor-
tant, such as provided by sunlight on tree branches, or chemical gradients causing a
bias in growth direction that results in interconnection of organs inside an animal.

The mathematical modeling of branching structures would seem to be natural,
since it is only necessary to specify an algorithm by which the branching occurs.
However, there is a conceptual difficulty in representing such systems, because we
generally think about the storage of information about a system in terms of storage
locations that are themselves given by a linear string—a nonbranching data structure.
When a branching st ructure grows, cells replicate at many sites, forming new cells
whose existence and state must be specified. A better approach for describing tree
structures,known as L-systems,has been developed by Lindenmayer based upon con-
cepts originating in treelike hierarchies in linguistics. This approach uses a character
string representation, but there are delimiters that indicate branching. Moreover, the
dynamics allows the insertion of multiple characters at any site. These dynamics are
specified by operators that act upon all the characters in a string. Each character can
be considered as representing the state of a particular cell. We will illustrate this using
a very simple example of a tree-generating algorithm.

We assume there are three states of a cell indicated by A, B and C. The update al-
gorithm is specified by state transitions of cells that include the possibility of replica-
tion to two cells. Branchings are indicated by delimiters (brackets). A simple state
transition table is:

(7.3.1)

The first few updates of a string are as follows:

(7.3.2)

This il lustrates the representation of a tree with binary branches. The nongrowing
part of the tree are cells in the state A. Cells in the state B replicate to extend the length
of their branch, and cells in state C replicate to form two new branches. By further

    

[B]

[AC]

[A[B][B]]

[A[AC][AC]]

[A[A[B][B]][A[B][B]]]

    

A → A

B → AC

C →[B][B]
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elaborating such an algorithm,it is possible to specify geometric information that can
fully describe a treelike structure. Various natural structures have been modeled in
this way.

The formation of limbs through budding (including arms,legs,tail,head and fin-
gers) may appear to be similar in many ways to the formation of branching structures.
It may also be related to the formation of pigment patterns that specify the location
of limbs to be formed. However, there is an essential difference between limb forma-
tion in animals and the other types of patterns. Both color patterns and branching
structures can be treated primarily as a statistical process that allows significant vari-
ation between specific realizations. However, limb budding must be a reproducible
process with definite outcome so that the number and type of limbs is consistent and
directly controlled by the developmental process. Small-scale patterns involving only
a few limbs would be much more reproducible and controllable than the large num-
ber of spots in patterns discussed in Section 7.2. The precise form of small-scale pat-
terns is controlled by the boundary conditions that are imposed through the size (or
number of cells) of the organism or the internal system in which the pattern is being
formed.Our discussion in Chapter 2 of the 7±2 rule may be relevant here as well, sug-
gesting a limit to the number of limbs that can be created reliably through such
patterns.

Strictly repeating patterns such as faceted eyes of certain insects are another class
of patterns that are different from those discussed in Section 7.2.Such patterns can be
formed by sequential addition of elements. It is less reasonable to use a chemical pat-
terning as a template to achieve strictly periodic order extending over a large number
of elements. The main difference between periodic patterns and limb budding is not
that there are few or many, but that in limb budding there are differences between the
limbs that are important and the total number is well defined, while in a periodic
structure all of the components are essentially the same and a few less or more doesn’t
really matter.

There are several other processes in addition to pattern formation and physical
changes in cells that are important. These processes control the timing or order of de-
velopmental stages. We have already discussed in Section 7.2.6 the operation of one-
way chemical switches that can serve to couple different processes. The presence of
one chemical density above a threshold causes a second chemical to be produced. The
second chemical continues to be produced even when the first is removed. Irreversible
processes like chemical switches are an important component of timing mechanisms
that count regularly spaced events. Timing mechanisms may be used for processes
within a cell, including setting the time between cell divisions. Timing mechanisms
are also necessary across several cell divisions. For this purpose, one way to monitor
time is to count the number of cell divisions. This would require a sequential process
(such as chemical switches) that can serve as a counter. It is believed that a certain
number of bases at one end of DNA chains do not replicate in normal cell division
(telomere shortening). The bases may be added later; alternatively, the progressive
shortening of the chain may serve as a counter of cell divisions to control develop-
ment and aging.
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Our discussion of cellular processes in developmental biology is far from com-
prehensive,though a few of the important processes have been mentioned.A further
level of detail could be added to the internal cellular processes. This level would in-
clude: the transmission of signals through membranes via cellular receptors, the
transfer of such signals from the cellular membrane to the cell nucleus, the coupling
of chemical processes to the activity of gene expression,the production of various en-
zymes,and the transmission of signals from their production sites out of the cell and
into the intercellular fluid. Discussions of these processes are relevant to considering
the cell as a complex system in its own right.

Theory, Mathematical Modeling and Biology

We have used various techniques to model pattern formation in biological systems.
The primary tools were simulations of CA and differential equations. There is a need
to develop some perspective on the utility of mathematical models for the study of bi-
ological systems. Biology is largely a phenomenological science.It is dominated by the
experimental study of systems,their description and classification. This is to be con-
trasted with the physical sciences, where theory and mathematical modeling play a
more integral role.At least for some biologists,the use of mathematical models misses
the essence of the study of biological systems. Aside from the usual political/socio-
logical issues that can affect such perspectives, there is validity to the concern that
mathematical modeling may not capture the processes that are important in biologi-
cal systems. It is important, therefore, to understand more systematically the objec-
tives of theory in general and mathematical modeling in particular.

The role of theory in science rests on three legs—description, explanation and
prediction. Description implies that a theory has the ability to describe the existing
observations and phenomena. Explanation implies that the theory has a compara-
tively simple set of concepts and relationships that capture the system behavior more
concisely than the phenomena that are described. This is tied to the notion of sim-
plicity of scientific theory and Occam’s razor, which requires a theory to be as simple
as possible. Prediction is linked to the ability to describe existing phenomena but de-
mands that clear and testable predictions be possible. In particular, a theory is con-
sidered poor if it cannot be falsified by direct experimental test. In essence the theory
must distinguish between possible outcomes of an experiment whose implications
would not otherwise be known. In a certain sense, the more unanticipated (surpris-
ing) are its predictions, the more useful is the theory.

From the point of view of experimentalists interested in further elucidating the
phenomena of biological systems,the most important role of theory is the suggestion
and prediction of the results of experiments. Indeed, every experiment that is per-
formed is based upon some concept of what phenomena are important to measure,
and therefore reflects a conceptual theoretical framework in which the experiment is
performed. In biology, much of this theoretical framework is not based upon quanti-
tative theory. As a consequence,there has been little expectation that significant quan-
titative predictions are possible. Recent efforts have demonstrated that constructive
and predictive theories are possible, and the role of theory in biology is expanding.

7.4
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In order to clarify the role of theory further, it is important to distinguish it from
that of experiment. Experiment has a responsibility to uncover truths in the mea-
surement of actual systems. Theorists are often assumed to have the role of proving
truths through inference. However, their actual role is to propose assumptions—the
theory itself—and correctly derive from these assumptions various predictions.Only
when experiment tests the predictions can the assumptions themselves be tested and
truth be determined. Because of the different objectives of theory and experiment,it
is not appropriate to evaluate the contribution of theory by the goals of experiment.
This is just as true about the evaluation of experiment by its contribution to the goals
of theory. For example, in most cases experiment does not provide a general under-
standing, only an understanding of specific phenomena.

Increasingly, two additional roles of theory have arisen that cause more confu-
sion about its ultimate responsibility. The first of these is the appearance of ab-initio
calculations of system properties. This approach is most often applied to the study of
solid or molecular systems. These studies extend the traditional objective of provid-
ing theoretical predictions for experimental results.However, the assumption in these
studies is that the underlying theory has been so fully tested that the result of a proper
calculation is as correct as an experiment that is performed on the same system. The
challenge for the theorist is to ensure that the calculation is correct, if this is satisfied
then the results are assumed valid. In this way it is like an experiment. The concept of
ab-initio calculations has limitations in that there are no calculations that have per-
fect accuracy, and their implementation always requires assumptions about the rela-
tionship of the computer model with actual systems. Such limitations also apply to
laboratory experiments and the relationship of the experimental condition to other
circumstances. The objective of developing ab-initio methodologies is a positive one.
However, it should not be confused with the more traditional objective of proposing
fundamental simplifications and their experimental consequences.

The second ad d i ti onal role of t h eory is the mathem a tical modeling of ex peri m en t a l
ph en om en a . This is known as ph en om en o l ogical theory and repre s ents a sign i f i c a n t
p a rt of t h eoretical work in bi o l ogy as well as in the physical scien ce s . Mu ch of this ch a p-
ter is roo ted in ph en om en o l ogical theory. While su ch theory is gen era lly strong on de-
s c ri pti on , it is weak on ex p l a n a ti on and pred i cti on . The re a s on for these difficulties is
that a particular ob s erva ti on may be de s c ri bed by many disti n ct ph en om en o l ogi c a l
t h eori e s . Thus we have seen that co l or patterns can be obt a i n ed from several differen t
s ets of d i f feren tial equ a ti ons and from CA. The gen eral term for this fe a tu re of m od-
eling is univers a l i ty. The con cept of u n ivers a l i ty implies that in many sys tems on ly a
few aspects of the properties of a sys tem are important in determining its ch a racteri s-
tic (simple) beh avi or. The re a s on for this should be app a ren t : a simple beh avi or ari s-
ing from a com p l ex sys tem cannot depend on all of the properties of the com p l ex sys-
tem . If it did, it would in tu rn be com p l ex . Thus on ly a few fe a tu res of the underlyi n g
s ys tem must be rel eva n t , and many models should give rise to the same beh avi or.

A phenomenological model can be expanded to a more complete theoretical ef-
fort in order to provide additional information.One possible approach is to study di-
rectly the universality of the models. This means that we develop an understanding of
the essential properties of models that can give rise to a particular phenomenology.
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This approach takes us beyond the particular model and toward a general framework
(theory) that provides a more systematic understanding of the origins of a phenom-
enon.One step in this direction is the articulation in this chapter of the principles of
(a) activation and inhibition, and (b) fast and slow diffusers. Another is the analytic
expansion of the differential equations in Questions 7.2.10 and 7.2.11. More formal
approaches to universality are also possible (see Section 1.10.5).

A second possible approach is to discuss distinctions between different phenom-
enological models in order to provide contrasting predictions that can then be tested
by experiment. This enables the phenomenological model to become more predictive
and suggest experiments that can increase our understanding of the underlying
causes of a phenomenon. The underlying causes themselves may not be readily ac-
cessible to experiment. For example, the discussion of diffusing melanophores and
the difference between the activator-inhibitor and activator-substrate models in
Section 7.2.7 provides a mechanism for distinguishing between the two models of
pattern formation without direct knowledge of the actual processes involved. Without
such a discussion there would be no way to tell which of the models applied for a par-
ticular animal except to study the molecular processes, and little would be gained
from the theory. In general,the more independent tests are performed on a phenom-
enological model (or theory),the more it can be relied upon to describe new circum-
stances.

Most important for the consideration of the success or failure of theoretical mod-
eling in biology is the recognition that complex phenomena require, by their nature,
a complex model to generate them. This means that we cannot expect simple models
to generate truly complex behavior. Thus, a basic skepticism about the ability of the-
ory to describe biological phenomena can be justified. What is missing, however, is an
ability to know, a priori, what are truly complex phenomena and what properties of
complex organisms can be attributed to simple universal behaviors. Through a num-
ber of examples in this text, various approaches to the description of aspects and at-
tributes of complex systems have been illustrated using relatively simple concepts and
models. This is ultimately an important objective of the field of complex systems.

We conclude this section with a discussion of the relative utility of the CA,
reaction-diffusion and other models of pattern formation as an illustration of the use
of simulations in the study of biological systems. There are various biases regarding
the use of particular forms of equations and this discussion is designed to illustrate
that the form to be used should be dictated by the nature of the question that is to be
addressed. We have seen that the CA models introduced in Section 7.2.2 were conve-
nient for developing a basic understanding of activation and inhibition as a simplest
model of pattern formation. The differential equation models in Section 7.2.5 pro-
vided a more microscopic view of these same processes in the sense that they mod-
eled the chemical processes that might underlie the activation and inhibition. It would
be important to recognize,however, that the particular differential equations used are
not necessarily indicative of the actual processes in a biological system. They are thus
only particular realizations of systems that embody the activation and inhibition phe-
nomenon. These equations show us that reaction-diffusion systems can form pat-
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terns. To achieve a yet more microscopic view of the processes, we might turn to an-
other type of CA—the lattice gas—that would describe the diffusive motion of mol-
ecules directly rather than using the average density of the molecules as its essential
variable. To be even more microscopic, we could use a particle model that includes
Newtonian mechanics. This would require modeling the medium in which the parti-
cles are located. These examples are designed to suggest that there should be no in-
herent bias toward one approach. The bias is generated by the nature of the questions
and answers that are desired.

Principles of Self-Organization as Organization
by Design

In previous sections we discussed the dynamics of systems that achieve a complex
structure through the interaction of their components. The context is our effort to un-
derstand developmental processes that are involved in the reproduction of multicel-
lular biological organisms. There are, however, other processes that can result in re-
production. When a cell reproduces, it recreates itself by direct duplication. Each of
the components is duplicated or simply divided in two parts and they are grouped to
form two daughter cells. Does direct duplication play a role in the reproduction of
multicellular organisms? Many plants can reproduce by growing new plants directly
from a mature plant. Despite the connection to the parent plant, and its provision of
nourishment, this is not duplication. Instead, differentiation and pattern formation
occur in the creation of roots, stem and leaves. The other mode of reproduction,
through a seed,is essentially independent of the parent plant. Thus the entire process
is developmental. In animals,the interaction between parents and offspring is also sec-
ondary to the inherent developmental process. Fertilized eggs may be warmed by birds
and the young may be fed and trained. Mammals have a more direct relationship, ini-
tially through a controlled uterine environment,then through nurture. Nevertheless,
the specification of the process of physiological development is understood to be
largely self-contained in the initial cell. It would be remarkable if it were found that
some structures are transmitted directly from mother to fetus in-utero by migration
of differentiated cells. However, the basic developmental phenomenology appears in-
dependent. The question that arises is,Why do biological multicellular organisms re-
produce using a process of development? What benefit is there in this process?

In order to understand why a developmental process is desirable we should con-
sider the general task of creating a complex system,and specifically the problems with
duplication. The first aspect of duplication that we might consider is rooted in the dif-
ference between individual cells and multicellular organisms—the existence of more
levels of structure. In order to duplicate a multicellular system, we would duplicate
each cell and then we would have to disentangle the two resulting organisms. This
problem is linked to the spatial structure of the organism. An essentially two-
dimensional organism in three dimensions would not have this problem. Individual
cells are able to overcome this problem when organelles in the cell are replicated and
separated, though this is a complex process. By lining up DNA strands along a single 
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two-dimensional plane, this part of the system is reduced to two dimensions. We
might consider whether there are ways to do this for multicellular organisms. Instead,
we will look for other reasons for a developmental process that are also fundamental.

Another mechanism for duplicating a system would involve a process that is
more akin to our manufacturing processes, where many copies of a system are pro-
duced. Note that for many multicellular organisms there actually is mass production
of offspring, so that this is not an unreasonable model. Starting from a prototype or
a description (representation) of the whole system, we create a process that produces
and then places each of the components in its proper location. There are various
problems with this for an interdependent complex system.One of these is that the sys-
tem must be maintained in partial form. Sustaining the various components sepa-
rately creates an additional burden on the manufacturing process. This problem ex-
ists in actual manufacturing, since structures that become self-supporting must be
maintained during construction. Extrinsic supportive structures (scaffolding) may be
necessary during construction that are later removed. For a very complex interde-
pendent system such scaffolding would be much more difficult to design. Even for a
developmental process, the problem exists. It is manifest in the support systems in a
reptile or bird egg, and in a mammalian uterus. However, the internal organs are still
largely maintained by self-consistent systems that develop into the mature systems of
the multicellular organism.

While the two problems discussed in the previous paragraphs are important,
there is another way to understand the reason for a developmental process, which will
be particularly relevant for our understanding of the design of complex systems. It re-
lates not to the structure itself but to the problem of specifying the structure. Any de-
sign process implicitly assumes that a description of the system exists before the sys-
tem itself does. This description, generically called a blueprint, is in many ways like a
model of the system.We can better appreciate how science and engineering are related
when we recognize that the relationship between system and description plays an im-
portant though different role in both. Ultimately, it is the interplay between system
and description that science is investigating. A key difference between science and en-
gineering is that science can advance by using partial descriptions, while for engi-
neering a useful description must be sufficiently complete.Our concern here is to un-
derstand the relevance of representation to developmental biology. In particular,
What is the advantage of a representation that describes the developmental process of
formation rather than the final system itself? This reformulation of our question sug-
gests an answer: the developmental process can be more concisely described.

We can understand this answer when we think about the existence of various re-
lationships between different parts of a complex system as well as the different activ-
ities of the parts. If we take advantage of these relationships, we can reduce the
amount of information necessary to describe the whole system. More correctly, we use
the relationship when we create the program of development that constructs the sys-
tem. The program of development allows us to have less duplication of information.
If the same basic structure is relevant to several components, we have them undergo
the same developmental processes and then modify them later to accommodate dif-
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ferences. Even after two components are different, the same developmental process
may be used to achieve incremental modifications that are common to the two parts.
The process that we are describing is the creation of an algorithm from which the sys-
tem is to arise. The reason it is useful is because the explicit blueprint is inherently
compressible. The algorithm appears to contain fewer pieces of information than the
final form, even though they both ultimately contain the same information. We will
enter further into a discussion of system representation and information theory in
Chapter 8 (See also Section 1.8 and 1.9). The ideas articulated here are parallel to the
idea of algorithmic complexity, where the notion of reducing the length of a descrip-
tion to its smallest possible representation (compressing a character string) is investi-
gated. Here we are considering the applications of these ideas to design.

When we consider developmental biology in this context, we must expand our
understanding of compression from the usual notion that allows only deterministic
compression algorithms. Randomness or noise is available from molecular motion in
biological systems. Information that is essentially arbitrary can be provided from this
randomness. An example may be found in the pattern formation discussed in this
chapter. To describe the patterns formed in all of their detail would require many pieces
of information. However, for the animal skins, the specific details of the pattern are
not essential—we can vary them and still have patterns with the same properties. As
long as we are interested in the generic properties, such as size and overall shape of
dots,then the details can be provided by randomness. In the simulations, this is pro-
vided either by the initial conditions or in the update process when there is a random
selection of cells to update. To think about this more clearly we must recognize that
the eventual state of the system is selected from an ensemble which results from the
influence of randomness. As long as we are interested in properties that are generic in
the ensemble,this is satisfactory. However, if we want to select a particular feature that
is rare in the ensemble then we must specify it a priori as part of the design.

There is another source of information that may be used in the process of form-
ing the system. This is the existence of specific well-defined influences of the envi-
ronment. The environmental influences are in addition to the support structures and
nutrition provided in the seed, egg or uterine development environment. We can il-
lustrate this by another example.As mentioned in Chapter 3,the development of ba-
sic neural connections in the visual system of mammals is influenced by stimulation
by light. This is not really a form of adaptation to the environment, it is instead the
use of specific external stimuli as part of the developmental process. The algorithm is
taking advantage of persistent information about the external environment—the ex-
istence of light.

We thus find that the process of development is convenient because it allows the
system design to be more concisely represented. This answer is not complete.We must
still explain why it is advantageous to have a more concise description of the complex
system. The advantages of a concise design become particularly meaningful when the
design is to be modified. Modifications should preserve many of the essential rela-
tionships encoded in the description. This reduces the possibility of design errors. In
a complex system, a major source of errors is inconsistencies in the design. By
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definition, an inconsistency reflects the violation of a constraint or relationship that
is necessary in the final system. If the design automatically incorporates the required
relationship in its compressed form, then the inconsistency cannot arise. More di-
rectly, if the description is shorter, there are fewer places errors can be made—the
space of possible systems is reduced. This advantage is readily apparent when we con-
sider the range of sizes and structures of mammals that contain similar internal or-
gans with mutually consistent function and interconnections. It is also apparent when
we consider the variety of cars that are produced and realize that systematic (algo-
rithmic) relationships exist in the structure and placement of different components.
A drawn blueprint cannot describe the interrelationships of engine size to car mass.
Instead,the burden of applying such relationship is typically placed on human beings
who know them as design rules.A developmental approach would incorporate these
rules in an algorithm that could be modified to produce cars with various features and
sizes. If the algorithmic description is sufficiently concise,then even random changes
will still lead to viable designs. The importance of modification of design in biology
is apparent in our discussions in Chapter 6 about sexual reproduction and the im-
portance of random variation in evolution.

There are also disadvantages of a concise design.One arises when the design must
be precisely duplicated. Without any redundancy in the information, copying errors
may be introduced. We can see that the advantages of a developmental approach are
most important when a design is to be modified frequently, and less so when it is to
be duplicated many times without modification.Still,the problem of duplication can
be largely overcome. This is done through compression with a limited number of re-
dundancies that enable error detection.

Without further elaboration of these matters we can recognize the central issues
that have been raised.The connections that we want to make in this discussion are be-
tween the biological developmental process, the design of complex systems, and the
field of information and computation theory which is more commonly discussed in
the context of computer algorithms.

There are various ways in which interrelationships or algorithms are used in the
design of man-made products, whether these are physical entities such as cars and air-
planes or computer programs.One common methodology is the use of modular de-
sign. For example, in the construction of apartment buildings or housing develop-
ments,identical units need not be individually described. If modules differ, however,
they must generally be separately described. In order to execute the design, it is not
sufficient to describe only the modifications. In software design, compilers or inter-
preters translate from a more concise, higher-level language into a form suitable for
execution. We could also consider human elaboration of a design in a similar manner.
The various stages in design development elaborate a concise specification. The first
design might be an overall concept which is very concise. This concise description is
elaborated in a process that can involve many human beings. Such a process is a kind
of development when we include the human beings as part of the system. Thus we see
that there are various ways in which algorithmic relationships are incorporated into
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the design of man-made systems. However, it is apparent that the systematic use of al-
gorithms is not yet well developed.

How can we further incorporate the concept of self-organization or algorithmic
description in the design of man-made products? It is hard to imagine a develop-
mental process that could create houses. However, it is not hard to imagine a
computer-aided design system that can apply various modifications to a design and
automatically incorporate design rules. Computer aided design in general can be un-
derstood as a process of elaboration of concise descriptions. In its present form it is
not developmental in approach. Because the design description in a developmental
process is more concise,the application of these concepts to design is a strategy for re-
ducing the complexity of the design and engineering task. Our discussion of devel-
opmental biology suggests that it will become progressively important as the systems
that are being designed become more complex and are modified more frequently.

Pattern Formation and Evolution

In Chapter 6 we considered various models of evolution as an undirected process that
can give rise to complex systems. The essential concepts are the formation of diversity
and selection from this diversity. In this chapter we considered models for pattern for-
mation in developmental biology. The types of models we used are quite different.
Here we point out that the mathematical models of pattern formation may also be rel-
evant to the problem of evolution. Contact between these two problems arises from
the pattern of organism populations in genomic or phenomic space and in physical
space. The existence of a particular organism corresponds to a density n(s) in this
space. Species or trait groups correspond to patches of high density that are sur-
rounded by regions that do not contain organisms. We assume that the pattern of
populations is formed by evolution.

Evo luti on con s i dered as diffusion in gen omic space , i n cluding interacti on s , h a s
re s em bl a n ce to a re acti on - d i f f u s i on sys tem with some important mod i f i c a ti on s . We
con s i der first the ori gin of s h ort - ra n ge activa ti on and lon g - ra n ge inhibi ti on that may
h ave given rise to the pattern of s pots sep a ra ted by unocc u p i ed regi on s . This was al-
re ady discussed in Ch a pter 6; we su m m a ri ze here on ly a few poi n t s . Th ere are va ri o u s
m echanisms for activa ti on . The most direct is reprodu cti on . Va rious social beh avi ors
su ch as flocking are also mechanisms of s h ort - ra n ge activa ti on . Lon g - ra n ge inhibi ti on
must have a ra n ge that is ref l ected by the gaps bet ween spec i e s . An important cause of
i n h i bi ti on is the con su m pti on of re s o u rce s . Similar or ganisms typ i c a lly con sume sim-
ilar re s o u rce s . Thus the ex i s ten ce of an or ganism causes inhibi ti on of or ganisms over
a ra n ge of gen omes or ph en om e s . We can re a s on a bly assume that the ra n ge of or ga n-
isms that con sume similar re s o u rces is larger than the ra n ge of or ganisms that are en-
h a n ced by reprodu cti on . Th ere may also be even lon ger- ra n ge interacti on s , but these
we might inclu de in a mean field tre a tm ent for the pattern - forming model .

With this motivation, we consider evolution modeled by a reaction-diffusion sys-
tem with two components formed from the organism and its resource. The second set
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of reaction-diffusion equations (Eq.(7.2.45)) is a natural model where the substrate
b is the resource and the activator a is the organism. Organism diffusion is a conse-
quence of mutation if s represents genomic or phenomic space. It is physical migra-
tion if s represents physical space. Resource diffusion need not be taken literally—the
same effect (long-range inhibition) may be achieved due to organism behavior in
consuming resources of various related types, or at various physical locations in the
vicinity of its domicile.

For plant evolution we consider resources to be sun, water, nutrients and space.
For herbivore evolution we consider plants and space to be the primary resources. For
carnivore evolution we consider herbivores to be the primary resource. According to
Eq. (7.2.45), the resource g rows sp ontaneously but the organism reproduces when
consuming the resource. The quadratic dependence of reproduction on organism
population a in the terms k1a2b and k4a

2b is a nonlinear or cooperative effect in con-
sumption and reproduction. Sexual reproduction by itself only gives rise to a nonlin-
ear dependence if the probability of mate encounter is small. If the probability of en-
counter is not small then reproduction is linear, since organisms are often limited to
a certain number of offspring. The nonlinear dependence is suggestive of the cooper-
ativity of effective consumption (e.g., a wolf pack or a lion pride) and resulting re-
production. The other term k2a is the rate of organism death. From our studies of the
behavior of reaction-diffusion systems,there are various modifications of this system
that would still give rise to pattern formation, however, not all systems will result in
patterns, and the pattern character varies.

Th ere are two ad d i ti onal differen ces bet ween an evo luti on a ry model and the
p a t tern - forming model : f i rs t , the ex i s ten ce of a fitn e s s , or fitn e s s - rel a ted para m eters ,
that con trol the growth of pop u l a ti on at a particular gen om e , and secon d , the ex i s-
ten ce of a high er- d i m en s i onal space than the two - d i m en s i onal space that we con s i d-
ered for pattern s .To implem ent these mod i f i c a ti ons the equ a ti ons would take the form :

(7.6.1)

where we have just included the state dependence of all of the constants. They are all
genome or phenome and location dependent, because the resources appropriate for
a particular organism have their own dynamics, as do the organisms.

The essential behavior of this model without the species dependence of the pa-
rameters has already been simulated in the context of the pattern formation through
diffusion of pigment cells. The modeling of diffusion of the pigment from a line in
Section 7.2.7 is particularly relevant. We saw how patterns of spots can be formed that,
in a model of evolution, would be interpreted as species or trait groups. The species
closer to the starting line would correspond to simpler and more primitive organisms,
while those far away would correspond to more complex organisms formed at a later
stage of evolutionary history. We could readily imagine that such patterns will form
in higher-dimensional spaces and with various species-dependent parameters. The
degree to which variability of parameters would affect the relevance of such a model
is still to be studied.

    

f (a(s),b(s)) = k1(s)a(s)2b(s) −k2(s)a(s)

g(a(s),b(s)) = k3(s)− k4(s)a(s)2b(s)
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There are several advantages of a reaction-diffusion model for evolution that are
appealing when contrasted with the models used in the previous chapter.The reaction-
diffusion model gives insight into the reason that organisms continue to exist at dif-
ferent scales and at different stages of the evolutionary tree,including the coexistence
of simple and complex organisms.We find this in the pattern-forming model, because
the pattern continues to have populations in all regions of the space. The underlying
reason for this is that the model inherently assumes that there is a variety of resources
that are consumed by different organisms.A more complex organism that occurs later
in evolution does not consume the same resources that a simpler organism does. To
return to a mo del of the competition for a single resource, we would simply replace
the many variables b(s) with a single variable b. Or, more properly, we would expand
the range of inhibition (by increasing Db) to include the whole space. This would be
similar to the renewable-resource model with only one resource. In this case, we have
argued in Chapter 6 that only one type of organism would survive.

The model of a pattern-forming evolutionary process is also interesting in that
competition is no longer the primary reason for the creation of complex organisms.
Instead, the creation of complex organisms is due to the existence of resources that
cannot be consumed by simple organisms. We might call these complex resources.
Through mutation, organisms are formed that can consume the complex resources.
Competition for resources causes the pattern of species or trait groups, but is not re-
sponsible for the existence of complex organisms.

We can modify this model to incorporate competition more fully by considering
the space of resources and the space of organisms to be related in a more elaborate
manner. Specifically, that organisms that are far apart in genome or phenome might
consume the same resource. In order to know which organisms would be in compe-
tition, we consider the phenome space as projecting onto the resource space in a
many-to-one map. As evolution proceeded,there would come instances in which or-
ganisms at different phenome locations but the same resource location would coex-
ist, and the fitter organism would survive while the less fit would become extinct.
However, there would still be a variety of resources giving rise to a variety of organ-
isms at any stage of evolution.

In summar y, the phenomenological existence of diverse species suggests that a
reaction-diffusion model of pattern formation, with distinct resources for different
organisms,is more realistic than a model that assumes a single resource for all organ-
isms. The persistence of organisms over varied periods of evolutionary history and
particularly the continued existence of organisms that originally appeared at much
earlier stages of evolutionary history is suggestive of such a model. It is also consistent
with the wide variety of resources found in nature.

The notion that the pattern of species is analogous to a developmental process of
pattern formation also brings into focus the recognition that all life on earth is inter-
related and in some sense is a single complex system. Loosely, by analogy, we might
consider the collection of organisms on earth to be a collective organism similar to
the collection of cells in a particular organism. This is relevant to the study of ecosys-
tems and their behavior. We will address this from a more specific point of view in
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Chapter 9 when we discuss the possibility that the collection of human beings on
earth should be considered as a single complex system. This discussion will also have
consequences for our understanding of the relationship between evolution and d e-
velopmental biology. Before we do so we introduce and discuss in greater detail the
concept of complexity in order to better evaluate the complexity of the global system
of organisms on earth.Our focus, for various reasons, will be the global human civi-
lization, but extending this discussion to include other organisms on earth is natural.
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8
Human Civilization I:
Defining Complexity

Conceptual Outline

Our ultimate objective is to consider the relationship of a human being to
human civilization, where human civilization is considered as a complex system. We
use this problem to motivate our study of the definition of complexity.

The mathematical definition of the complexity of character strings follows
from information theory. This theory is generalized by algorithmic complexity to allow
all possible algorithms that can compress the strings. The complexity of a string is de-
fined as the length of the shortest binary input to a universal Turing machine, such
that the output is the string.

The use of mappings from strings onto system states allows us to apply the
concepts of algorithmic complexity to physical systems. However, the complexity of
describing a microstate of the system is not really what we mean by system com-
plexity. We define and study the complexity profile, which is the complexity of a sys-
tem observed with a certain precision in space and time.

We estimate the complexity of various systems, focusing on the complexity
of a human being. Our final estimate is based upon a combination of the length of de-
scriptions in human language, genetic information in DNA, and component counting.

Motivation

8.1.1 Human civilization as a complex system
The subject of this and the next chapter is human civilization—the collection of all
human beings on earth. Our long-term objective is to understand whether and how
we can treat human civilization as a complex system and,more particularly, as a com-
plex organism. In biology, collections of interacting biological organisms acting to-
gether are called superorganisms. At times, we will adopt this convention and refer to
civilization as the human superorganism. Much of what we discuss is in early stages
of development and is designed to promote further research.

8.1

❚ 8 . 4 ❚

❚ 8 . 3 ❚

❚ 8 . 2 ❚

❚ 8 . 1 ❚
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This subject is distinct from the others we have considered. The primary distinc-
tion is that we have only one example of human civilization. This is not true about the
systems we have discussed in earlier chapters, with the exception of evolution consid-
ered globally. The uniqueness of the human superorganism presents us with ques-
tions of fundamental interest in science, related to how much we can know about an
individual system. When there are many instances, we can use information provided
by various examples and the statistics of their properties. When there is only one sys-
tem, to understand its properties or predict its behavior we must apply fundamental
principles that are valid for all complex systems. Since the field of complex systems is
dedicated to uncovering such principles, the subject of the human superorganism
should be considered a premiere area for application of complex systems research.
Central questions are:How can we characterize this complex system? How can we de-
termine its properties? What can we tell about its dynamics—its past and future? We
note that as individuals we are elements of the human superorganism, thus our spa-
tial and temporal experience may very well be more limited than that appropriate for
analyzing the human superorganism.

The study of human civilization is guided by historical records and contempo-
rary news. In contrast to protein folding , neural networks, evolution and develop-
mental biology there are few reproducible laboratory experiments. Because of the ir-
reproducibility of historical or contemporary events,these sources of information are
properly not considered part of conventional science. While this can be a limitation,
it is also apparent that there is a large amount of information available.Our task is to
develop systematic methods for considering this kind of information that will enable
us to approach questions about the nature of human civilization as a complex system.
Various aspects of these problems have been studied by historians, anthropologists
and sociologists.

Why consider human civilization as a single complex system? The recently dis-
cussed concept of a global economy, and earlier the concept of a global village, sug-
gest that we should consider the collective economic behavior of human beings and
possibly the global social behavior as a single system. Considering civilization as a sin-
gle entity we are motivated to ask various questions about it. These questions relate to
all of the topics we have covered in the earlier chapters: spatial and temporal struc-
ture, evolution and development. We would also like to understand the interaction of
human civilization with its environment.

In developing an understanding of human civilization, we recognize that a
widespread view of human civilization as a single entity is relatively new and dr iven
by contemporary developments. At least superficially, the historical epoch described
by the dominance of nation-states appears to be quite different from the present
global economy. While recent events appear to be of particular significance to the
global view, our questions must be addressed in a historical context. Thus we should
include a discussion of the transition to a global economy. We postpone this histori-
cal discussion to the next chapter because of the groundwork that we would like to
build in order to target a particular objective f or our analysis—that of complexity
classification.
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We are motivated to understand complexity in the context of our effort to un-
derstand the nature of the human superorganism, or the nature of the global econ-
omy. We would like to identify the type of complex system it is—to classify it. The first
distinction that we might make is between a complex material or a complex organism
(see Section 1.3.6). Could part of the global system be modified without affecting the
whole? From historical evidence discussed in the next chapter, the answer appears to
be no. This indicates that human civilization is a complex organism. The next ques-
tion we would like to ask is: What kind of complex organism is it? By analogy we could
ask: Is it like a protein, a cell, a plant, an insect, a frog, a human being? What do we
mean by using such analogies? At least in part the problem is to describe the com-
plexity of an entity’s behavior. Intuitively an insect is a simpler organism than a hu-
man being, and this is of qualitative importance for our understanding of their dif-
ferences. The degree of complexity should provide a scale that can distinguish
between the many different complex systems we are familiar with.

Our objective in this chapter is to develop a quantitative definition of complex-
ity and behavioral complexity. We then apply the d efinition to various complex sys-
tems. The focus will be on the complexity of an individual human being. Once we
have established our complexity scale we will be in a position to apply it to human civ-
ilization. We will understand formally why a collection of complex systems (human
beings) may be, but need not be, complex. Beyond recognizing human civilization as
a complex system,it is far more significant to identify the degree of its complexity. In
the following brief sections we establish some additional context for the importance
of measuring complexity using both unconventional and conventional examples of
organisms whose complexity should be evaluated.

8.1.2 Scenario: alien encounter
The possibility of encountering alien life has been debated within the scientific com-
munity. In popular literature, such encounters have been portrayed in various forms
ranging from benevolent to catastrophic. The scientific debate has focused thus far on
topics such as the statistics of planet formation and the likelihood that planets con-
tain life. The presence of organic molecules in meteorites and interstellar gasses has
been interpreted as suggesting that alien life is likely to exist.Efforts have been made
to listen for signs of alien life in radio communications and to transmit information
to aliens using the Voyager spacecraft, which is leaving the solar system marked with
information about human beings. Thus far there has been no scientifically confirmed
evidence for the existence of alien life. Even a single encounter would change the hu-
man perspective on humanity’s  place in the universe.

Let us consider one possible scenario for an encounter. An object that flashes
light intermittently is found in orbit around one of the planets of the solar system.
The humans encountering this object are faced with the question of determining
whether the object is: (a) a signal device—specifically a recording, (b) a communica-
tion device, or (c) a living organism. The central problem can be seen to revolve
around determining whether, and in what way, the device is responsive to external
phenomena. Do the flashes of light occur without regard to the external environment
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in a predetermined sequence? Are they random? If the flashes are sensitive to the en-
vironment,then what are they sensitive to? We will see that these questions are equiv-
alent to the question of determining the complexity of the object’s behavior.

The concept of life in biology is often defined, or better yet, characterized, in
terms of consumption, excretion and reproduction. As a definition, these character-
istics are well known to be incomplete, since there are life-forms that do not repro-
duce, such as the mule. Furthermore, a particular individual is still considered alive
even if it/he/she does not reproduce. Moreover, there are various physical systems
such as crystals and fire that have all these characteristics in one form or another.
Moreover, there does not appear to be a direct connection between these biological
characteristics and other characteristics of life such as sentience and self-awareness.
When considering behavior, the biological perspective emphasizes the survival in-
stinct as characteristic of life. There are exceptions to this,since there exist life-forms
that are at times suicidal, either individually or collectively. The question of whether
an organism actively seeks life or death does not appear to be a characterization of life
but rather o f life-forms that are likely to survive. In our discussions, we may be de-
veloping an additional characterization of life in terms of behavioral complexity.
Definitions of life are often considered in speculating about the rights of and treat-
ment of real or imagined organisms—injured or unconscious humans, robots, or
aliens. The degree of behavioral complexity is a characterization of life-forms that
may ultimately play a role in informing our ethical decisions with respect to various
biological life-forms, whether terrestrial or (if found) alien, and artificial life-forms
that we create.

8.1.3 Scenario: blood cells
One of the areas bri ef ly to u ch ed upon in Ch a pter 6, wh i ch is at the foref ront of com-
p l ex sys tems re s e a rch , is the stu dy of the immune sys tem . Bl ood cell s ,u n l i ke other cell s
in the body, a re mobile on a length scale that is large com p a red to their size . In this
ch a racteri s tic they are more similar to indepen dent or ganisms than to the other cell s
of the body. By their migra ti on they might be said to “ch oo s e” to assoc i a te with other
cells of the body, or with forei gn ch emicals and cell s . It is fair to say that our under-
standing of the beh avi or of i m mune cells remains pri m i tive . In parti c u l a r, the va ri ety
of po s s i ble ch emical interacti ons bet ween cells has on ly begun to be mapped out . Th e s e
i n teracti ons invo lve a va ri ety of ch emical messen gers . More direct cell - to - cell interac-
ti ons wh ere parts of the mem brane or cellular fluid are tra n s ferred are also po s s i bl e .

One of the interesting questions that can be asked is whether, or at what level of
complexity, the interactions become identifiable as a form of language. It is not diffi-
cult to imagine, for example, that a chemical communication originating from one
cell might be transferred through a chain of cell interactions to a number of other
cells. In the context of the discussion in Section 2.4.5, the question of existence of a
language might be formulated as a question about the possibility of messages with a
grammar—a combinatorial composition of parts that are categorized like parts of
speech. Such combinatorial mechanisms are known to exist even at the molecular
level in the DNA coding of antibody receptors that are a composite of different parts
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of the genome. It remains to be seen whether intercellular communication is also gen-
erated in this fashion.

In the context of this chapter we can reduce the questions about the immune cells
to a single one—What is the degree of complexity of the behavior of the immune
cells? By its very nature this question can only be answered once a complete under-
standing of immune cell behavior is reached. A limited understanding establishes a
lower bound for the complexity of the behavior. It should also be understood that dif-
ferent types of cells will most likely have quite different levels of behavioral complex-
ity, just as different animals and man have differing levels of complexity. Our objec-
tive in this chapter is to show that it is possible to quantify the concept of complexity
in a way that is both natural and useful. The practical application of these definitions
is a central challenge for the field of complex systems.

8.1.4 Complexity
Mathematical definitions of the complexity of systems are based upon the theories of
information and computation discussed in Sections 1.8 and 1.9. In Section 8.2 they
will be used to treat complexity in the context of mathematical objects such as char-
acter strings. To develop our understanding of the complexity of physical systems re-
quires that we relate these concepts to those of thermodynamics (Section 1.3) and
various extensions (e.g.,Section 1.4) that enable the treatment of nonequilibrium sys-
tems. In Section 8.3 we discuss relevant concepts and tools that may be used for this
purpose. In Section 8.4 we use several semiquantitative approaches to estimate the
value of the complexity of specific systems.

Our use of the word “complexity”is specified as an answer to the question, How
complex is it? We say, Its complexity is <number><units>. Intuitively, we can make a
connection between complexity and understanding. When we encounter something
new, whether personally or in a scientific context, our objective is to understand it.
The understanding enables us to use,modify, control or appreciate it.We achieve un-
derstanding in a number of ways, through classification, description and ultimately
through the ability to predict behavior. Complexity is a measure of the inherent dif-
ficulty to achieve the desired understanding. Simply stated, the complexity of a system
is the amount of information necessary to describe it.

This is descriptive complexity. For dynamic systems the description includes the
changes in the system over time. We will also discuss the response of a dynamic sys-
tem to its environment. The amount of information necessary to describe this re-
sponse is a system’s behavioral complexity. To use these definitions of complexity we
will introduce mathematical expressions based upon the theory of information.

The qu a n ti t a tive def i n i ti on of i n form a ti on (Secti on 1.8) is rel a tively abstract .
However, it can be measu red in familiar terms su ch as by the nu m ber of ch a racters in a
tex t . As a prel i m i n a ry exercise in the discussion of com p l ex i ty, the re ader is invi ted to
exercise intu i ti on to esti m a te the com p l ex i ty of a nu m ber of s ys tem s .Q u e s ti on 8 . 1 . 1
i n clu des a list of s ys tems that are de s i gn ed to sti mu l a te some thought abo ut com p l ex-
i ty as a qu a n ti t a tive measu re of the beh avi or of a sys tem . The re ader should devo te
s ome thought to this qu e s ti on before proceeding with the rest of the tex t .
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Question 8.1.1 Estimate the complexity of some of the systems in the
following list. For this question use an intuitive definition of complex-

ity—the amount of information that would be required to describe the sys-
tem or its behavior. We use units of bits to measure information. However,
to make it easier to visualize, you may use other convenient units such as
words or pages of text. So, we can paraphrase the question as, How much
would you have to write to describe the system behavior? A rough conver-
sion factor of 1 bit per character can be used to convert these estimates to
bits. It is not necessary to estimate the complexity of all the systems on the
list. Considering even a few of them is sufficient to develop an understand-
ing of some of the issues that arise. Indeed, for some of these systems a rough
estimate is far from trivial. Answers to this question will be given in the text
in the remainder of this chapter.

Hint You may find that you would use different amounts of informa-
tion depending on what aspects of the system you are describing. In such
cases try to give more than one estimate or a range of values.

Physical Systems:

Ideal gas (1 mole at T = 0°K, P = 1atm)

Water in a glass

Chemical reaction

Brownian particle

Turbulent flow

Protein

Virus

Bacterium

Immune system cell

Fish

Frog

Ant

Rabbit

Cow

Human being

Radio

Car

IBM 360

Personal Computer (PC/Macintosh)

The papers on your desk

A book
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A library

Weather

The biosphere

Nature

Mathematical and Model Systems:

A number

Iterative maps (growth, bifurcation to chaos)

1-D random walk

short time

long time

Ising model (ferromagnet)

Turing machine

Fractals

Sierpinski gasket

3-D random walk

Attractor neural network

Feedforward neural network

Subdivided attractor neural network ❚

Complexity of Mathematical Models

Complexity is a property of the relationship between a system and various represen-
tations of the system.Our objective is to understand the complexity of systems com-
posed of physical entities such as atoms,molecules or cells. Abstract representations
of such systems are described in terms of characters or numbers. It is helpful to pref-
ace our discussion of physical systems with a discussion of the complexity of the char-
acters or numbers that we use to represent them.

8.2.1 Information, computation and algorithmic complexity
The discussion of Shannon information theory in Section 1.8 was based on strings of
characters that were generated by a source. The source generates each string, s, by se-
lecting it from an ensemble. The information from a particular string was defined as

I = −log(P(s)) (8.2.1)

where P(s) is the probability of the string in the ensemble. If all strings have equal
probability then this is the logarithm of the number of distinct strings. The source it-
self (or the ensemble) was characterized by the average information of a large num-
ber of strings

(8.2.2)
    
< I > = − P(s)log(P(s))

s
∑

8.2
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It was also possible to consider a more general source that selected characters to form
a Markov chain.The probabilistic coupling between sequential characters reduced the
information content of the string. It was possible to compress the st ring using a re-
versible coding algorithm (computation) that would enable the same information to
be represented in a more compact form. The length of the shortest binary compact
form is equal to the average information in a string.

Information theory suggests that we can define the complexity of a string of char-
acters by the information content of the string. The information content is the same
as the length of the shortest binary encoding of the string. This is intuitive—since the
original string can be obtained from its shortest representation,the same information
must be present in both. Within standard information theory, the encodings would
be limited to compression using a Markov chain model. However, more generally, we
could use any possible algorithm for encoding (compressing) the string. Questions
about all possible algorithms are precisely the domain of computation theory. The de-
finition of Kolmogorov (algorithmic) complexity of a string makes use of computa-
tion theory to describe what we mean by “any possible algorithm.” Allowing all algo-
rithms is the same as allowing more general models for the string than a Markov
chain. Our objective in this section is to develop an understanding of algorithmic
complexity beginning from the theory of computation.

Computation theory (Section 1.9) describes the operations of logic and compu-
tation on symbols.All the operations are deterministic and are expressible in terms of
a few elementary operations. The concept of universality of computation is based on
the understanding that a particular type of conceptual machine/computer—the uni-
versal Turing machine (UTM)—can perform all possible computations if the in-
structions are properly encoded as a finite string of characters serving as the UTM in-
put. Since we have no absolute definition of computation,there is no complete proof.
The existing proof shows that the UTM can perform all computations that can be
done by a much larger class of machines—the Turing machines (TM). Other models
for computation have been shown to be essentially equivalent to these TM.A TM is
defined by a table of elementary operations that act on the input string. The word
“program” can be used either to refer to the TM table or to its input and so its use is
best avoided in this context.

We would like to define the algorithmic complexity of a string, s, as the length of
the shortest possible binary TM input, such that the output is s. The relationship of
this to the encoding and decoding of Shannon should be apparent. In order to use this
as a definition,there are several matters that must be cleared up. To summarize: There
are actually two sources of information when we use a TM, the input string and the
table. We need to take both of them into account to define the complexity. There are
many ways to define complexity; however, we can prove that any two definitions of
complexity differ by no more than a constant. We will also show that no matter what
definition we use, most strings cannot be compressed.

In order to motivate the logic of the following discussion, it is helpful to think
about how we might approach compressing various strings of characters. The short-
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est compression should then be the complexity o f the string. One string might be
formed out of a long substring of zeros followed by a long substring of ones. This is
convenient to write by indicating how many zeros followed by how many ones: N0N1.
We would make a binary string notation for N0N1 and write a program that would
read this input and then output the original string. Another string might be a repre-
sentation of the Fibonacci numbers (1,1,2,3,5,8,…), starting from the N0st number
and ending at the N1st number.We could write this using a similar notation as the pre-
vious one, but the program that we would write to generate the string is quite differ-
ent. Both programs would be quite simple. Now imagine that we want to communi-
cate one of the original strings to someone else. If we want to communicate it in
compressed form, we would have to send the program as well as the input. If there
were many strings, we might be clever and send the programs only once. The prob-
lem is that with only the input string, the recipient would not know which program
to apply to obtain the o riginal string. We need to send an additional piece of infor-
mation that indicates which program to apply. The simplest way to do this is to assign
numbers to each of the programs and preface the program input with the program
number. Once we do this, the string that we send uniquely determines the string we
wish to communicate. This is necessary, because if the interpretation of the transmit-
ted string is not unique,then it would be impossible to guarantee a correct interpre-
tation. We now develop these thoughts using a more formal notation.

In what follows, the operation of a TM or a UTM will be indicated by functional
notation. The st ring that results from its application to a tape is indicated by U(s)
where s is the nonblank portion of the tape (input string), U is the identifier of the
TM,and the initial position of the TM head is assumed to be at the leftmost nonblank
character.

In order to define the complexity of a string, we identify a particular UTM U.
Then the complexity CU(s) of the string s is defined as the length of the shortest string
r such that U(r) = s. We call an input string r to U that generates s a representation of
s. Thus the length of the shortest representation is CU(s). The central theorem of al-
gorithmic complexity relates the complexity according to one UTM U and another
UTM U ′. Before we state and prove the theorem, we discuss several incidental mat-
ters.

We first ask whether we need to use a UTM and not just any TM in the defini-
tion. The answer is that the use of a UTM is convenient,and we cannot significantly
improve the ability to compress strings by allowing the larger class of TM to be used
in the definition. Let us say that we have a UTM U and a TM V, we define a new
UTM W by:

W(0s) = V(s)

W(1s) = U(s)
(8.2.3)

—the first character indicates whether to use the TM V or the UTM U on the rest of
the input.Since the complexity according to the UTM W is at most one more than the
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complexity according to the TM V, CW (s) ≤ CV(s) + 1, we see that using the larger class
of TM to define complexities can not improve our results for any particular string by
more than one bit, which is not significant for long complex strings.

We may be disturbed that the definition of complexity does not indicate that the
complexity of an incompressible string is the same as the string length itself. Indeed
the definition does not require it. However, if we wanted to impose this as an auxil-
iary condition, we could define the complexity of a string using a slightly different
construction. Given a UTM U, we define a new UTM V such that

V(0s′) = s′

V(1s′) = U(s ′)
(8.2.4)

—the first character indicates whether the string is compressed. We then define the
complexity CU(s) of any string s as one less than the length of the shortest string r such
that V(r) = s. This is not quite a fair definition, because if we wanted to communicate
the string s we would have to indicate all of r, including its first bit. This means that
we should define the complexity as the length of r, which would be a sacrifice of at
most one bit for incompressible strings. Limiting the complexity of a string to be no
longer than the string itself might seem a natural idea. However, we note that the
Shannon information, Eq. (8.2.1), is related only to the probability of a string, and
may be larger than the original string length for a particular string.

Returning to our basic definition of complexity, we have described the existence
of a shortest possible representation of any string s, and a single machine U that can
reconstruct each s from this representation. The key theorem that we need to prove
relates the complexity defined using one UTM U to the complexity defined using an-
other UTM U ′. The theorem is: the complexity CU based on U and the complexity
CU ′ based on U ′ satisfy:

CU (s) ≤ CU ′(s) + CU (U ′) (8.2.5)

where CU (U ′) is independent of the string s. The proof of this expression results from
the ability of the UTM U to simulate U ′. To prove this we must improve slightly our
definition of complexity, or equivalently, we have to limit the UTM that are allowed.
This is discussed in Questions 8.2.1–8.2.3. It is shown there that we can preface binary
strings input to the UTM U′ with a prefix that will make them generate the same out-
put when input to U. We might call this prefix rU,U ′ a translation program,it satisfies
the property that for any string r, U(rU,U ′r) = U ′(r). Let rU ′ be a minimal representa-
tion for U ′ of the string s. Then rU,U ′rU ′ is a representation for U of the string s. The
length of this string must be greater than or equal to the length of the minimum string
rU necessary to produce the same output:

CU (s) = |rU | ≤ |rU,U ′rU ′| = |rU ′| + |rU,U ′| = CU ′(s) + CU(U ′) (8.2.6)

CU(U ′) = |rU,U ′ | is the length of the translation program. We have proven the in-
equality in Eq. (8.2.5).

Question 8.2.1 Show that there exists a UTM U0 such that for any TM U
that accepts binary input, there is a string rU so that for all s and r

satisfying s = U(r), we have that s = U0(rUr) .
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Hint One way to do this is to use a modified form of the construction
given in Section 1.9. The new construction requires modifying the nature of
the UTM—i.e., a trick.

Solution 8.2.1 We call the UTM described in Section 1.9, Ũ0. We can sim-
ulate the UTM U using Ũ0; however, the form of the input string would not
quite satisfy the conditions of this theorem. Ũ0 has an input that looks like
rUrt (r), where the right part is only a function of the input string r and the
left part is only a function of the UTM U. However, the tape part of the rep-
resentation rt (r) uses a doubled binary form for characters and markers be-
tween them so that it is not the same as the original tape. We must replace
the tape part of the representation with the original string in order to have
an input string of the form rUr.

Both Ũ0 and U have binary input strings. This means that we might try
to use the tape of U without modification in the tape part of the representa-
tion given in Section 1.9. Then there would be no delimiters between char-
acters and no doubled binary representation. There is, however, one diffi -
culty. The UTM U0 must keep track of where the current position of the
UTM U would be during the same calculation. This was accomplished in
Section 1.9 by converting one of the M1 markers to M6 at the current loca-
tion of the UTM U. There are a number of ways to overcome this problem,
but all require us to introduce something new. We will do this by allowing
the UTM U0 to have a counter that can keep track of the current position of
the UTM U. There are two ways to argue this.One is to allow, by proclama-
tion, a counter that can reach arbitrarily high numbers. The other is to rec-
ognize that the longest string we might conceivably encounter is smaller
than the number of particles in the known universe, or very roughly
1090 = 2300. This means that we can use an internal memory of 300 bits to rep-
resent such a counter. This counter is initialized to 0 and set to the current
location of the UTM U at every step of the calculation. This construction
gives us the desired UTM U0. ❚

Question 8.2.2 Using the result of Question 8.2.1, prove Eq.(8.2.5). See
the text for a hint.

Solution 8.2.2 The problem is that Eq.(8.2.5) is not actually correct for all
UTM (see Question 8.2.3) so we need to modify our conditions. In a sense,
the modification is minor because we only improve the definition slightly.
We do this by defining the complexity CU (s) for an arbitrary UTM as the
minimum length of r such that W(r) = s where W is defined by:

W(0s) = U0(s)

W(1s) = U(s)
(8.2.7)

—the first bit specifies whether to use U or the special UTM U0 constructed
in Question 8.2.1. CU (s) defined this way is at most one bit more than our
previous definition, for any particular string. It might be significantly
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smaller. This should not be a problem, because our objective is to find short
representations of strings. By using our special UTM U0 in this definition, we
guarantee that for any two UTM U and U ′, whose complexity is defined in
terms of W and W ′ by Eq.(8.2.7), we can write W(rWW ′rW ′) = W ′(rW). This
is possible because W inherits the properties of U0 when the first character
of its input string is 0. ❚

Question 8.2.3 Show that some form of qualification of Eq. (8.2.5) is
necessary by demonstrating that there exists a UTM that does not satisfy

this inequality. Therefore, Eq. (8.2.5) cannot be extended to all UTM.

Solution 8.2.3 One possibility is to have a UTM that uses only certain char-
acters in its input string. Specifically, define a UTM U that acts the same as a
UTM U ′ but uses only every other character in its input string: U(r) = U ′(r ′)
if r is any string whose odd characters are the characters of r ′. The complex-
ity of a string according to U is twice the complexity according to U ′ and
therefore Eq. (8.2.5) is invalid in this case. With the modified definition of
complexity given in Question 8.2.2 this is no longer a problem. ❚

Switching U and U ′ in Eq. (8.2.5) gives a similar inequality with a constant
CU ′(U ). Defining the larger of the two translation program lengths to be

CU,U ′ = max(CU(U ′),CU ′(U)) (8.2.8)

we have proven that complexities defined by the UTM differ by no more than CU,U ′:

|CU(s) − CU ′(s)| ≤ CU,U ′ (8.2.9)

Since this constant is independent of the complexity of the string s, it becomes in-
significant for large enough complexities. Thus, for strings that are complex enough,
it doesn’t matter which UTM we use to define its complexity. The complexity defined
by one UTM is the same as the complexity defined by another UTM. This consis-
tency—universality—in the complexity of a string is essential in order for it to be well
defined. We will use a few examples to illustrate the nature of universality provided by
this definition.

The first example illustrates the relationship of algorithmic complexity to string
compression.Given a string s we can ask what methods of compression are useful for
the string. A useful compression algorithm corresponds to a pattern in the characters
of the string. A string might have many repetitive digits, or cyclically repeating digits.
Alternatively, it might be a sequence that can be generated using simple mathemati-
cal operations such as the Fibonacci series, or the digits of . There are many such pat-
terns that are relevant to the compression of strings. We can choose a finite set of N
algorithms {Vi}, where each one is represented by a TM that reconstructs a string s
from a shorter string r by taking advantage of properties of the pattern. We now con-
struct a new TM U which is defined by:

U(rir ′) = Vi(r ′) (8.2.10)

710 H uma n  C i v i l i z a t io n  I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 710
Title: Dynamics Complex Systems Short / Normal / Long

Bar-YamChap8.pdf  3/10/02 10:52 AM  Page 710



where ri is a binary representation of the number i, having log(N) bits. This is a UTM
if any of the Vi is a UTM or it can be made into a UTM by Eq. (8.2.3). We use U to
define the complexity CU (s) of any string as described above. This complexity in-
cludes both the length of r ′ and the number of bits (log(N)) in ri that together con-
stitute the length of the input r to U. Once it is defined,this complexity is a measure
of the complexity of all strings. We do not use different TM to define the complexity
of each string; one UTM is used to define the complexity of all strings.

Despite the message of the last example,let us assume that we are evaluating the
complexity of a particular string s. We define a new UTM Us by:

Us(0s′) = s

Us(1s′) = U(s)
(8.2.11)

—the first character tells Us if the string is s. We can use this new UTM to define the
complexity of all strings and for this definition the complexity of s is one. How does
this relate to our theorem about the universality of complexity? The point is that in
this case the translation program between U and Us contains the complete informa-
tion about s and therefore must be at least as long as CU (s). What we have done is to
take the particular string s and insert it into the table of Us . We see in this example
how universality is tied to an assumption that the complexities that are discussed are
longer than the TM translation programs or, equivalently, the information in their ta-
bles. Conceptually, we would say that universality of complexity is tied to an assump-
tion of lack o f specific knowledge on the part of the recipient (represented by the
UTM) of the information itself. The choice of a particular UTM might be dictated by
an implicit understanding of the set of strings that we would like to represent, even
though the complexity of a string is defined without reference to an ensemble of
strings. However, this apparent relativism of the complexity is limited by our basic
theorem that relates the complexity of distinct UTM,and by additional results about
the impossibility of compressing most strings discussed in the following paragraphs.

We have gained an additional result from the construction of a single UTM that
generates all strings from their compressed forms. This is that a representation r only
represents one string s. We can now prove that the probability that a string of length
N can be compressed is very small. The proof proceeds from the observation that the
number of possible strings decreases very rapidly with decreasing string length. A
string s of length |s | = N compressed by k bits is represented by a particular string r of
length |r | = C(s) = N − k. Since there are only 2N−k strings of length N − k, at most 2N−

k strings of length 2N can be compressed by k bits. The fractional compression is k/N.
For example,among all st rings of length 106 bits,at most 1 string in 2100 = 1030 can be
compressed by 100 bits or .01% of the string length.This is not a very significant com-
pression. Even so, this estimate of the average number of strings that can be com-
pressed is much too large, because strings that are not of length N, e.g., strings of
length N − 1 N − 2, …, N − k, would also be represented by strings of length N − k.
Thus most strings are incompressible. Moreover, selecting a string at random will
yield an incompressible string.
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Question 8.2.4 Calculate a strict lower bound for the average complex-
ity of strings of length N.

Solution 8.2.4 We assume that strings of length N are compressed so that
they are represented by all of the shortest strings. One string is represented
by the null string (length 0), two strings are represented by a single bit
(length 1), and so on. The relationship:

(8.2.12)

means that we will fill all of the possible strings up to length N − 1 and then
have one string left of length N. The average representation length for any
complexity measure must then satisfy:

(8.2.13)

The sum can be evaluated using a table of sums or:

(8.2.14)

giving:

(8.2.15)

Thus the average complexity o f strings of length N cannot be reduced by
more than two bits. This strict lower bound applies to all measures of
complexity. ❚

We can also interpret this discussion to mean that the best UTMs to use to define
complexity are those that are invertible—they have a one-to-one mapping of strings
to representations. In this case we have a mapping r(s) which gives the unique repre-
sentation of a string. The reason that such UTM are better is that there are only a lim-
ited number of representations shorter than N ; if we use up more than one of them
for a particular string, then we will have fewer representations to use for others. Such
UTM are closely analogous to our understanding of encoding and decoding as de-
scribed in information theory. The UTM is the decoder and the mapping of the string
onto its representation is the encoding.

Because most strings are incompressible, we can also prove that if we have an en-
semble of strings defined by the probability P(s), then the average algorithmic com-
plexity of these strings is essentially the same as the Shannon information. In partic-
ular, the ensemble of all of the strings of length N have a Shannon information of N
bits and an average algorithmic complexity which is the same. The catch is recogniz-
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ing that to specify P(s) itself requires an algorithm whose complexity must enter into
the discussion. The proof follows from the discussion in Section 1.8. An ensemble de-
fined by a probability P(s) can be encoded in such a way that the average string length
is given by the Shannon information. We now realize that to define the st ring com-
plexity we must include the description of the decoding operation:

(8.2.16)

where the expression C(P) represents the complexity of the decoding operation for
the universal computer U for the ensemble given by P(s). C(P) depends in part on the
algorithm used to specify the ensemble probability P(s). For the average ensemble
complexity to be essentially equal to the average Shannon information,the specifica-
tion of the ensemble must itself be simple.

For Markov chains a similar result applies—the Shannon information of a string
representing a Markov chain is the same as the algorithmic complexity of the same
string, as long as the algorithm specifying the Markov chain is simple.

A general consequence of the definition of algorithmic complexity is a limitation
on what TM can do. No TM can generate a string more complex than the input string
that it is provided with, plus the information in its table—otherwise we would have
redefined the complexity of the output string to take this into consideration. This is a
key limitation of TM: TM (and computers that are realizations of this model) cannot
generate new information. They can only process information they are given. As dis-
cussed briefly in Section 1.9.7, this limitation can be overcome by a TM that is given
a string of random bits as input. The infinitely complex input means the limitation
does not apply. It remains to be demonstrated what tasks such a TM can perform that
are not possible for a conventional TM. If such tasks are identified,there will be im-
portant implications for computer design. In this context, it may also be suggested
that some forms of creativity might be linked to the availability of randomness (see
Section 1.9.7). We will return to this issue at the end of the chapter.

While the definition of complexity using UTM is appealing, there is a profound
difficulty with this proof. It is nonconstructive. No method is given to determine the
complexity of a particular string. Indeed, it can be proven that this is a fundamen-
tally difficult task—the time necessary for a TM to determine C(s) grows exponen-
tially with the length of s. At least this is true when there is a bound on the complex-
ity, e.g., by Eq. (8.2.4). Otherwise the complexity is noncomputable. We find the
complexity of a string by trying all input strings in the UTM to see which one gives
the necessary output. If the complexity is not bounded, then the halting problem
implies that we cannot tell if the UTM will halt on a particular input,thus it is non-
computable. If the complexity of the string is bounded, then we only try strings up
to this bound, and it is possible to determine if the UTM will halt for members of
this bounded set of strings. Nevertheless, trying each string requires a time that
grows exponentially with the bound, and therefore is not practical except for a few
very simple strings. The process of finding the complexity of a string is akin to a
process of trying models for the string. A model is a TM that might, when given the
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proper input, generate the string. It is possible to try many models. However, to de-
termine the actual compressed string may not be practical in any reasonable time.
With any particular set of models, we can, however, find an upper bound on the
complexity of a string. One of the possible models is that of a Markov chain as used
by Shannon information theory. Algorithmic complexity allows more general TM
models. However, by our discussion it is improbable that a randomly chosen string
will be compressible by any algorithm.

In summary, the universality of complexity is a statement that the use of differ-
ent UTMs in the definition of complexity affects the result by no more than a con-
stant. This constant is the length of the program that translates the input of one UTM
to the other. Significantly, the more complex the string is, the more universal is the
value of its complexity. This follows because the length of translation programs be-
comes less and less relevant for longer and longer descriptions/representations. Since
we are interested in properties of complex systems whose descriptions are long, we
can, with caution, rely on the universality of their complexity. This is not the case with
simple systems whose descriptions and therefore complexities are “subjective”—they
depend on the conventions for description. These conventions, in our mathematical
definition,are represented by the choice of UTM used to define complexity. We also
showed that most strings are not compressible and that the Shannon information
measure is the same as the average algorithmic complexity for all concisely describ-
able ensembles. In what follows,unless otherwise mentioned, we assume a particular
definition of complexity C(s) using the UTM U.

8.2.2 Mathematical systems: numbers and functions
One of the difficulties in discussing complexity is that many elementary mathemati-
cal constructs have unusual properties when considered from the point of view of
complexity. Philosophers have been troubled by these points,and they have been ex-
tensively debated over the centuries. Most o f the problems revolve around various
forms of infinity. Unlimited numbers and infinite precision often simplify symbolic
mathematical discussions;however, they are not well behaved from the point of view
of complexity measures.There appears to be a paradox here that will be clarified when
we distinguish between the complexity of a set of numbers and the complexity of an
element of the set.

Let us consider the complexity of specifying a single integer. The difficulty with
integers is that there are infinitely many of them. Using an information theory point
of view, assigning equal probability to all integers would imply that any particular in-
teger would have no probability of occurring. If I ask you to give me a positive inte-
ger, from 1 to infinity with equal probability, there is no chance that you will give me
an integer below any particular cutoff value,say N. This means that you will need ar-
bitrarily many digits to specify the integer, and there is no limit to the information re-
quired. Thus the complexity of specifying a single integer is infinite. However, if we
allow only integers between 1 and a large positive number—say N = 1090, roughly the
number of elementary particles in the known universe—the complexity of specifying
one of the integers is only log(N),about 300 bits. The drastic difference between the
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complexity of specifying an arbitrary integer (infinite) and the complexity of an enor-
mously large number of integers (300 bits) suggests that systems that are easy to de-
fine may be highly complex. The whole field of number theory has shown that inte-
gers are not as simple as they first appear. The measure of complexity of specifying a
single integer may appear to be far from more abstract discussions like those of the
halting problem or Gödel’s theorem (Section 1.9.5),however, they are related. This is
apparent since these theorems do not apply to finite sets.

In what sense are integers simple? We can consider the length of a UTM input
string that can generate all the posit ive integers. As discussed in the last section, this
is similar to the definition of their Kolmogorov or algorithmic complexity. The pro-
gram would, starting from zero and keeping a list, progressively add one to the pre-
ceding integer. The problem is that such a program ne ver halts, and the task is not
complete. We can generalize our definition of a Turing machine to allow for this case
by saying that, by definition, this simple program is generating all integers. Then the
algorithmic complexity of the integers is quite small. Another way to do this is to con-
sider the complexity of recognizing an integer—the recognition complexity.
Recognizing an integer is trivial if we are considering only binary strings, because all
of them represent integers. The point,however, is that we can expand the space of pos-
sible characters to include various symbols:letters,punctuation, mathematical oper-
ations, etc. The mathematical operations might act upon integers. We then ask how
long is a TM program that can recognize any integer that appears as a combination of
such characters. The length of such a program is also small.

We see that we must distinguish between the complexity of elements of a set and
the set itself. A program that recognizes integers is concerned with the attributes of
the integers required to define them as a set, rather than the specification of a partic-
ular integer. The algorithmic complexity of the set of all integers is small even though
the information contained in a single integer can be arbitrarily large. This distinction
between the information contained in an element of a set and the information neces-
sary to define the set will also be important when we consider the complexity of phys-
ical systems.

The complexity of a single real number is also infinite. Specifying an arbitrary
real number requires infinitely many digits. However, if we confine ourselves to any
reasonable precision, the complexity becomes very manageable. For example, the
most accurately known fundamental constant in science is the electron magnetic mo-
ment in Bohr magnetons

e / B = 1.001159652193(10) (8.2.17)

where the parenthesis indicates the error estimate, corresponding to 11 accurate
decimal digits or 37 binary digits. If we consider 1 − e / B we immediately lose 
3 decimal digits. Thus, similar to integers, the practical complexity of a real number
is not very large.

The discussion of integers and reals suggests that under practical circumstances
a single number is not a highly complex object.Generally, the complexity of a system
arises because of the presence of a large number of parameters that must be specified.
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However, there is only reason to consider them collectively as a system if they are cou-
pled to each other.

The next category of mathematical objects that we consider are functions. To
specify a function f (s) we must either describe its operation by a formula or specify
its action on each possible argument.We consider Boolean functions (functions with
binary output, see Section 1.9.2), f (s) = ±1, of a binary string, s = (s1s 2 . . . sNe

). The
number of arguments of the function—input bits—is Ne . There are 2Ne possible
values of the input string. For each of these there are two possible outcomes (output
values). All Boolean functions may be specified by listing the binary output for each
possible input state. Each possible output is independent. The number of different
Boolean functions is the number of possible sets of outputs which is 22Ne

. Assuming
that all of the possible Boolean functions are equally likely, the complexity of a
Boolean function (the amount of information necessary to specify it) is the logarithm
of this number or C( f ) = 2Ne. The representation of a Boolean function in terms of
C(f ) binary variables can also be made explicit as a string representing the presence
or absence of terms in the disjunctive normal form described in Section 1.9.2.

A binary function with Na outputs is the same as Na independent Boolean func-
tions. If we assume that all possible combinations of Boolean functions are equally
likely, then the total complexity is the sum of the complexity of each, or 

(8.2.18)

The asymmetry between input and output is a fundamental one. It arises because we
need to specify for each possible input which of the possible outputs is output.
Specifying “which” is a logarithmic operation in the number of possibilities, and
therefore the influence of the ou tput space on the complexity is logarithmic com-
pared to the influence of the input. This discussion will be generalized later to con-
sider a physical system that acts in response to its environment. The environment will
be specified by a number of binary variables (environmental complexity) Ne , and its
actions will be specified by a number of binary variables (action complexity) Na.

Complexity of Physical Systems

In order to apply our understanding of the complexity of mathematical constructs to
physical systems, we must develop a fundamental understanding of representations.
The complexity of a physical system is to be defined as the length of the shortest
string s that can represent its properties—the results of possible measurements/
observations. In Section 8.3.1 we discuss the relationship between thermodynamics
and information theory. This will enable us to define the complexity of ergodic and
nonergodic systems. The resulting information measure is essentially that of Shannon
information theory. When we c onsider algorithmic complexity, we can ask whether
this is the smallest amount of information that might be used. This is discussed in
Section 8.3.2. Section 8.3.3 introduces the complexity profile, which measures the
complexity as a function of the scale of observation. Implications of the time scale of
observation, for chaotic dynamics, are discussed in Section 8.3.4. Section 8.3.5

8.3

    C( f ) = Na 2N e
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discusses examples and properties of the complexity profile. Sections 8.3.1 through
8.3.5 are based upon descriptive complexity. To better account for the behavior of a
system in response to its environment we consider behavioral complexity in
Section 8.3.6. This turns out to be closely related to descriptive complexity. Other is-
sues related to the role of the observer are discussed in Section 8.3.7.

8.3.1 Entropy and the complexity of physical systems
The definition of complexity of a system requires us to develop an understanding of
the relationship of information to the physical properties of a system. The most direct
relationship is the relationship of entropy and information. At the outset,it should be
understood that these are very different concepts.Entropy is a specific physical prop-
erty of systems that are in equilibrium, or are in well-defined ensembles. Information
is not a unique physical property. Instead it is related to representations of digits.
Information can be a property of a time sequence or any other set of degrees of free-
dom. For example, the information content of a set of characters written on a piece
of paper can be given. The entropy, however, would be largely a property of the paper
or the ink. The entropy of paper is difficult to determine precisely, but simpler sub-
stances have entropies that have been determined and are tabulated at specific tem-
peratures and pressures. We also know that entropy is conserved in reversible adia-
batic processes and increases in irreversible ones.

Despite the significant conceptual difference between information and entropy,
the formal definition of information discussed in Section 1.8 appears very similar to
the definition of entropy discussed in Section 1.3. Thus, it makes sense that the two
are related when we develop an understanding of complexity. It is helpful to review
the definitions. The entropy was defined first for the microcanonical ensemble,which
specifies the macroscopic energy U, number of particles N, and volume V, of the sys-
tem. We assume that all states (microstates) of the system with this energy, number of
particles and volume are equally likely in the ensemble. The entropy was written as

S = k ln (U, N,V ) (8.3.1)

where (U,N,V ) is the number of such states. The coefficient k is defined so that the
units of entropy are consistent with units of energy and temperature for the thermo-
dynamic relationship T = dU /dS.

In form a ti on was def i n ed for a string of ch a racters . G iven the prob a bi l i ty of t h e
s tring of ch a racters , the inform a ti on is def i n ed by Eq . ( 8 . 2 . 1 ) . The loga rithm is taken
to be base 2 so that the inform a ti on is measu red in units of bi t s . We see that the infor-
m a ti on con tent is rel a ted to sel ecting a single state out of an en s em ble of po s s i bi l i ti e s .

We can relate the two definitions in a mathematically direct but conceptually sig-
nificant way. If we want to specify a particular microstate of a thermodynamic system,
we must select this microstate from the whole ensemble. The probability of this par-
ticular state is given in the microcanonical ensemble by P = 1/ . If we think about
the state of the system as a message containing information, we can use Eq.(8.2.1) to
give the amount of information as:

I({x,p}|(U,N,V )) = S(U,N,V )/(k ln2) (8.3.2)
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This expression should be understood as the amount of information contained in a
microstate {x,p}, when the system is in the macrostate specified by U,N,V—it is also
the information necessary to describe precisely the microstate.This is the fundamen-
tal relationship we are looking for. We review its meaning in terms of the description
of a particular idealized physical system.

If we want to describe the microstate of a system, like a gas of particles in a box,
classically we must specify all of the positions and momenta of the particles {xi ,pi}. If
N is the number of particles, then there are 6N coordinates, 3 position and 3 mo-
mentum coordinates for each particle. To specify exactly the position of each particle
appears to require arbitrary precision in these coordinates. If we had to specify even
a single position exactly, it would take an infinite number of binary digits. However,
quantum mechanics is inherently granular, thus there is a smallest distance ∆x within
which we do not need to specify one position coordinate of a particle. The particle lo-
cation is uniquely given once it is within a region ∆x. More correctly, the particle must
be located within a region of position and momentum of ∆x∆p = h, where h is
Planck’s constant. The granularity defines the precision necessary to specify the posi-
tions and momenta, and thus also the amount of information (number of bits)
needed in order to describe completely the microstate. The definition of the entropy
takes this into account, otherwise the counting of possible microstates of the system
would be infinite. The complete calculation of the entropy (which also takes into ac-
count the indistinguishability of the particles) is given in Question 1.3.2. We now rec-
ognize that the calculation of the entropy is precisely a calculation of the information
necessary to describe the microstate.

There is another way to think about the relationship of entropy and information.
It follows from the recognition that the number of states of a string of
I({x,p}|(U,N,V )) bits is the same as the number of states of the system. If we consider
a mapping of system states onto strings, the strings enumerate or label the system
states. If there are I({x,p}|(U,N,V )) bits in each string, then there is a one-to-one map-
ping of system states onto the strings, and a string uniquely identifies a system state.
We say that a string represents a system microstate.

We thus identify the entropy of a physical system as the amount of information
necessary to identify a single microstate from a specified macroscopic ensemble. For
an ergodic macroscopic system, this definition is a robust one. It does not matter if
we consider a typical or an average amount of information. What happens if the sys-
tem is nonergodic? There are two kinds of nonergodic systems we will discuss: a
magnet with a well-defined magnetization below its ordering phase transition (see
Section 1.6), and a glass where there are many frozen coordinates describing the lo-
cal arrangements of atoms (see Section 1.4). Many of these coordinates do not
change during the time of a typical experiment. Should we include the information
necessary to specify the frozen variables as part of the entropy? We would like to sep-
arate the discussion of the frozen variables from the fast ones that are in equilib-
rium. We use the entropy S to refer to the fast ensemble—the enumeration of the ki-
netically accessible states of the system. The same function of the frozen variables we
will call C.
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For the magnet, the amount of information contained in frozen variables is
small. For the Ising model of a magnet (Section 1.6), below the magnetization transi-
tion only a single binary variable is necessary to specify if the system magnetization is
UP or DOWN. We treat the magnet by giving the information about the magnetization
explicitly as part of the ensemble description. The amount of information is insignif-
icant compared to the information in the microstate of a system,and therefore is gen-
erally ignored.

In contrast, for a glass,the amount of information that is included in the frozen
variables is large. How does this information relate to the thermodynamic treatment
of the system? The conventional thermodynamic theory of phase transitions does not
consider the existence of frozen information. It is designed for systems like the mag-
net, where this information is insignificant, and thus it does not apply to the glass
transition.A different theory is necessary which includes the change from an ergodic
to a nonergodic system, or a change from information in fast variables to information
in frozen variables. Is there any relationship between the frozen information and the
entropy? If they are related at all, there are two intuitive possibilities. One is that we
must specify the frozen variables as part of the ensemble, and the amount of infor-
mation necessary to describe the fast variables is just as large as ifthere were no frozen
variables. The other is that the frozen variables balance against the fast variables so
that when there is more frozen information there is less information in the fast vari-
ables. In order to determine which is correct, we will need to consider an experiment
that measures both. As long as an experiment is being performed in which the frozen
variables never change, then the amount of information in the frozen variables is
fixed. Thermodynamic experiments only depend on entropy differences. We will need
to consider an experiment that changes the frozen variables—for example,heating up
a glass until it becomes a liquid or cooling it from a liquid to a glass. In such an ex-
periment the frozen information must be accounted for. The difficulty with a glass is
that we do not have an independent way to determine the amount of frozen infor-
mation. Fortunately, there is another system where we do.

There is an intermediate example between a magnet and a glass that is of con-
siderable interest. The structure of ice has a glasslike frozen disorder of its hydrogen
atoms below approximately 100°K. The simplest way to think about this disorder is
that it arises from a choice of orientations of the water molecule around the position
of the oxygen atom. This means that there is a macroscopic amount of information
necessary to specify the static structure of ice. The amount of information associated
with this disorder can be calculated directly using a model for the structure of ice that
takes into account the correlations between molecular orientations that are needed to
form a self-consistent hydrogen structure within the oxygen lattice.A first estimate is
based on an average o f 3/2 orientations per molecule or C = Nk ln(3/2) = 0.806
cal/moleK. A review of better calculations is given in a book by Fletcher. The best is
C = 0.8145 ± 0.0002 cal/mole°K. The other calculation we need is the amount of en-
tropy in steam. This can be obtained using a slight modification of the ideal gas cal-
culation,that takes into account the rotational and internal vibrational motion of the
water molecule.
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The key experiment is to measure the change in the entropy of the system as a
function of temperature as it is heated from ice all the way to steam. We find the en-
tropy using the standard thermodynamic relationship (Section 1.3)

q = TdS (8.3.3)

where q is the heat added to the system. At close to a temperature of zero degrees
Kelvin (T = 0K) the entropy is zero because all motion stops, and there is only one
possible state of the system. Thus we would expect

(8.3.4)

—the total amount of entropy added to the system as it is heated up should be the
same as the entropy of the gas. However, experimentally there is a difference of 0.82 ±
0.05 cal/moleK between the two. This is the amount of entropy in the gas that was not
added to the system as it was heated. The coincidence of two numbers—the amount
of entropy missing and the calculation of the information in the frozen structure of
the hydrogen atoms, suggests that the missing entropy was present in the original state
of the ice.

(8.3.5)

This in turn implies that the information in the frozen degrees of freedom was trans-
ferred (but conserved) to the fast degrees of freedom. Eq.(8.3.5) is not consistent with
the standard thermodynamic relationship in Eq. (8.3.3). Instead it should be modi-
fied to read:

q = Td(S + C ) (8.3.6)

This should be understood as implying that adding heat to a system increases the in-
formation either of the fast or frozen variables. Adding heat (e.g., to ice) increases the
temperature of the system,so that fewer variables are frozen. In this case C decreases
and S increases more than would be given by the conventional relationship o f Eq.
(8.3.3). When heat is not added to a system, we see that there can be processes that
change the number of fast degrees of freedom and the number of static degrees of free-
dom while leaving their sum the same. We will consider this further in later sections.

Eq. (8.3.6) is important enough to present it again from a different perspective.
The discussion will help demonstrate its validity by using a theoretical argument
(Fig. 8.3.1). Rather than considering it from the point of view of heating ice till it be-
comes steam, we consider what happens either to ice or to a glass when we cool it
down through the transition where degrees of freedom become frozen. In a theoreti-
cal description we start,above the freezing-in transition, with an ensemble of systems.
As we cool the system we remove heat,and this is reflected in a decrease in the num-
ber of possible states of the system. We think of this as a shrinking of the number of
elements of the ensemble. However, as we go through the freezing-in transition, the

    
S(T) = C(T = 0) +

q

T0

T

∫

    

S(T) = q /T
0

T

∫
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ensemble breaks up into disjoint pieces that can not make transitions to each other.
Any particular material must be in one of the disjoint pieces. Thus for a particular ma-
terial we must track only part of the original ensemble. For an incremental decrease
in temperature due to an incremental removal of heat, the information needed to
identify (describe) a particular microstate is the sum of the information necessary to
describe which of the disjoint parts of the ensemble the system is in, plus the infor-
mation needed to specify which of the microstates the system is in once its ensemble
fragment has been specified. This is the meaning of Eq. (8.3.6). The information to
specify the ensemble fragment was transferred from the entropy S to the ensemble in-
formation C. The reduction of the entropy, S, is not reflected in the amount of heat
that is removed.

We are now in a position to give a first definition of complexity. In order to de-
scribe a system and its behavior over time,we must describe the ensemble it is in. This
information is given by C/k ln(2). If we insist on describing the microstate of the sys-
tem, we must add the information contained in the fast degrees of freedom S /k ln(2).
The question is whether we should insist on describing the microstate. Typically, the
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Figure 8.3.1 Schematic illustration of the effect on motion in phase space of cooling through
a glass transition. Above the glass transition (T1,T2 and T3) the system is ergodic — it ex-
plores the entire phase space. Cooling the system causes the phase space to shrink smoothly.
The entropy, the logarithm of the volume of phase space, decreases. Below the glass transi-
tion, T4, the system is no longer ergodic and the phase space breaks up into pieces. A par-
ticular system explores only one of the pieces. The total amount of information necessary to
specify a particular microstate (e.g. indicated by the *) is the sum of C/k ln(2), the infor-
mation necessary to specify which piece, and S/k ln(2), the information necessary to specify
the particular state within the piece. ❚
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whole point of describing an ensemble is that we don’t need to specify the particular
microstate. We will return to address this question in greater detail later. However, for
now it is reasonable to consider describing the system to be specifying just the en-
semble. This implies that the information in the frozen variables C /k ln(2) is the com-
plexity. For a thermodynamic system in the microcanonical ensemble, the complex-
ity would be given by the (small) number of bits in the specification of the three
variables (U,N,V ) and the number of bits necessary to specify the type of element
(atom,molecule) that is present. The actual amount of information seems not to be
precisely defined. For example, we have not identified the number of bits to be used
in specifying (U, N,V ). As we have seen in the discussion of algorithmic complexity,
this is to be expected, since the conventions of how the information is sp ecified are
crucial when there is only a small amount.

We have learned from this discussion that for a nonergodic system, the com-
plexity (the frozen ensemble information) is bounded by the sum over the number
of fast and static degrees of freedom (C + S > C). For material systems, we know in
principle how to measure this. As in the case of ice, we heat up the system to the va-
por phase where the entropy can be calculated,then subtract the entropy added dur-
ing the heating process. This gives us the value of C + S at the temperature from
which the heating began. If we know that C >> S, then the result is the complexity it-
self. In order for this technique to work at all, the complexity must be large enough
so that experimental accuracy can enable its measurement. Estimates we will give
later imply that complexities of biological organisms are too small to be measured in
this way.

The concept of frozen degrees of freedom immediately raises the question of the
time scale in which the experiment is performed. Degrees of freedom that are frozen
on one time scale are not on sufficiently longer ones. If our time scale of observation
would be arbitrarily long, we would always describe systems in equilibrium. The en-
tropy would then be large and the complexity would be negligible.On the other hand,
if our time scale of observation was extremely short so that microscopic motions were
detected, then our complexity would be large and the entropy would be negligible.
This motivates the introduction of the complexity profile in Section 8.3.3.

Question 8.3.1 Calculate the information necessary to specify the mi-
crostate of a mole of an ideal gas at T = 0°C and P = 1atm. Use the mass

of a helium or neon atom for the mass of the ideal gas particle. This requires
a careful investigation of units.A table of fundamental physical constants is
given on the following page.

Solution 8.3.1 The entropy of an ideal gas is found in Section 1.3 to be:

S = kN[ln(V/N (T)3) + 5/2] (8.3.7)

(T) = (h 2/2 mkT )1/2 (8.3.8)

The information content of a microstate is given by Eq. (8.3.2).
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Each of the quantities must be evaluated numerically from appropriate
tables. A mole of particles is

N0 = 6.0221367 × 1023 /mole (8.3.9)

At the temperature

T0 = 0 °C = 273.13 °K (8.3.10)

kT0 = 0.0235384 eV (8.3.11)

and pressure

P0 = 1atm = 1.01325 × 105 Pascal = 1.01325 × 105 Newton/m2 (8.3.12)

the volume (of a mole of particles) of an ideal gas is:

V = N0kT /P0 = 22.41410 × 10−3 m3/mole (8.3.13)

the volume per particle is:

V /N = 37219.5 Å3 (8.3.14)

At the same temperature we have:

(T) = (2 mkT /h2)−1/2 = m[AMU]−1/2 × 1.05633 °A (8.3.15)

This gives the total information for a mole of helium gas at these conditions
of

I = N0 (18.5533 + 3/2 ln(m[AMU])) = 1.24 × 1025 (8.3.16)

Note that the amount of information per particle is only of order 10 bits. ❚
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hc = 12398.4 eV Å
k = 1.380658x10-23 Joule/°K
R = kN0 = 8.3144 Joule/°K/mole
c = 2.99792458 108 Meter/second
h = 6.6260755 10-34 Joule second
e = 1.60217733 10-19 Coulomb
ProtonMass = 1.6726231x10-27 kilogram
1 AMU = 1.6605402x10-27 kilogram = 9.31494x109 eV
M [Helium] = 4.0026 AMU
M [Neon] = 20.179 AMU
M [Helium] c2 = 3.7284x109

M [Neon] c2 =1.87966x1010

Table 8.3.1 Fundamental constants ❚
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8.3.2 Algorithmic complexity of physical systems
The complexity of a system is designed to measure the amount of information neces-
sary to describe it, or its behavior. In this section we address the key word “necessary.”
This word suggests that we are after the minimum amount of information. The min-
imum amount of information depends on our capabilities of inference from a smaller
amount of information. As discussed in Section 8.2.2, logical inference and compu-
tation lead to the definition of algorithmic complexity. However, for an ensemble that
can be described simply, the algorithmic complexity is no different than the Shannon
information.

Since we have established a connection between the complexity of physical sys-
tems and representations in terms of character strings, we can apply these results di-
rectly to physical systems.A physical system in equilibrium is represented by an en-
semble. At any particular time, it is in a single microstate. The specification of this
microstate can be compressed by encoding in certain rare cases. However, on average
the compression cannot lead to an amount of information significantly different from
the entropy (divided by k ln(2)) of the system. This conclusion follows because the
microcanonical (or canonical) ensemble can be concisely described. For a nonergodic
system like a glass,the microstate description has been separated into two parts. It is
no longer true that the ensemble of dynamically accessible states of a particular sys-
tem is concisely describable. The information in the frozen degrees of freedom is pre-
cisely the information necessary to specify the ensemble of dynamically accessible
states. The total information, (C + S)/k ln(2), represents the selection of a microstate
from a simple ensemble (microcanonical or canonical). Since the total information
cannot be compressed, neither can either of the two parts of the information—the
frozen degrees of freedom that we have identified with the complexity, or the addi-
tional information necessary to specify a particular microstate. Thus the algorithmic
complexity is the same as the information for either part.

We can now, finally, explain the experimental observation that an adiabatic
process does not change the entropy of a system (Section 1.3). The algorithmic de-
scription of an adiabatic process requires only a few pieces of information, e.g., the
size of a force applied over a specified distance. If a new microstate of the system can
be described by the original microstate plus the process of adiabatic change,then the
amount of information in the microstate has not been changed, and the adiabatic
process does not change the microstate algorithmic complexity—the entropy of the
system.Like other aspects of statistical mechanics (Section 1.3),this should not be un-
derstood as a proof but rather as an explanation of the relationship of the thermody-
namic observation to the microscopic properties. Using this explanation, we can iden-
tify the nature of an adiabatic process as one that is described microscopically by a
small amount of information.

This becomes clearer when we compare adiabatic and irreversible processes.Our
argument that an adiabatic process does not change the entropy is based on consid-
ering the information necessary to describe an adiabatic process—slowly moving a
piston to expand the space available to a gas. An irreversible process could achieve a
similar expansion, but would not be thermodynamically the same. Take, for example,
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the removal of a partition that separates the gas from a second,initially empty, cham-
ber. The irreversible process of expansion of the gas results in a final state which has
a higher entropy (see Question 1.3.4). The removal of a partition in itself does not ap-
pear to require a lot of information to describe.One moment after the partition is re-
moved, the entropy of the system is the same as before. To understand how the en-
tropy increases, we must consider the nature of irreversible dynamics.

A key ingredient in our understanding of physical systems is that the time evolu-
tion of an isolated system can be obtained from the simple laws of mechanics (classi-
cal or quantum). This means that the dynamics of an isolated system conserves the
amount of information as well as the energy. Such dynamics are called conservative.
If we consider an ensemble of systems starting in a particular region of phase space,
the phase space position evolves in time, but the volume of the phase space that is oc-
cupied—the entropy—does not change. This conservation of phase space can be un-
derstood from our discussion of algorithmic complexity: since the deterministic dy-
namics of a system can be computed, the algorithmic complexity of the system is
conserved. Where does the additional entropy come from for the final equilibrium
state after the expansion?

There are two parts to the process of proceeding to a true equilibrium state. In
the first part the distinction between the nonequilibrium and equilibrium state is ob-
scured. At first there is macroscopically observable information—the particles are in
one half of the chamber. This information is converted to microscopic correlations
between atomic positions and momenta. The conversion occurs when the gas ex-
pands to fill the chamber, and various currents that follow this expansion become
smaller and smaller in extent. The microscopic correlations cannot be observed on a
macroscopic scale,and for standard observations the system is indistinguishable from
an equilibrium state. The transfer of information from macroscopic to microscopic
scale is related to issues of chaos in the dynamics of physical systems, which will be
discussed later.

The second part to the process is an actual increase in the entropy of the system.
The additional entropy must come from outside the system. In macroscopic physical
processes, we are not generally concerned with isolating the system from information
transfer, only with isolating the system from energy transfer. Thus we can surmise that
the expansion of the gas is followed by an information transfer that enables the en-
tropy to increase to its equilibrium value without changing the energy of the system.
Many of the issues related to describing this nonequilibrium process will not be ad-
dressed here. We will,however, begin to address the topic of the scale of observation
at which correlations appear using the complexity profile in the following section.

8.3.3 Complexity profile
General approach In this section we discuss the relationship of microscopic and
macroscopic complexity. Our objective is to develop a consistent language for dis-
cussing complexity as a function of length scale. In the following section we will dis-
cuss the complexity as a function of time scale, which generalizes the discussion of
frozen and fast degrees of freedom in Section 8.3.1.
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When we describe a system, we are not generally interested in a microscopic de-
scription of the positions and velocities of all of the particles. For a thermodynamic
system there are only a few macroscopic parameters that we use to describe the sys-
tem. This is indeed the reason we use entropy as a summary of the many hidden pa-
rameters of the system that we are not interested in. The microscopic parameters
change too fast and over too small distances to matter for our macroscopic measure-
ments/experience. The same is true more generally about systems that are not in equi-
librium: a macroscopic description does not require specifying the position of each
atom. This implies that we must develop an understanding of complexity that is not
tied to the microscopic description, but is relevant to observations at a particular
length and time scale.

This point lies at the root of a con ceptual probl em in thinking abo ut the com-
p l ex i ty of s ys tem s . A gas in equ i l i brium has a large en tropy wh i ch is its micro s cop i c
com p l ex i ty. This is co u n ter to our understanding of com p l ex sys tem s . Sys tems in equ i-
l i brium are intu i tively simpler than non equ i l i brium sys tems su ch as a human bei n g. In
Secti on 8.3.1 we started to ad d ress this probl em by iden ti f ying the com p l ex i ty of a non-
er godic sys tem as the inform a ti on nece s s a ry to specify the frozen degrees of f reedom .
We now discuss a more sys tem a tic approach to dealing with mac ro s copic ob s erva ti on s .

In order to consider the macroscopic complexity, we have to define what we mean
by macroscopic in a formal sense. The concept of macroscopic must be understood
in relation to a particular observer. While we often consider experimental results to be
independent of the observer, there are various ways in which the observer is essential
to the observation. In this context, in which we are concerned with the meaning of
macroscopic, considering the observer is essential.

How do we ch a racteri ze the differen ce bet ween a micro s copic and a mac ro s cop i c
ob s erver? The most crucial differen ce is that a micro s copic ob s erver is able to disti n-
guish bet ween all inheren t ly disti n g u i s h a ble states of the sys tem , while a mac ro s cop i c
ob s erver cannot. For a mac ro s copic ob s erver, m a ny micro s cop i c a lly disti n ct states ap-
pear the same. This is rel a ted to our understanding of com p l ex i ty, because the mac ro-
s copic ob s erver need on ly specify wh i ch of the mac ro s cop i c a lly disti n ct states the sys-
tem is in. The micro s copic ob s erver must specify wh i ch of the micro s cop i c a lly disti n ct
s t a tes the sys tem is in. Thus the mac ro s copic com p l ex i ty must alw ays be small er than
the micro s copic com p l ex i ty of a sys tem . In s te ad of con s i dering a unique mac ro s cop i c
ob s erver, we wi ll con s i der a sequ en ce of ob s ervers with a progre s s ively poorer abi l i ty
to distinguish micro s t a te s . Using these ob s ervers , we wi ll define the com p l ex i ty prof i l e .

Ideal gas These ideas can be direct ly app l i ed to the ideal ga s .We gen era lly think abo ut
a mac ro s copic ob s erver as having an inabi l i ty to distinguish fine-scale distance s . Thu s
we ex pect that the usual uncert a i n ty in parti cle po s i ti on ∆x wi ll increase for a mac ro-
s copic ob s erver. However, we learn from qu a n tum mechanics that a unique micro s t a te
of the sys tem is def i n ed using an uncert a i n ty in both po s i ti on and mom en tu m , ∆x∆p
= h.Thus for the mac ro s copic ob s erver to confuse disti n ct micro s t a te s , the produ ct ∆x∆p
must be larger than its minimum va lue—an ob s erva ti on of the sys tem provi des mea-
su rem ents of the po s i ti on and mom en tum of e ach parti cl e , whose uncert a i n ty has a
produ ct gre a ter than h. We can label our ob s ervers by this uncert a i n ty, wh i ch we call h̃.
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If we retrace our steps to the calculation of the entropy of an ideal gas
(Question 1.3.2), we can recognize that essentially the same calculation applies to the
complexity with the uncertainty h̃. An observer with the uncertainty h̃ will determine
the complexity of the ideal gas according to Eq.(8.3.7) and Eq.(8.3.8), with h replaced
by h̃. Thus we define the complexity profile for the ideal gas in equilibrium as:

(8.3.17)

This equation describes a complexity that decreases as the ability of the observer to
distinguish states decreases. This is as we expected. Despite the weak logarithmic de-
pendence on h̃ , C(h̃) decreases rapidly because the coefficient of the logarithm is so
large. By the time h̃ is about 100 times h the complexity profile has become negative
for the ideal gases described in Question 8.3.1.

What does a negative complexity mean? It actually means that we have not done
the calculation quite right. The counting of states we did for the ideal gas assumed that
the particles were well separated from each other. If they begin to overlap then we
must count the possible states differently. This overlap is significant precisely when
Eq.(8.3.17) becomes negative. If the particles really overlapped then quantum statis-
tics becomes important; the gas is said to be degenerate and satisfies either Fermi-
Dirac or Bose-Einstein statistics. In our case the overlap arises only because the ob-
server cannot distinguish different particle positions. In this case, the counting of
states is appropriate to a classical ideal gas, as we now explain.

To calculate the complexity as a function of h̃ for an equilibrium state whose en-
tropy is S, we start by calculating the number of microstates that the observer cannot
distinguish. The logarithm of this number of microstates, which we call S(h̃)/k ln(2),
is the amount of information necessary to specify a microstate, if the macrostate is
known. Thus we have that:

(8.3.18)

To count the number of microstates that the observer cannot distinguish,we note that
the possible microstates of a particular particle are grouped together by the observer
into bins (regions or cells of position and momentum) of size (∆x∆p)d = h̃d, where
d = 3 is the dimensionality of space. The observer determines only that a particle is
within a certain region. In the classical ideal gas each particle moves independently,
so more than one particle may occupy the same microstate. However, this is unlikely.
As h̃ increases it becomes increasingly likely that there is more than one particle in a
region. If the number of particles in a certain region is ni , then the number of distinct
microstates of the bin that the observer does not distinguish is:

(8.3.19)

where g = (h̃ /h)d is the number of microstates within a region. This is the product of
the number of states each particle may be in, corrected for particle indistinguishabil-
ity. The number of microstates of the whole system that appear to the observer to be
the same is the product of such terms for each region:

    

gni

n i !

    C( ˜ h ) = S −S( ˜ h )

    ̃  h > h    C( ˜ h ) = S − 3kN ln(˜ h /h)
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(8.3.20)

From this we can determine the complexity of the state determined by the observer
as:

(8.3.21)

If we consider this expression when g = 1—a microscopic observer—then ni is almost
always either zero or one and each term in the product is one (a more exact treatment
requires treating the statistics of a degenerate gas). Then C (h̃) is S, which means that
the microstate complexity is just the entropy. For g > 1 but not too large, ni will still
be either zero or one, and we recover Eq. (8.3.17). On the other hand, using this ex-
pression it is possible to show that for a large value of g, when the values of ni are sig-
nificantly larger than one, the complexity goes to zero.

We can understand this by recognizing that as g increases, the number of parti-
cles in each bin increases and becomes closer to the average number of particles in a
bin according to the macroscopic probability distribution. This is the equilibrium
macrostate. By our conventions we are measuring the amount of information neces-
sary for the observer to specify its observation in relation to the equilibrium state.
Therefore, when the average number of particles in a bin becomes close enough to this
distribution,there is no information that must be given. To write this explicitly, when
ni is much larger than one we apply Sterling’s approximation to the factorial in
Eq. (8.3.21) to obtain:

(8.3.22)

where Pi = ni /g is the probability a particle is in a particular state according to t h e ob-
s erver. It is shown in Questi on 8.3.2 that C (h̃) is zero wh en Pi is the equ i l i briu m
prob a bi l i ty for finding a parti cle in regi on i ( n o te that i stands for both po s i ti on and
m om en tum (x,p) ) .

There are additional smaller terms in Sterling’s approximation to the factorial
that we have neglected. These terms are generally ignored in calculations of the en-
tropy because they are not proportional to the number of particles. They are, how-
ever, relevant to calculations of the complexity:

(8.3.23)

The additional terms are related to fluctuations in the density. This will become ap-
parent when we analyze nonuniform systems below.

We will discuss additional examples of the complexity profile below. First we sim-
plify the complexity profile for observers that measure only the positions and not the
momenta of particles.

    

C( ˜ h ) = S −k
i

∑ ni ln(g /ni )+ 1( )+ k
i

∑ ln( 2 ni )

    

C( ˜ h ) = S −k
i

∑ ni ln(g /ni )+ 1( ) = S +k g
i

∑ Pi ln(Pi ) −kN

    
C( ˜ h ) = S −S( ˜ h ) = S −k ln(

gni

n i !i
∏ )

    

g ni

ni !i
∏
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Question 8.3.2 Show that Eq.(8.3.22) is zero when Pi is the equilibrium
probability of locating a particle in a particular state identified by mo-

mentum p and position x. For simplicity assume that all g states in the cell
have essentially the same position and momentum.

Solution 8.3.2 We calculate an expression for Pi → P(x,p) using
Boltzmann probability for a single particle (since all are independent):

(8.3.24)

where Z is the one particle partition function given by:

(8.3.25)

We evaluate the expression:

(8.3.26)

which, by Eq.(8.3.22), we want to show is the same as the entropy. Since all
g states in cell i have essential ly the same position and momentum, this is
equal to:

(8.3.27)

which is most readily evaluated by recognizing it as:

(8.3.28)

which is S as given in Eq. (8.3.7). ❚

Position without momentum The use of the scale parameter ∆x∆p in the above
discussion should trouble us, because we do not generally consider the momentum
uncertainty on the macroscopic scale. The resolution of this problem arises because
we have assumed that the system has a known energy or temperature. If we know the
temperature then we know the thermal velocity or momentum:

∆p ≈ √mkTi (8.3.29)

It does not make sense to have a mom en tum uncert a i n ty of a parti cle that is mu ch
gre a ter than this. Using ∆x∆p = h this means there is also a natu ral uncert a i n ty in po-
s i ti on wh i ch is the thermal wavel ength given by Eq . ( 8 . 3 . 8 ) . This is the maximal
qu a n tum po s i ti on uncert a i n ty, unless the ob s erver can distinguish the thermal mo-
ti on of i n d ivi dual parti cl e s . We can now think abo ut a sequ en ce of ob s ervers who do
not distinguish the mom en tum of p a rti cles (they have a larger uncert a i n ty than the
t h ermal mom en tum) but have increasing uncert a i n ty in po s i ti on given by L =∆ x, or
g = (L / )d. For su ch ob s ervers the equ i l i brium mom en tum prob a bi l i ty distri buti on
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is to be assu m ed . In this case the nu m ber of p a rti cles in a cell ni con tri butes a term
to the en tropy that is equal to the en tropy of a gas with this many parti cles in the vo l-
ume Ld. This gives a total en tropy of :

(8.3.30)

and the complexity is:

(8.3.31)

which differs in form from Eq. (8.3.22) only in the constant.
While we generally do not think about measuring momentum, we do measure

velocity. This follows from the content of the previous paragraph. We consider ob-
servers that measure particle positions at different times and from this they may infer
the velocity and indirectly the momentum. Since the observer measures ni , the deter-
mination of velocity depends on the observer’s ability to distinguish moving spatial
density variations. Thus we consider the measurement of n(x ,t), where x has macro-
scopic meaning as a granular coordinate that has discrete values separated by L . We
emphasize,however, that this description of a space- and time-dependent density as-
sumes that the local momentum distribution of the system is consistent with an equi-
librium ensemble. The more fundamental description is given by the distribution of
particle positions and momenta, ni = n(x ,p). Thus, for example, we can also describe
a rotating disk that has no macroscopic changes in density over time, but the rotation
is still macroscopic. We can also describe fluid flow in an incompressible fluid. In this
section we continue to restrict ourselves to the description of observations at a par-
ticular time. The time dependence of observations will be considered in Section 8.3.5.

Thus far we have considered systems that are in generic states selected from the
equilibrium ensemble. Equilibrium systems are uniform on all but very microscopic
scales, unless we are exactly at a phase transition. Thus, most of the complexity dis-
appears on a scale that is far smaller than typical macroscopic observations. This is
not necessarily true about nonequilibrium systems. Systems that are in states that are
far from equilibrium can have nonuniform densities of particles.A macroscopic ob-
server will see these macroscopic variations. We will consider a couple of different ex-
amples of nonequilibrium states to illustrate some properties of the complexity pro-
file. Before we do this we need to consider the effect of algorithmic compression on
the complexity profile.

Algorithmic complexity and error To discuss macroscopic complexity more com-
pletely, we turn to algorithmic complexity as a function of scale. The complexity of a
system,particularly a nonequilibrium system,should be defined in terms of the algo-
rithmic complexity of its description. This means that patterns that are present in the
positions (or momenta) of its particles can be used to simplify the description.

Using this discussion we can reformulate our understanding of the complexity
profile. We defined the profile using observers with progressively poorer ability to dis-
tinguish microstates. The fraction of the ensemble occupied by these states defined

    

C(L) = S − k
i

∑ ni ln(g /n i ) + 5/2( )

    

S(L) =k
i

∑ ni ln(Ld /n i
3)+ 5/2 
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the complexity. Using an algorithmic perspective we say, equivalently, that the ob-
server cannot distinguish the true state from a state that has a smaller algorithmic
complexity. An observer with a value of g = 2 cannot distinguish which of two states
each particle occupies in the real microstate. Let us label the single particle states us-
ing an index that enumerates them. We can then imagine a checkerboard (in six di-
mensions of position and momentum) where odd indexed states are black and even
ones are white. The observer cannot tell if a particle is in a black or a white state. Thus,
no matter what the real state is,there is a simpler state where only odd (or only even)
indexed states of the particles are occupied, which cannot be distinguished from the
real system by the observer. The algorithmic complexity of this state with particles in
odd indexed states is essentially the complexity that we determined above, C(g = 2)—
it is the information necessary to specify this state out of all the states that have par-
ticles only in odd indexed states. Thus,in every case, we can specify the complexity of
the system for the observer as the complexity of the simplest state that is consistent
with the observations—by Occam’s razor, this is the state that the observer will use to
describe the system.

We note that this is also equivalent to defining the complexity profile as the length
of the description as the error allowed in the description increases. The total error as
a function of g for the ideal gas is

(8.3.32)

where N is the number of particles in the system. The factor of 1/2 arises because the
average error is half of the maximum error that could occur. This approach is helpful
since it suggests how to generalize the complexity profile for systems that have differ-
ent types of particles. We can define the complexity profile as a function of the num-
ber of errors that are made. This is better than using a particular length scale, which
implies a different error for particles of different mass as indicated by Eq.(8.3.8). For
conceptual simplicity, we will continue to write the complexity profile as a function
of g or of length scale.

Nonequilibrium states Our next objective is to consider nonequilibrium states.
When we have a nonequilibrium state,the microstate of the system is simpler than an
equilibrium state to begin with. As we mentioned at the end of Section 8.3.2,there are
nonequilibrium states that cannot be distinguished from equilibrium states on a
macroscopic scale. These nonequilibrium states have microscopic correlations. Thus,
the microscopic complexity is lower than the equilibrium entropy, while the macro-
scopic complexity is the same as in equilibrium:

C(g) < C0(g) = S0 g = 1

C(g) = C0(g) g >> 1
(8.3.33)

where we use the subscript 0 to indicate quantities of the equilibrium state. We illus-
trate this by an example. Using the indexing of single par ticle states we just intro-
duced, we take a microstate where all particles are in odd indexed states. The mi-

    

1

2
log ∆xi ∆pi /h∏( ) =

1

2
N log(g)
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crostate complexity is the same as that of an equilibrium state at g = 2, which is less
than the entropy of the equilibrium system:

C(g = 1) = C0(g = 2) < C0(g = 1)

However, the complexity of this system for scales of observation g ≥ 2 is the same as
that of an equilibrium system—macroscopic observers do not distinguish them.

This scenario, where the complexity of a nonequilibrium state starts smaller but
then quickly becomes equal to the equilibrium state complexity, does not always hold.
It is true that the microscopic complexity must be less than or equal to the entropy of
an equilibrium system, and that all systems have the same complexity when L is the
size of the system. However, what we will show is that the complexity of a nonequi-
librium system can be higher than that of the equilibrium system at large scales that
are smaller than the size of the system. This is apparent in the case, for example, of a
nonuniform density at large scales.

To illustrate what happens for such a nonequilibrium state, we consider a system
that has nonuniformity that is characteristic of a particular length scale L 0, which is
significantly larger than the microscopic scale but smaller than the size of the sys-
tem. This means that ni is smooth on finer scales,and there is no particular relation-
ship between what is going on in one region of length scale L 0 and another. The val-
ues of ni will be taken from a Gaussian distribution around the equilibrium value n0

with a standard deviation of . We assume that is larger than the natural density
fluctuations, which have a standard deviation of 0 =√n0 . For convenience we also as-
sume that is much smaller than n0 .

We can calculate both the complexity C(L), and the apparent entropy S(L) for
this system. We start by calculating them at the scale L0 . C(L0) is the amount of in-
formation necessary to specify the density values. This is the product of the number
of cells V /Ld times the information in a number selected from a Gaussian distribution
of width . From Question 8.3.3 this is:

(8.3.34)

The number of microstates consistent with this macrostate at L 0 is given by the sum
of ideal gas entropies in each region:

(8.3.35)

Since is less than n0 , this can be evaluated by expanding to second order in ni =
ni − n0 :

(8.3.36)

where S0 is the entropy of the equilibrium system, and we used < n2
i > = 2. We note

that when = 0 the logarithmic terms in the complexity reduce to the extra terms

    

S(L0) = S0 −k
( n i )

2

2n0i

∑ = S0 −
kV 2

2L0
dn0

    

S(L0) = −k
i

∑ ni ln(ni /g) +(5/2)kN
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732 Hu ma n  C i v i l iz a t i on  I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 732
Title: Dynamics Complex Systems Short / Normal / Long

Bar-YamChap8.pdf  3/10/02 10:52 AM  Page 732



found in Eq. (8.3.23). Thus, these terms are the information needed to describe the
equilibrium fluctuations in the density.

We can understand the beh avi or of the com p l ex i ty profile of this sys tem . By con-
s tru cti on , the minimum amount of i n form a ti on needed to specify the micro s t a te is
C( ) = S(L0) + C(L 0) . This is the sum over the en tropy of equ i l i brium gases with den-
s i ties ni in vo lumes Ld

0,p lus C(L 0) . Si n ce S(L 0) is linear in the nu m ber of p a rti cl e s ,wh i l e
C(L 0) is loga rithmic in and therefore loga rithmic in the nu m ber of p a rti cl e s , we con-
clu de that C(L 0) is mu ch small er than S(L 0) . For L > the com p l ex i ty profile C(L) de-
c reases like that of an equ i l i brium ideal ga s . The term S(L 0) is el i m i n a ted at a micro-
s copic length scale larger than but mu ch small er than L 0. However, C(L0) rem a i n s .
Due to this term the com p l ex i ty crosses that of an equ i l i brium gas to become larger.
For length scales up to L0 the com p l ex i ty is essen ti a lly constant and equal to Eq .( 8 . 3 . 3 4 ) .
Above L 0 it dec reases to zero as L con ti nues to increase by vi rtue of the ef fect of com-
bining the different ni i n to fewer regi on s . Com bining the regi ons re sults in a Gaussian
d i s tri buti on with a standard devi a ti on that dec reases as the squ a re root of the nu m ber
of terms → (L0/L)d / 2. Thu s , the com p l ex i ty and en tropy profiles for L > L0 a re :

(8.3.37)

This expression continues to be valid until there is only one region left,and the com-
plexity goes to zero. The precise way the complexity goes to zero is not described by
Eq. (8.3.37), since the Gaussian distribution does not apply in this limit.

There are several comments that we can make that are relevant to understanding
complexity profiles in general. First we see that in order for the macroscopic com-
plexity to be higher than that in equilibrium, the entropy at the same scale must be
reduced S(L) < S0. This is necessary because the sum S(L) + C(L)—the total informa-
tion necessary to specify a microstate—cannot be greater than S0. However, we also
note that the reduction in S(L) is much larger than the increase in C(L). The ratio be-
tween the two is given by:

(8.3.38)

For > 0 = √n0 this is greater than one. We can understand this result in two ways.
First, a complex macroscopic system must be far from equilibrium, and therefore
must have a much smaller entropy than an equilibrium system. Second, a macro-
scopic observer makes many errors in determining the microstate,and therefore if the
microstate is similar to an equilibrium state,the observer cannot distinguish the two
and the macroscopic properties must also be similar to an equilibrium state.For every
bit of information that distinguishes the macrostate, there must be many bits of dif-
ference in the microstate.

    

S(L)

C(L)
= −

2

2n0

Ld / 2

L0
d /2

1

ln( / 0)

    

S(L) = S0 −
kV 2

2(LL0)d /2n0

    
C(L) = k

V

Ld
(
1

2
(1 + ln(2 ))+ ln L0 L( )d / 2

)

C o m p l ex i t y  of  p hys i c a l  sy s t e m s 733

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 733
Title: Dynamics Complex Systems Short / Normal / Long

Bar-YamChap8.pdf  3/10/02 10:52 AM  Page 733



In calculating the com p l ex i ty of the sys tem at a particular scale, we assu m ed that
the ob s erver was in error in obtaining the po s i ti on and mom en tum of e ach parti cl e .
However, we assu m ed that the nu m ber of p a rti cles within each bin was determ i n ed ex-
act ly.Thus the com p l ex i ty we calculated is the inform a ti on nece s s a ry to specify the nu m-
ber of p a rti cles precise to the single parti cl e . This is why even the equ i l i brium den s i ty
f lu ctu a ti ons were de s c ri bed . An altern a tive , m ore re a s on a bl e , a pproach assumes that
p a rti cle co u n ting is also su bj ect to error. For simplicity we can assume that the error is
a fracti on of the nu m ber of p a rti cles co u n ted . For mac ro s copic sys tems this fracti on is
mu ch larger than the equ i l i brium flu ctu a ti on s , wh i ch therefore need not be de s c ri bed .
This approach also modifies the form of the com p l ex i ty profile of the nonu n i form ga s
in Eq .( 8 . 3 . 3 7 ) . The error in measu rem ent increases as n0(L) ∝ Ld with the scale of ob-
s erva ti on . Let ting m0(L) be the error in a measu rem ent of p a rti cle nu m ber, we wri te :

(8.3.39)

The consequence of this modification is that the complexity decreases somewhat
more rapidly as the scale of observation increases. The expression for the entropy in
Eq. (8.3.37) is unchanged.

Question 8.3.3 What is the information in a number (character) se-
lected from a Gaussian distribution of standard deviation ?

Solution 8.3.3 Starting from a Gaussian distribution (Eq. 1.2.39),

(8.3.40)

we calculate the information (Eq. 8.2.2):

(8.3.41)

where the second term in the integral can be evaluated using < x 2 > = 2.
We note that this result is to be interpreted as the information in a dis-

crete distribution of integral values of x, like a random walk,that in the limit
of large gives a Gaussian distribution. The units that are used to measure

define the precision to which the values of x are to be described. It thus
makes sense that the information to specify an integer of typical magnitude

is essentially log( ). ❚

8.3.4 Time dependence—chaos and the complexity profile
General approach In describing a system, we are interested in macroscopic obser-
vations over time, n(x , t). As with the uncertainty in position,a macroscopic observer
is not able to distinguish the time of observation within less than a certain time in-
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terval T = ∆t. To define what this means, we say that the system is represented by an
ensemble with probability PL,T(n(x ; t)), or more generally PL,T (n(x , p ; t)). The differ-
ent microstates that occur during the time interval T are all part of this ensemble.This
may appear different than the definition we used for the spatial uncertainty. However,
the definitions can be restated in a way that makes them appear equivalent. In this re-
statement we recognize that the observer performs measurements that are, in effect,
averages over various possible microscopic measurements. The average measure-
ments over space and time represent the system (or system ensemble) that is to be de-
scribed by the observer. This representation will be discussed further in Section 8.3.6.
The use of an ensemble is convenient because the observer may only measure one
quantity, but we can consider various quantities that can be measured using the same
degree of precision. The ensemble represents all possible measurements with this de-
gree of precision. For example, the observer can measure correlations between parti-
cle positions that are fixed over time.If we averaged the density n(x , t) over time,these
correlations could disappear because of the movement of the whole system. However,
if we average over the ensemble,they do not. We define the complexity profile C(L, T )
as the amount of information necessary to specify the ensemble PL,T (n(x , t)). A de-
scription at a finer scale contains all of the information necessary to describe the
coarser scale. Thus, C(L, T ) is a monotonic decreasing function of its arguments. A
direct analysis is discussed in Question 8.3.4. We start,however, by considering the ef-
fect on C(L,T ) of prediction and the lack of predictability in chaotic dynamics.

Predictability and chaos As discussed earlier, a key ingredient in our understand-
ing of physical systems is that the time evolution of an isolated system (or a system
whose interactions with its environment are specified) can be obtained from the sim-
ple laws of mechanics starting from a complete microscopic description of the posi-
tion and momenta of the particles. Thus, if we use a small enough L and T, so that
each particle can be distinguished, we only need to specify PL,T (n(x , t)) over a short
period of time (or the simultaneous values of position and momentum) in order to
predict the behavior over all subsequent times. The laws of mechanics are also re-
versible. We describe the past as well as the future from the description of a system at
a particular time. This must mean that information is not lost over time. Systems that
do not lose information over time are called conservative systems.

However, when we increase the spatial scale of observation, L, then the informa-
tion loss—the complexity reduction—also limits the predictability of a system. We
are not guaranteed that by knowing PL,T (n(x , t)) at a scale L we can predict the sys-
tem behavior. This is true even if we are only concerned about predicting the behav-
ior at the scale L. We may need additional smaller-scale information to describe the
time evolution of the system. This is precisely the origin of the study of chaotic sys-
tems discussed in Section 1.1. Chaotic systems take information from smaller scales
and bring it to larger scales. Chaotic systems may be contrasted with dissipative sys-
tems that take information from larger scales to smaller scales. If we perturb (disturb)
a dissipative system,the effect disappears over time.Looking at such a system at a par-
ticular time, we cannot tell if it was perturbed at some time far enough in the past.
Since the information on a microscopic scale must be conserved, we know that the
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information that is lost on the macroscopic scale must be preserved on the micro-
scopic scale. In this sense we can say that information has been transferred from the
macroscopic to the microscopic scale. For such systems, we cannot describe the past
from present information on a particular length scale.

The degree of predictability is manifest when we consider that the complexity of
a system C(L,T ) at a particular L and T depends also on the duration of the descrip-
tion—the limits of t ∈[t1, t2]. Like the spatial extent of the system, this temporal ex-
tent is part of the system definition. We typically keep these limits constant as we vary
T to obtain the complexity profile. However, we can also characterize the dependence
of the complexity on the time limits t1,t 2 by determining the rate at which informa-
tion is either gained or lost for a chaotic or stable system. For complex systems, the
flow of information between length scales is bidirectional—even if the total amount
of information at a particular scale is preserved, the information may change over
time by transfer to or from shorter length scales. Unlike most theories of currents,in-
formation currents remain relevant even though they may be equal and opposite. All
of the information that affects behavior at a particular length scale,at any time over
the duration of the description, should be included in the complexity.

It is helpful to develop a conceptual image of the flow of information in a system.
We begin by considering a conservative, nonchaotic and nondissipative system seen
by an observer who is able to distinguish 2C(L)/k ln(2) = eC(L)/k states. C(L)/k ln(2) is the
amount of information necessary to describe the system during a single time interval
of length T. For a conservative system the amount of information necessary to de-
scribe the state at a particular time does not change over time. The dynamics of the
system causes the state of the system to change over time among these states. The se-
quence of states could be described one by one. This would require

NT C(L)/k ln(2) (8.3.42)

bits, where NT = (t2 − t1)/T is the number of time intervals. However, we can also de-
scribe the state at a particular time (e.g.,the initial conditions) and the dynamics. The
amount of information to do this is:

(C(L) + Ct(L ,T ))/k ln(2) (8.3.43)

Ct(L,T )/k ln(2) is the information needed to describe the dynamics. For a nonchaotic
and nondissipative system we can show that this information is quite small.We know
from the previous section that the macrostate of the system of complexity C(L) is con-
sistent with a microstate which has the same complexity. The microstate has a dy-
namics that is simple,since it follows the dynamics of standard physical law. The dy-
namics of the simple microstate also describes the dynamics of the macrostate, which
must therefore also be simple. Therefore Eq.(8.3.43) is smaller than Eq.(8.3.42) and
the complexity is C(L,T ) = C(L) + Ct(L ,T ) ≈ C(L). This holds for a system following
conservative, nonchaotic and nondissipative dynamics.

For a system that is chaotic or dissipative, the picture must be modified to ac-
commodate the flow of information between scales. From the previous paragraph we
conclude that all of the interesting (complex) dynamics of a system is provided by in-
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formation that comes from finer scales. The observer does not see this information
before it appears in the state of the system—i.e.,in the dynamics. If we allow ourselves
to see the finer-scale information we can track the flow of information that the ob-
server does not see. In a conventional chaotic system,the flow of information can be
characterized by its Lyaponov exponents. For a system that is described by a single real
valued parameter, x(t), the Lyaponov exponent is defined as an average over:

h = ln((x ′(t) − x(t))/(x ′(t − 1) − x(t − 1))) (8.3.44)

where unprimed and primed coordinates indicate two different trajectories. We can
readily see how this affects the information needed by an observer to describe the dy-
namics. Consider an observer at a particular scale, L. The observer sees the system in
state x(t − 1) at time t − 1, but he determines x(t − 1) only within a bin of width L.
Using the dynamics of the system that is assumed to be known, the observer can de-
termine the state of the system at the next time. This extrapolation is not precise, so
the observer needs additional information to specify the next location. The amount
of information needed is the lo garithm of the number of bins that one bin expands
into during one time step. This is precisely h / ln(2) bits of information. Thus, the
complexity of the dynamics for the observer is given by:

C(L,T ) = C(L) + Ct(L ,T ) + NTkh (8.3.45)

where we have used the same notation as in Eq. (8.3.43).
A physical system that has many dimensions,like the microscopic ideal gas, will

have one Lyaponov exponent for each of 6N dimensions of position and momentum.
If the dynamics is conservative then the sum over all the Lyaponov exponents is zero,

(8.3.46)

where ∆xi(t) = x′i (t) −xi(t) and ∆pi(t) = p′i (t) −pi(t). This follows directly from conser-
vation of volumes of phase space in conservative dynamics. However, while the sum
over all exponents is zero, some of the exponents may be positive and some negative.
These correspond to chaotic and dissipative modes of the dynamics. We can imagine
the flow of information as consisting of two streams, one going to higher scales and
one to lower scales. The complexity of the system is given by:

(8.3.47)

As indicated, the sum is only over positive values.
Two cautionary remarks about the application of Lyaponov exponents to com-

plex physical systems are necessary. Unlike many standard models of chaos,a complex
system does not have the same number of degrees of freedom at every scale. The num-
ber of independent bits of information describing the system above a particular scale
is given by the complexity profile, C(L). Thus,the flow of information between scales
should be thought of as due to a number of closed loops that extend from a particu-
lar lowest scale up to a particular highest scale. As the scale increases,the complexity

    

C(L,T) = C(L) +Ct(L,T)+ NTk h i

i:hi >0

∑

    i
∑ hi = log(

i
∏ ∆xi (t)∆pi(t)/

i
∏ ∆xi (t −T)∆pi (t −T)) = 0
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decreases. Thus, so does the maximum number of Lyaponov exponents. This means
that the sum over Lyaponov exponents is itself a function of scale. More generally, we
must also be concerned that C(L) can be time dependent,as it is in many irreversible
processes.

The second remark is that over time the cycling of information between scales
may bring the same information back more than once. Eq. (8.3.47) does not distin-
guish this,and therefore may include multiple counting of the same information. We
should understand this expression as an upper bound on the complexity.

Time scale dependence Once we have chaotic behavior, we can consider various
descriptions of the time dependence of the behavior seen by a particular observer. All
of the models we considered in Chapter 1 are applicable. The state of the system may
be selected at random from a particular distribution (ensemble) of states at successive
time intervals. This is a special case of the more general Markov chain model that is
described by a set of transition probabilities. Long-range correlations that are not eas-
ily described by a Markov chain may also be important in the dynamics.

In order to discuss the complexity profile as a function of T, we consider a
Markov chain model. From the analysis in Question 8.3.4 we learn that the loss of
complexity with time scale occurs as a result of cycles in the dynamics. These cycles
need not be deterministic; they may be stochastic—cycles that do not repeat indefi-
nitely but rather can occur one or more times through the probabilistic selection of
successive states. Thus,a high complexity for large T arises when there is a large space
of states with low chance of repetition in the dynamics. The highest complexity would
arise from a deterministic dynamics with cycles that are longer than T. This might
seem to contradict our previous conclusion, where the deterministic dynamics was
found to be simple. However, a complex deterministic dynamics can arise if the suc-
cessive states are specified by information from a smaller scale.

Question 8.3.4 Consider the information in a Markov chain of NT states
at intervals T0 given by the transition matrix P(s′|s). Assume the com-

plexity of specifying the transition matrix—the complexity of the dynamics
—Ct = C(P(s′|s)),is itself small.(See Question 8.3.5 for the case of a complex
deterministic dynamics.)

a. Show that the more deterministic the chain is, the less information it
contains.

b. Show that for an observer at a longer time scale consisting of two time
steps (T = 2T0) the information is reduced. Hint: Use convexity of infor-
mation as described in Question 1.8.8, f (〈x〉) > 〈 f(x)〉, for the function
f (x) = −x log(x).

c. Show that the complexity does not decrease for a system that does not
allow 2-cycles.

Solution 8.3.4 When the complexity of the dynamics is small, then the
complexity of the Markov chain is given by:

C = C(s) + Ct + NTk ln(2)I(s′|s) (8.3.48)
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where the terms correspond to the information in the initial state of the sys-
tem,the information in the dynamics and the incremental information per
update needed to specify the next state. The relationship between this and
Eq.(8.3.47) should be apparent. This expression does not hold if Ct is large,
because ifit is larger than NT C(s),then the chain is more concisely described
by specifying each of the states of the system (see Question 8.3.5).

The proof of (a) follows from realizing that the more deterministic the
system is,the smaller is I(s′|s). This may be used to define how deterministic
the dynamics is.

To analy ze the com p l ex i ty of the Ma rkov chain for an ob s erver at ti m e
scale 2T0, we need to com bine su cce s s ive sys tem states into an unordered
pair—the en s em ble of s t a tes seen by the ob s erver. We use the notati on {s ′, s}
for a pair of s t a te s . Thu s , we are con s i dering a new Ma rkov chain of tra n s i-
ti ons bet ween unordered pairs . To analy ze this we need two prob a bi l i ti e s :t h e
prob a bi l i ty of a pair and the tra n s i ti on prob a bi l i ty from one pair to the nex t .
The latter is the new tra n s i ti on matri x . The prob a bi l i ty of a particular pair is:

(8.3.49)

where P(s) is the probability of a particular state of the system and the two
terms in the upper line correspond to the probability of starting from s1 to
make the pair, and starting from s 2 to make the pair. The transition matrix
for pairs is given by

(8.3.50)

which is valid only for s1 ≠ s 2 and for s ′1 ≠ s ′2 . Other cases are treated like
Eq.(8.3.49). Eq.(8.3.50) includes all four possible ways of generating the se-
quence of the two pairs. The normalization is needed because the transition
matrix is the probability of {s ′1 ≠ s ′2} occurring, assuming the pair {s1, s2} has
already occurred.

To show (b) we must prove that the process of combining the states into
pairs reduces the information necessary to describe the chain. This is appar-
ent since the observer loses the information about the state order within each
pair. To show it from the equations, we note from Eq.(8.3.49) that the prob-
ability of a particular pair is larger than or equal to the probability of each of
the two possible unordered pairs. Since the probabilities are larger, the in-
formation is smaller. Thus the information contained in the first pair is
smaller for T = 2 than for T = 1. We must show the same result for each suc-
cessive pair. The transition probability can be seen to be an average over two
terms in the round parenthesis. By convexity, the information in the average
is less than the average information of each term.Each of the terms is a sum

    

P({ ′ s 1, ′ s 2} |{s1 ,s2})= P( ′ s 1 | ′ s 2)P( ′ s 2 |s1)+ P( ′ s 2 | ′ s 1)P( ′ s 1 |s1)( )P(s1 |s2)P(s2)[
+ P( ′ s 1 | ′ s 2)P( ′ s 2 |s2) + P( ′ s 2 | ′ s 1)P( ′ s 1 |s2)( )P(s2 |s1)P(s1)]/P({s1 ,s2})

    
P({s1 ,s2}) =

P(s1 |s2)P(s2) + P(s2 |s1)P(s1) s2 ≠ s1

P(s1 |s1)P(s1) s2 = s1
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over the probabilities of two possible orderings, and is therefore larger than
or equal to the probability of either ordering. Thus,the information needed
to specify any pair in the chain is smaller than the corresponding informa-
tion in the chain of states.

Finally, to prove (c) we note that the less the order of states is lost when
we combine states into pairs, the more complexity is retained. If transitions
in the dynamics can only occur in one direction,then we can infer the order
and information is not lost. Thus, for T = 2 the complexity is retained if the
dynamics is not reversible—there are no 2-cycles. From the equations we see
that if only one of P(s1|s2) and P(s 2|s1) can be nonzero, and similarly for
P(s ′1|s ′2) and P(s ′2|s ′1), then only one term survives in Eq. (8.3.49) and
Eq. (8.3.50) and no averaging is performed. For arbitrary T the complexity
is the same as at T = 1 if the dynamics does not allow loops of size less than
or equal to T. ❚

Question 8.3.5 Calculate the maximum information that might in prin-
ciple be necessary to specify completely a deterministic dynamics of a

system whose complexity at any time is C(L). Contrast this with the maxi-
mum complexity of describing NT steps of this system.

Solution 8.3.5 The number of possible states of the system is 2C(L) /k ln(2).
Each of these must be assigned a successor by the dynamics. The maximum
possible information to specify the dynamics arises if there is no algorithm
that can specify the successor, so that each successor must be identified out
of all possible states. This would require 2C(L) /k ln(2)C(L) /k ln(2) bits.

The maximum com p l ex i ty of NT s teps is just NTC(L) , as long as this is
s m a ll er than the previous re su l t .Wh i ch is gen era lly a re a s on a ble assu m pti on . ❚

A simple example of chaotic behavior that is relevant to complex systems is that
of a mobile system—an animal or human being—where the motion is internally di-
rected.A description of the system behavior, even at a length scale larger than the sys-
tem itself, must describe this motion. However, the motion is determined by infor-
mation contained on a smaller length scale just prior to its occurrence. This satisfies
the formal requirements for chaotic behavior regardless of the specifics of the motion
involved. Stated differently, the large-scale motion would be changed by modifica-
tions of the internal state of the system. This is consistent with the sensitivity of
chaotic motion to smaller scale changes.

Another example of information t ransfer between different scales is related to
adaptability, which requires that information about the external environment be rep-
resented in the organism.This generally involves the transfer of information between
a larger scale and a smaller scale.Specifically, between observed phenomena and their
representation in the synapses of the nervous system.

When we describe a system at a particular moment of time,the complexity of the
system at its own scale or larger is zero—or a constant if we include the description of
the equilibrium system. However, when we consider the description of a system over

740 Hu ma n  C i v i l iz a t i on  I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 740
Title: Dynamics Complex Systems Short / Normal / Long

Bar-YamChap8.pdf  3/10/02 10:53 AM  Page 740



time, then the complexity is larger due to the system motion. Increasing the scale of
observation continues to result in a progressive decrease in complexity. At a scale that
is larger than the system itself, it is the motion of the system as measured by its loca-
tion at successive time intervals that is to be described. As the scale becomes larger,
smaller scale motions are not observed,and a simpler description of motion is possi-
ble. The observer only notes changes in position that are larger than the scale of
observation.

A natural question that can be asked in this context is whether the motion of the
system is due to external influences or due to the system itself. For example,a particle
moving in a fluid may be displaced by the motion of the fluid. This should be con-
sidered different from a mobile bacteria. Similarly, a basketball in a game moves
through its trajectory not because of its own volition, but rather because of the voli-
tion of the players. How do we distinguish this from a system that moves due to its
own actions? More generally, we must ask how we must deal with the environmental
influences for a system that is not isolated. This question will be dealt with in Section
8.3.6 on behavioral complexity. Before we address this question,in the next section we
discuss several aspects of the complexity profile, including the relationship of the
complexity of the whole to the complexity of its parts.

8.3.5 Properties of complexity profiles of systems
and components

General properties We can readily understand some of the properties that we
would expect to find in complexity profiles of systems that are difficult to calculate di-
rectly. Fig. 8.3.2 illustrates the complexity profile for a few systems. The paragraphs
that follow describe some of their features.

For any system, the complexity at the smallest values of L, T is the microscopic
complexity—the amount of information necessary to describe a particular mi-
crostate. For an equilibrium state this is the same as the thermodynamic entropy,
which is the entropy of a system observed on an arbitrarily long time scale.This is not
true in general because short-range correlations decrease the microstate complexity,
but do not affect the apparent macroscopic entropy. We have thus also defined the en-
tropy profile S(L,T) as the amount of information necessary to determine an arbitrary
microstate consistent with the observed macrostate. From our discussion of noner-
godic systems in Section 8.3.1 we might also conclude that at any scale L, T the sum
of the complexity C(L ,T ) and the entropy S(L ,T ) of the system (the fast degrees of
freedom) should add up to the microscopic complexity or macroscopic entropy

C(0,0) ≈ S(∞,∞) ≈ C(L ,T ) + S(L ,T ) (8.3.51)

However, this is valid only under special circumstances—when the macroscopic state
is selected at random from the ensemble of macrostates,and the microstate is selected
at random from the possible microstates.A glass may satisfy this requirement; how-
ever, other complex systems need not.

For a typical system in equilibrium, as L,T is increased the system rapidly
becomes homogeneous in space and time. Specifically, the density of the system is

C o m p l ex it y  of  p hys i c a l  s ys t e m s 741

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 741
Title: Dynamics Complex Systems Short / Normal / Long

Bar-YamChap8.pdf  3/10/02 10:53 AM  Page 741



742 Hu ma n  C i v i l iz a t i on  I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 742
Title: Dynamics Complex Systems Short / Normal / Long

C(0,T)

(1)
(3)

(2)

T

(4)

C(L,0)

(1,2) (3)

L

(4)

Bar-YamChap8.pdf  3/10/02 10:53 AM  Page 742



uniform in space and time,aside from unobservable small fluctuations, once the scale
of observation is larger than either the correlation length or the correlation time of
the system. Indeed, this might be taken to be the definition of the correlation length
and time—the scale at which the microscopic information becomes irrelevant to the
properties of the system. Beyond the correlation length,the average behavior charac-
teristic of the macroscopic scale is all that remains,and the complexity profile is con-
stant at all length and time scales less than the size of the system.

We can con trast the com p l ex i ty profile of a therm odynamic sys tem with what we
ex pect from va rious com p l ex sys tem s . For a gl a s s , the com p l ex i ty profile is qu i te dif-
ferent in time and in space . A typical glass is uniform if L is larger than a micro s cop i c
correl a ti on len g t h . Thu s , the com p l ex i ty profile of the glass is similar to an equ i l i briu m
s ys tem as a functi on of L. However, it is different as a functi on of T. The frozen degree s
of f reedom that make it a non er godic sys tem at typical time scales of ob s erva ti on guar-
a n tee this.At typical va lues of T the tem poral en s em ble of the sys tem inclu des the state s
that are re ach ed by vi bra ti onal modes of the sys tem , but not the atomic re a rra n gem en t s
ch a racteri s tic of f luid moti on . Thu s , the atomic vi bra ti ons cannot be ob s erved except
at micro s copic va lues of T. However, a significant part of the micro s copic de s c ri pti on
remains nece s s a ry at lon ger time scales. Corre s pon d i n gly, a plateau in the com p l ex i ty
profile ex tends up to ch a racteri s tic time scales of human ob s erva ti on .At a tem pera tu re -
depen dent and mu ch lon ger time scale, the com p l ex i ty profile declines to its therm o-
dynamic limit. This time scale, the rel a x a ti on ti m e , is acce s s i ble near the glass tra n s i-
ti on tem pera tu re . For lower tem pera tu res it is not. Because the glass is uniform in space ,
the plateau should be rel a tively flat and end abru pt ly. This is because spatial uniform i ty
i n d i c a tes that the rel a x a ti on time is essen ti a lly a local property with a narrow distri b-
uti on . A more ex ten ded spatial coupling would give rise to a grading of the plateau and
a broadening of the time scale at wh i ch the plateau disappe a rs .
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Figure 8.3.2 Schematic plots of the complexity profile C(L,T) of four different systems.
C(L,T) is the amount of information necessary to describe the system ensemble as a function
of the length scale, L, and time scale, T, of observation. Top panel shows the time scale de-
pendence, bottom panel shows the length scale dependence. (1) An equilibrium system has
a complexity profile that is sharply peaked at T = 0 and L = 0. Once the length or time scale
is beyond the correlation length or correlation time respectively, the complexity is just the
macroscopic complexity associated with thermodynamic quantities (U,N,V ), which vanishes
on any reasonable scale. (2) For a glass the complexity profile as a function of time scale
C(0,T) decays rapidly at first due to averaging over atomic vibrations; it then reaches a
plateau that represents the frozen degrees of freedom. At much longer time scales the com-
plexity profile decays to its thermodynamic limit. Unlike C(0,T), C(L,0) of a glass decays like
a thermodynamic system because it is homogeneous in space. (3) A magnet at a second-or-
der phase transition has a complexity profile that follows power-law behavior in both length
and time scale. Stochastic fractals capture this kind of behavior. (4) A complex biological or-
ganism has a complexity profile that should follow similar behavior to that of a fractal.
However it has plateau-like regions that correspond to crossing the scale of internal compo-
nents, such as molecules and cells. ❚
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More gen era lly, for a com p l ex sys tem we ex pect that many para m eters wi ll be re-
qu i red to de s c ri be its properties at all length and time scales, at least up to some frac-
ti on of the spatial and tem poral scale of the sys tem itsel f .S t a rting from the micro s cop i c
com p l ex i ty, the com p l ex i ty profile should not be ex pected to fall smoo t h ly. In bi o l og-
ical or ga n i s m s , we can ex pect that as we increase the scale of ob s erva ti on ,t h ere wi ll be
p a rticular length scales at wh i ch details wi ll be lost. P l a teaus in the profile are rel a ted
to the ex i s ten ce of well - def i n ed levels of de s c ri pti on . For ex a m p l e , an iden ti f i a ble level
of cellular beh avi or would corre s pond to a plate a u ,because over a ra n ge of l ength scales
l a r ger than the cell , a full acco u n ting of cellular properti e s , but not of the internal be-
h avi or of the cell , must be given . Th ere are many cells that have a ch a racteri s tic size
and are immobi l e . However, because different cell pop u l a ti ons have different sizes and
s ome cells are mobi l e , the sharpness of the tra n s i ti on should be smoo t h ed . We can at
least qu a l i t a tively iden tify several different plate a u s .At the shortest time scale the atom i c
vi bra ti ons wi ll be avera ged out to end the first plate a u .L a r ger atomic moti ons or mol-
ecular beh avi or wi ll be avera ged out on a secon d ,l a r ger scale. The internal cellular be-
h avi or wi ll then be avera ged out . F i n a lly, the internal beh avi or of ti s sues and or ga n s
wi ll be avera ged out on a sti ll lon ger length and time scale. It is the degrees of f reedom
that remain rel evant on the lon gest length scale that are key to the com p l ex i ty of t h e
s ys tem . These degrees of f reedom manifest the con cept of em er gent co ll ective beh av-
i or. Ul ti m a tely, t h ey must be trace a ble back to the micro s copic degrees of f reedom .
De s c ri bing the con n ecti on bet ween the micro s copic para m eters and mac ro s cop i c a lly
rel evant para m eters has occ u p i ed our atten ti on in mu ch of this boo k .

Mathematical models that best capture the complexity profile of a complex sys-
tem are fractals (see Section 1.10). Mathematical fractals with no granularity (no
smallest length scale) have infinite complexity. However, if we define a smallest length
scale, corresponding to the atomic length scale of a physical system, and we define a
longest length scale that is the size of the system, then we can plot the spatial com-
plexity profile of a fractal-like system. There are two quite distinct kinds of mathe-
matical fractals, deterministic and stochastic fractals. The deterministic fractals are
specified by an algorithm with only a few parameters,and thus their algorithmic com-
plexity is small. Examples are the Kantor set or the Sierpinski gasket. The algorithm
describes how to create finer and finer scale detail. The only difficulty in specifying the
fractal is specifying the number of levels to which the algorithm should be iterated.
This information (the number of iterations) requires a parameter whose length grows
logarithmically with the ratio of the size of the system to the smallest length scale.
Thus, a deterministic fractal has a complexity profile that decreases logarithmically
with observation length scale L, but is very small on all length scales.

Stochastic fractals are qualitat ively different. In such fractals, there are random
choices made at every scale of the structure.Stochastic fractals can be based upon the
Kantor set or Sierpinski gasket, by including random choices in the algorithm. They
may also be systems representing the spatial structure of various stochastic processes.
Such a system requires information to describe its structure on every length scale. A
stochastic fractal is a member of an ensemble,and its algorithmic as well as ensemble
complexity will scale as a power law of the scale of observation L. As L increases, the
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amount of information is reduced, but there is no length scale smaller than the size of
the system at which it is completely lost. Time series that have fractal behavior—that
have power-law correlations—would also display a power-law dependence of their
complexity profile as a function of T. The simplest physical model that demonstrates
such fractal properties in space and time is an Ising model at its second-order transi-
tion point. At this transition there are fluctuations on all spatial and temporal scales
that have power-law behavior in both. Observers with larger values of L can see the
behavior of the correlations only on the longer length scales. A renormalization
treatment, discussed in Section 1.10, can give the value of the complexity profile.
These examples illustrate how microscopic information may become ir relevant on
larger length scales, while leaving collective information that remains relevant at the
longer scales.

The complexity profile enables us to consider again the definition of a complex
system. As we stated, it seems intuitive that a complex system is complex on many
scales. This strengthens the identification of the fractal model of space and time as a
central model for the understanding of complex systems. We have also gained an un-
derstanding of the difference between deterministic and stochastic fractal systems.We
see that the glass is complex in its temporal behavior, but not in its spatial behavior,
and therefore is only a partial example of a complex system. If we want to identify a
unique complexity of a system, there is a natural space and time scale at which to de-
fine it. For the spatial scale, Ls , we consider a significant fraction of the system—one-
tenth of its size. For the temporal scale, Ts , we consider the relaxation (autocorrela-
tion) time of the behavior on this same length scale. This is essential ly the maximal
complexity for this length scale, which would be the same as setting T = 0. However,
we could also take a natural time scale of Ts = Ls /vs where vs is a characteristic veloc-
ity of the system. This form makes the increase in time scale for larger length scales
(systems) apparent. Leaving out the time scale,since it is dependent on the space scale,
we can write the complexity of a system s as

Cs = Cs(Ls) = Cs(Ls ,Ls /vs) ≈ Cs(Ls ,0) (8.3.52)

In Section 1.10 we discussed generally the scaling of quantities as a function of
the precision to which we describe the system.One of the central questions in the field
of complex systems is understanding how complexity scales. This scaling is con-
cretized by the complexity profile.One of the objectives is to understand the ultimate
limits to complexity. Given a particular length or time scale, we ask what is the max-
imum possible complexity at that scale.One could say that this complexity is limited
by the thermodynamic entropy; however, there are further limitations. These limita-
tions are established by the nature of physical law that establishes the dynamics and
interactions of the components. Thus it is unlikely that atoms can be attached to each
other in such a way that the behavior of each atom is relevant to the spatiotemporal
behavior of an organism at the length and time scale relevant to a human being. The
details of behavior must be lost as we observe on longer length and time scales; this
results in a loss of complexity. The complexity scaling of complex organisms should
follow a line like that given in Fig. 8.3.2. The highest complexity of an organism results
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from the retention of the greatest significance of details. This is in contrast to ther-
modynamic systems, where all of the degrees of freedom average out on a very short
length and time scale. At this time we do not know what limits can be placed on the
rate of decrease of complexity with scale.

Components and systems As we discussed in Ch a pter 2, a com p l ex sys tem is form ed
o ut of a hiera rchy of i n terdepen dent su b s ys tem s . Thu s , rel evant to va rious qu e s ti on s
a bo ut the com p l ex i ty profile is an understanding of the com p l ex i ty that may arise wh en
we bring toget h er com p l ex sys tems to form a larger com p l ex sys tem . In gen eral it is not
clear that bri n ging toget h er many com p l ex sys tems must give rise to a co ll ective com-
p l ex sys tem . This was discussed in Ch a pter 6, wh ere one example was a flock of a n i-
m a l s . Here we can provi de ad d i ti onal meaning to this statem ent using the com p l ex i ty
prof i l e . We wi ll discuss the rel a ti onship of the com p l ex i ty of com pon ents to the com-
p l ex i ty of the sys tem they are part of . To be def i n i te , we can con s i der a flock of s h eep.
The example is ch o s en to expand our vi ew tow a rd more gen eral app l i c a ti on of t h e s e
i de a s . The gen eral statem ents we make app ly to any sys tem form ed out of su b s ys tem s .

Let us assume that we know the complexity of a sheep, Csheep(Lsheep), the amount
of information necessary to describe the relevant behaviors of eating, walking, repro-
ducing, flocking, etc.,at a length scale of about one-tenth the size of the sheep. For our
current purposes this might be a lot of information contained in a large number of
books, or a little information contained in a single paragraph of text.Later, in Section
8.4, we will obtain an estimate of the complexity as, of order, one book or 107 bits.

We now consider a flock of N sheep and construct a description of this flock. We
begin by taking information that describes each of the sheep. Combining these de-
scriptions, we have a description of the flock. This information is,however, highly re-
dundant. Much of the information that describes one sheep can also be used to de-
scribe other sheep. Of course there are differences in size and in behavior. However,
having described one sheep in detail we can describe the differences, or we can de-
scribe general characteristics of sheep and then specialize them for each of the indi-
vidual sheep. Using this strategy, a description of the flock will be shorter than the
sum of the lengths of the descriptions of each of the sheep. Still, this is not what we
really want. The description of the flock behavior has to be on its own length scale
Lflock , which is much larger than Lsheep . So we shift our observation of behavior to this
longer length scale and find that most of the details of the individual sheep behavior
have become irrelevant to the description of the flock. We describe the flock behavior
in terms of sheep density, grazing activity, migration, reproductive rates, etc. Thus we
write that:

Cflock = Cflock(Lflock) << Cflock(Lsheep) << NCsheep(Lsheep) = NCsheep (8.3.53)

where N is the numb er of sheep in the flock. Among other conclusions, we see that
the complexity of a flock may actually be smaller than the complexity of one sheep.

More generally, the relationship between the complexity of the collective com-
plex system and the complexity of component systems is crucially dependent on the
existence of coherence and correlations in the behavior of the components that can
arise either from common origins for the behavior or from interactions between the
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components. We first describe this qualitatively by considering the two inequalities in
Eq. (8.3.53). The second inequality arises because different sheep have the same be-
havior. In this case their behavior is coherent. The first inequality arises because we
change the scale of observation and so lose the behavior of an individual sheep. There
is a trade-off between these two inequalities. If the behaviors of the sheep are inde-
pendent,then their behavior cannot be observed on the longer scale.Specifically, the
movement of one sheep to the right is canceled by another sheep that starts at its right
and moves to the left. Thus, only correlated motions of many sheep can be observed
on a longer scale.On the other hand,if their behaviors are correlated,then the com-
plexity of describing all of them is much smaller than the sum of the separate com-
plexities. Thus, having a large collective complexity requires a balance between de-
pendence and independence of the behavior of the components.

We can discuss this more quantitatively by considering the example of the
nonuniform ideal gas. The loss of information for uncorrelated quantities due to
combining them together is described by Eq.(8.3.37). To construct a model where the
quantities are correlated, we consider placing the same densities in a region of scale
L1 > L 0. This is the same model as the previous one, but now on a length scale of L1.
The new value of is 1 = (L1/L0)

d. This increase of the standard deviation causes
an increase in the value of the complexity for all scales greater than L1. However, for
L < L1 the complexity is just the complexity at L1, since there is no structure below this
scale. A comparative plot is given in Fig. 8.3.3.

We can come closer to considering the behavior of a collection of animals by con-
sidering a model for their motion.We start with a scale L 0 just larger than the animal,
so that we do not describe its internal structure—we describe only its location at suc-
cessive intervals of time. The characteristic time over which a sheep moves a distance
L 0 is T0. We will use a model for sheep motion that can illustrate the effect of coher-
ence of many sheep, as well as the effect of coherent motion of an individual sheep
over time. To do this we assume that an individual sheep moves in a straight line for
a distance qL0 in a time qT0 before choosing a new direction to move in at random.
For simplicity we can assume that the direction chosen is one of the four compass di-
rections, though this is not necessary for the analysis. We will use this model to cal-
culate the complexity profile of an individual sheep. Our treatment only describes the
leading behavior of the complexity profile and not various corrections.

For L = L0 and T = T0, the complexity of describing the motion is exactly 2 bits
for every q steps to determine which of the four possible directions the sheep will
move next. Because the movement is in a straight line, and the changes in direction
are at well-defined intervals, we can reconstruct the motion from the measurements
of any observer with L < qL 0 and T < qT0. Thus the complexity is:

C(L ,T ) = 2NT /q L < qL0, T < qT0 (8.3.54)

Once the scale of observation is greater than qL0, the observer does not see every
change in direction. The sheep is moving in a random walk where each step has a
length qL0 and takes a time qT0, but the observer does not see each step. The distance
traveled is proportional to the square root of the time,and so the sheep moves a dis-
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tance L once in every ( 0 /L)2 steps, where 0 = qL 0 is the standard deviation of the
random walk in each dimension. Every time the sheep travels a distance L we need 2
bits to describe its motion, and thus we have a complexity:

(8.3.55)

We note that at L = qL0 Eq. (8.3.54) and Eq. (8.3.55) are equal.
To obtain the complexity profile for long times scales T > qT0, but short length

scales L < qL0, we use a simplified “blob” picture to combine the successive positions
of the sheep into an ensemble of positions. For T only a few times qT0 we can expect
that the ensemble would enable us to reconstruct the motion—the complexity is the
same as Eq.(8.3.54). However, eventually the ensemble of positions will overlap and
form a blob. At this point the movement of the sheep will be described by the move-
ment of the blob, which itself undergoes a random walk. The standard deviation of
this random walk is proportional to the square root of the number of steps:

    T <qT0    L > qL0,

    
C(L,T) = 2

NT

q
0
2

L2
= 2NT

qL0
2

L2
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Figure 8.3.3 Plot of the complexity of a nonuniform gas (Eq. (8.3.37)), for two cases. The
first (1) has a correlation in its nonuniformity at a scale L0 and the second (2) at a scale
L1 > L0. The magnitude of the local deviations in the density are the same in the two cases.
The second case has a lower complexity at smaller scales but a higher complexity at the larger
scales. Because the complexity decreases rapidly with scale, to show the effects on a linear
scale L1 was taken to be only 

3
√10L0, and the horizontal axis is in units of L3 measured in units

of L3
0. Eq (8.3.39) would give similar results but the complexity would decay still more rapidly. ❚
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= 0√T/qT0. Since this is larger than L, the amount of information is essentially that
of selecting a value from a Gaussian distribution of this standard deviation:

L < , T > qT0 (8.3.56)

There are a few points to be made about this expression. First, we use the minimum
of two values to select the crossover point between the behavior in Eq. (8.3.54) and
the blob behavior. As we mentioned above, the blob behavior only occurs for T sig-
nificantly greater than qT0. The simplest way to identify the crossover point is when
the new estimate of the complexity becomes lower than our previous value. The sec-
ond point is that we have chosen to adjust the constant term added to the logarithm
so that when L = the complexity matches that given by Eq.(8.3.55), which describes
the behavior when L becomes large. Thus the limit on Eq.(8.3.55) should be general-
ized to L > . This minor adjustment enables the complexity to be continuous despite
our rough approximations, and does not change any of the conclusions.

We can see from our results (Fig. 8.3.4) how varying q affects the complexity.
Increasing q decreases the complexity at the scale of a sheep, C(L,T) ∝ 1/q in
Eq. (8.3.54). However, it increases the complexity at longer scales C(L,T) ∝ q in
Eq.(8.3.55). This is a straightforward consequence of increasing the coherence of the
motion over time. We also see that the complexity at long times decays inversely pro-
portional to the time but is relatively insensitive to q. The value of q primarily affects
the crossover point to the long time behavior.

We now use two different assumptions to calculate the complexity of the flock. If
the movement of all of the sheep is coherent, then the complexity of the flock for
length scales greater than the size of the flock is the same as the complexity of a sheep
for the same length scales. This is apparent because describing the movement of a sin-
gle sheep is the same as describing the entire flock. We now see the significance of in-
creasing q. Increasing q increases the flock complexity until qL0 reaches L1, where L1

is the size of the flock. Thus we can increase the complexity of the whole at the cost of
reducing the complexity of the components.

If the movement of sheep are independent of each other, then the flock displace-
ments—the displacements of its center of mass—are of characteristic size /√N (see
Eq.5.2.21). We might be concerned that the flock will disperse. However, as in our dis-
cussions of polymers in Section 5.2, interactions that would keep the sheep together
need not affect the motion of their center of mass. We could also introduce into our
model a circular reflecting boundary (a moving pen) around the flock, with its cen-
ter at the center of mass. Since the motion of the sheep with this boundary does not
require additional information over that without it,the complexity is the same. In ei-
ther case, the complexity of flock motion (L > L1) is obtained as:

(8.3.57)  L >
    
C(L,T) = 2NT

qL0
2

NL2

    

C(L,T) = 2
NT

q
min(1,

qT0

T
(1 + log(

L
))

= 2
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q
min(1,
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T
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This is valid for all L if is less than L1. If we choose T to be very large, Eq. (8.3.56)
applies, with replaced by /√N. We see that when the motion of sheep are indepen-
dent,the flock complexity is much lower than before—it decreases inversely with the
number of sheep when L > . Even in this case, however, increasing q increases the
flock complexity. Thus coherence in the behavior of a single sheep in time, or coher-
ence between different sheep, increases the complexity of the flock. However, the
maximum complexity of the flock is just that of an individual sheep, and this arises
only for coherent behavior when all movements are visible on the scale of the flock.
Any movements of an individual sheep that are smaller than the scale of the flock dis-
appear on the scale of the flock. Thus even for coherent motion, in general the flock
complexity is smaller than the complexity of a sheep.

This example illustrates the effect of coherent behavior. However, we see that
even with coherent motion the complexity of a flock at its scale cannot be larger than
the complexity of the sheep at its own scale. This is a problem for us, because our
study of complex systems is focused upon systems whose complexity is larger than
their components. Without this possibility, there would be no complex systems. To
obtain a higher complexity of the whole we must modify this model. We must assume

750 Hu man  C i v i l i z a t i on  I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 750
Title: Dynamics Complex Systems Short / Normal / Long

C(L)

L50 100 150 200

0.2

0.4

0.6

0.8

1

q=50;T=1

q=50;T=500

q=100;T=1

q=100;T=500
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more generally that the motion of a sheep is describable using a set of patterns of be-
havior. Coherent motion of sheep still lead to a similar (or lower) complexity. To in-
crease the complexity, the motion o f the flock must have more complex patterns of
motion. In order to achieve such patterns, the motions of the individual sheep must
be neither independent nor coherent—they must be correlated motions that com-
bine patterns of sheep motion into the more complex patterns of flock motion. This
is possible only if there are interactions between them, which have not been included
here. It should now be clear that the objective of learning how the complexity of a sys-
tem is related to the complexity of its components is central to our study of complex
systems.

Question 8.3.6 Throughout much of this book our working definition
of complex systems or complex organisms as articulated in Section 1.3

and developed further in Chapter 2 was that a complex system has a behav-
ior that is dependent on all of its parts. In particular, that it is impossible to
take part of a complex organism away without affecting the behavior of the
whole and behavior of the part. How is this definition related to the defini-
tion of complexity articulated in this section?

Solution 8.3.6 Our quantitative concept of complexity is a measure of the
information necessary to describe the system behavior on its own length
scale. If the system behavior is complex,then it must require many parame-
ters to describe. These parameters are related to the description of the sys-
tem on a smaller length scale, where the parts of the system are manifest be-
cause we can distinguish the description of one part from another. To do
this we limit PL, T(n(x ,t)) to the domain of the part. The behavior of a sys-
tem is thus related to the behavior of the parts. The more these are relevant
to the system behavior, the greater is the system complexity. The informa-
tion that describes the system behavior must be relevant on every smaller
length scale. Thus, we have a direct relationship between the definition of a
complex system in terms of parts and the definition in terms of informa-
tion. Ultimately, the information necessary to describe the system behavior
is determined by the microscopic description of atomic positions and mo-
tions. The more complex a system is, the more its behavior depends on
smaller scale components. ❚

Question 8.3.7 When we defined interdependence we did not consider
the dependence of an animal on air as a relevant example. Explain.

Solution 8.3.7 We can now recognize that the use of information as a
characterization of behavior enables us to distinguish various forms of de-
pendency. In particular, we see that the dependence of an animal on air is
simple, since the necessary properties of air are simple to describe. Thus,
the degree of interdependence of two systems should be measured as the
amount of information necessary to replace one in the description of the
other. ❚
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8.3.6 Behavioral complexity
Our ability to describe a system arises from measurements or observations of its be-
havior. The use of system descriptions to define system complexity does not directly
take this into account. The complexity profile brought us closer by acknowledging the
observer in the space and time scale of the description. By acknowledging the scale of
observation, we obtained a mechanism for distinguishing complex systems from
equilibrium systems,and a systematic method for characterizing the complexity of a
system. There is another approach to reaching the complexity profile that incorpo-
rates the observer and system relationship in a more satisfactory manner. It also en-
ables us to consider directly the interaction of the system with its environment, which
was not included previously. To introduce the new approach, we return to the under-
pinning of descriptive complexity and present the concept of behavioral complexity.

In Shannon’s approach to the study of information in communication systems,
there were two quantities of fundamental interest. The first was the information con-
tent of an individual message, and the second was the average information provided
by a particular source. The discussion of algorithmic complexity was based on a con-
sideration of the information provided by a particular message—specifically, how
much it could be compressed. This carried over into our discussion of physical sys-
tems when we introduced the microscopic complexity of a system as the information
contained in a particular microscopic realization of the system. When all messages,or
all system states, have the same probability, then the information in the particular
message is the same as the average information, and we can write:

(8.3.58)

The expression on the right, however, has a different purpose. It is a quantity that
characterizes the ensemble rather than the individual microstate. It is a characteriza-
tion of the source rather than of any particular message.

We can pursue this line of reasoning by considering more carefully how we might
characterize the source of the information, rather than the messages.One way to char-
acterize the source is to determine the average amount of information in a message.
However, if we want to describe the source to someone, the most essential informa-
tion is to give a description of the kinds of messages that will be received—the en-
semble of possible messages. Thus to characterize the source we need a description of
the probability of each kind of message. How much information do we need to de-
scribe these probabilities? We call this the behavioral complexity of the source.

A few examples in the context of a source of messages will serve to illustrate this
concept. Any description of a source must assume a language that is to be used. We
assume that the language consists of a list of characters or messages that can be re-
ceived from the source, along with their probabilities.A delimiter (:) is used to sepa-
rate the messages from their probability. For convenience, we will write probabilities
in decimal notation. A second delimiter (,) is used to separate different members of
the list.A source that gives zeros and ones at random with equal probability would be
described by {1:0.5,0:0.5}. It is convenient to include the length of a message in our

    

I({x, p}|(U ,N ,V )) = −logP({x, p}) = − P({x, p})
{x,p}

∑ log(P({x, p}))
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description of the source. Thus we might describe a source with length N = 1000 char-
acter messages, each character zero and one with equal probability, as: {1000(1:0.5,
0:0.5)}. The message complexity of this source would be given by N, the length of a
message. However, the behavioral complexity is given by (in this language): two dec-
imal digits,two characters (1, 0),the number representing N (requiring log(N) char-
acters) and several delimiters. We could also specify an ASCII language source by a
table of this kind that would consist of 256 elements and the probabilities of their oc-
currence in some database. We see that the behavioral complexity is quite distinct
from the complexity of the messages provided by a source. In particular in the above
example it can be larger, if N = 1, or it can be much smaller, if N is large.

This definition of the behavioral complexity of a source runs into a minor prob-
lem, because the probabilities are real numbers and would generally require arbitrary
numbers of digits to describe. To overcome this problem,there must be a convention
assumed about the limit of precision that is desired in describing the source. In prin-
ciple,this precision is related to the number of messages that might be received. This
convention could be part of the language, or could be defined by the specification it-
self. The description of the source can also be compressed using the principles of al-
gorithmic complexity.

As we found above,the behavioral complexity can be much smaller than the in-
formation complexity of a particular message—if the source provides many random
digits, the complexity of the message is high but the complexity of the source is low
because we can characterize it simply as a source of random numbers. However, if the
probability of each message must be independently specified, the behavioral com-
plexity of a source is much larger than the information content of a particular mes-
sage. If a particular message requires N bits of information,then the number of pos-
sible messages is 2N. Listing all of the possible messages requires N 2N bits, and
specifying each probability with Q bits would give us a total of (N + Q)2N bits to de-
scribe the source. This could be reduced if the messages are placed in an agreed-upon
order; then the number of bits is Q2N. This is still exponentially larger than the infor-
mation in a particular message. Thus, the complexity of an arbitrary source of mes-
sages of a particular length is much larger than the complexity of the messages it sends.

We are interested in the behavioral complexity when our objective is to use the
messages that we receive to understand the source, rather than to make use of the in-
formation itself. Behavioral complexity becomes particularly useful when it is smaller
than the complexity of a message, because it enables us to anticipate or predict the be-
havior of the source.

We now apply these thoughts about the source as the system of interest, rather
than the message as the system of interest, to a discussion of the properties of physi-
cal systems. To make the connection between source and system, we consider an ob-
server of a physical system who performs a number of measurements. We might
imagine the measurements to consist of subjecting the system to light at various fre-
quencies and measuring their scattering and reflection (looking at the system), ob-
servations of animals in the wild or in captivity, or physical probes of the system. We
consider each measurement to be a message from the system to the observer.We must,
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however, take note that any measurement consists of two parts,the conditions or en-
vironment in which the observation was performed and the behavior of the system
under these conditions. We write any observation as a pair (e,a), where e represents
the environment and a represents a measurement of system properties (action) un-
der the circumstances of the environment e. The observer, after performing a number
of measurements, writes a description of the observations. This description charac-
terizes the system. It captures the properties of the list of measurements, rather than
of one particular measurement. It may or may not explicitly contain the information
of each measurement. Alternatively, it may assign probabilities to a particular mea-
surement. We would like to define the behavioral complexity as the amount of infor-
mation contained in the observer’s description. However, we must be careful how we
do this because of the presence of the environmental description e.

In order to clarify this point, and to make contact between behavioral complex-
ity and our previous discussion of descriptive complexity, we first consider the phys-
ical system of interest to be essentially isolated. Then the environmental description
is irrelevant, and an observation consists only of the system measurement a. The list
of measurements is the set {a}. In this case it is relatively easy to see that the behav-
ioral complexity of a physical system is its descriptive complexity—the set of all mea-
surements characterizes completely the state of the system.

If the entire set of measurements is performed at a single instant, and has arbi-
trary precision, then the behavioral complexity is the microstate complexity of the
system. The result of any measurement can be obtained from a description of the mi-
crostate, and the set of possible measurements determines the microstate.

For a set of measurements performed over time on an equilibrium system, the
behavioral complexity is the ensemble complexity—the number of parameters nec-
essary to specify its ensemble. A particular message is a measurement of the system
properties, which in principle might be detailed enough to determine the instanta-
neous positions and momenta of all of the particles. However, the list of measure-
ments is determined by the ensemble of states the system might have. As in
Section 8.3.1, we conclude that the complexity of an equilibrium system is the com-
plexity of describing its ensemble—specifying (U,N,V ) and other parameters like
magnetization that result from the breaking of ergodicity. For a glass, the ensemble
information is the information in the frozen coordinates previously defined as the
complexity. More generally, for a set of measurements performed over an interval of
time T—or at one instant but with time determination error T—and with spatial po-
sition determination errors given by L, we recover the complexity profile.

We now return to consider a system that is not isolated but subject to an envi-
ronmental influence so that an observation consists of the pair (e,a) (Fig. 8.3.5). The
complexity of describing such messages also contains the complexity of the environ-
ment e. Does this mean that our system description must include its environment and
that the complexity of the system is dependent on the complexity of the environment?
Complex systems or simple systems interact and respond to the environment in
which they are found. Since the system response a is dependent on the environment
e, there is no doubt that the complexity of a is dependent on the complexity of e. Three
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examples illustrate how the environmental influence is important. The tail o f a dog
has a particular motion that can be described, and the complexity can be character-
ized. However, we may want to attribute much of this complexity to the rest of the dog
rather than to the tail. Similarly, the motion of a particle suspended in a liquid follows
Brownian motion, the description of which might be better attributed to the liquid
than to the particle. Clearer yet is the example of the behavior of a basketball during
a basketball game. These examples generalize to the consideration of any system, be-
cause measuring the properties of a system in an environment may cause us to be
measuring the influence of the environment, rather than the system. The observer
must describe the system behavior as a response to a particular environment, rather
than just the behavior itself. Thus, we do not characterize the system by a list of ac-
tions {a} but rather by the list of pairs {(e,a)} where our concern is to describe f the
functional mapping a = f (e) from the environment e to the response a. Once we real-
ize this, we can again affirm that a full microscopic description of the physical system
is enough to give all system responses. The point is that the complexity of a system
should not include the complexity of the influence upon it, but just the complexity of
its response. This response is a property of the system and is determined by a com-
plete microscopic description. Conversely, a full description of behavior subject to all
possible environments would require complete microscopic information.

However, within a range of environments and with a desired degree of precision
(spatial and temporal scale) it is possible to provide less information and still describe
the behavior. We consider the ensemble of messages (measurements) to have possible
times of observation over a range of times given by T and errors in position determi-
nation L. Describing the ensemble of responses g ives us the behavioral complexity
profile Cb(L,T ).

When the influence of the environment is not important, C(L,T ) and Cb(L,T )
are the same. When the environment matters,it is also important to characterize the
information that is relevant about the environment. This is related to the problem of
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Figure 8.3.5 The observation of system behavior involves measurements both of the system’s
environment, e, and the system’s actions, a, in response to this environment Thus we should
characterize a system as a function, a = f(e), where the function f describes its actions in re-
sponse to its environment. It is generally simpler to describe a model for the system struc-
ture, which is also a model of f, rather than a list of all of its environment-action (e,a) pairs. ❚
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prediction, because predicting the system behavior in the future requires information
about the environment. As we have defined it,the descriptive complexity is the infor-
mation necessary to predict the behavior of the system over the time interval t2 − t1.
We can characterize the environmental influence by generalizing Eq. (8.3.47) to in-
clude a term that describes the rate of information transfer from the environment to
the system:

(8.3.59)

where Ce(L)/k ln(2) is the information about the environment necessary to predict the
state of the system at the next time step, and Cb(L) is the behavioral complexity at one
time interval. Because the system itself is finite,the amount of information about the
universe that is relevant to the system behavior in any interval of time must also be fi-
nite. We note that because the system affects the environment, which then affects the
system, Eq.(8.3.59) as written may count information more than once.Thus,this ex-
pression as written is an upper bound on the complexity. We noted this point also
with respect to the Lyaponov exponents after Eq. (8.3.47).

This use of behavior/response rather than a description to characterize a system
is related to the use of response functions in physics, or input/output relationships to
describe artificial systems. The response function can (in principle) be completely de-
rived from the microscopic description of a system. It is more directly relevant to the
system behavior in response to environmental influences, and thus is essential for di-
rect comparison with experimental results.

Behavioral complexity suggests that we should consider the system behavior as
represented by a function a = f (e). The input to the function is a description of the
environment; the output is the response or action. There is a difficulty with this ap-
proach in that the complexity of functions is generically much larger than that of the
system itself. From the discussion in Section 8.2.3 we know that the description of a
function would require an amount of information given by Cf = Ca2Ce, where Ce is the
environmental complexity, and Ca is the complexity of the action. Because the envi-
ronmental influence leads to an exponentially large complexity, it is clear that often
the most compact description of the system behavior will give its structure rather
than its response to all inputs. Then, in principle, the response can be derived from
the structure. This also implies that the behavior of physical systems under different
environments cannot be independent. We note that these conclusions must also ap-
ply to human beings as complex systems that respond to their environment (see
Question 8.3.8).

Question 8.3.8 Discuss the following statements with respect to human
beings as complex systems: “The most compact description of the sys-

tem behavior will give its structure rather than its response to all inputs,” and
“This implies that the behavior of physical systems under different environ-
ments cannot be independent.”

    

C(L,T) = Cb(L,T)+ NTCe (L,T)

Cb(L ,T ) = Cb(L) +C t(L ,T )+ NTk hi
i:hi >0
∑
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Solution 8.3.8 The first statem ent is rel evant to the discussion of beh avi or-
ism as an approach to psych o l ogy (see Secti on 3.2.8). It says that the idea of
de s c ri bing human beh avi or by cataloging re acti ons to envi ron m ental sti mu l i
is ulti m a tely an inef f i c i ent approach . It is more ef fective to use su ch measu re-
m ents to con s tru ct a model for the internal functi oning of the indivi dual and
use this model to de s c ri be the measu red re s pon s e s . The model de s c ri pti on is
mu ch more concise than the de s c ri pti on of a ll po s s i ble re s pon s e s .

Moreover, from the second statement we know that the model can de-
scribe the responses to circumstances that have not been measured. This also
means that the use of such models may be effective in predicting the behav-
ior of an individual.Specifically, that reactions of a human being are not in-
dependent of past reactions to other circumstances. A model that incorpo-
rates the previous behaviors may have some ability to predict the behavior
to new circumstances. This is part of what we do when we interact with other
individuals—we construct models that represent their behavior and then
anticipate how they will react to new circumstances.

The coupling between the reaction of a human being under one cir-
cumstance to the reaction under a different circumstance is also relevant to
our understanding of human limitations. Optimizing the response through
adaptation to a set of environments according to some goal is a process that
is limited in its effectiveness due to the coupling between responses to dif-
ferent circumstances. An individual who is eff ective in some circumstances
may have qualities that lead to ineffective behavior under other circum-
stances. We will discuss this in Chapter 9 in the context of considering the
specialization of human beings in society. This point is also applicable more
generally to living organisms and their ability to consume resources and
avoid predators as discussed in Chapter 6. Increasing complexity enables an
organism to be more effective, but the effectiveness under a variety of cir-
cumstances is limited by the interdependence of responses. This is relevant
to the observation that living organisms generally consume limited types of
resources and live in particular ecological niches. ❚

8.3.7 The observer and recognition
The explicit existence of an observer in the definition of behavioral complexity en-
ables us to further consider the role of the observer in the definition of complexity.
What assumptions have we made about the properties of the observer? One of the as-
sumptions that we have made is that the observer is more complex than the system.
What happens if the complexity of the system is greater than the complexity of the
observer? The complexity of an observer is the number of bits that may be used to de-
scribe the observer. If the observer is described by fewer bits than are needed to de-
scribe the system, then the observer will be unable to contain the description of the
system that is being observed. In this case,the observer will construct a description of
the system that is simpler than the system actually is. There are several possible ways
that the observer may simplify the description of the system. One is to reject the
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observation of all but a few kinds of messages. The other is to artificially limit the
length of messages described. A third is to treat complex variability of the source as
random—described by simple probabilities. These simplifications are often done in
our modeling of physical systems.

An inherent problem in discussing behavioral complexity using environmental
influence is that it is never possible to guarantee that the behavior of a system has been
fully characterized. For example, a rock can be described as “just sitting there,” if we
want to describe the complexity of its motion under different environments. Of
course the nature of the environment could be changed so that other behaviors will
be realized. We may, for example,discover that the rock is actually a camouflaged an-
imal. This is an inherent problem in behavioral complexity: it is never possible to
characterize with certainty the complexity of a system under circumstances that have
not been measured. All such conclusions are extrapolations. Performing such extrap-
olations is an essential part of the use of the description of a system. This is a general
problem that applies to quantitative scientific modeling as well as the use of experi-
ence in general.

Finally, we describe the relevance of recognition to complexity. The first
comment is related to the recognition of sets of numbers introduced briefly in
Section 8.2.3. We introduced there the concept of recognition complexity of a set that
relies upon a recognizer (a special kind of TM called a predicate that gives a single bit
output) that can identify the system under discussion. Specifically, when presented
with the system it says, “This is it,” and when presented with any other system it says,
“This is not it.” We define the complexity of a system (or set of systems) as the com-
plexity of the simplest recognizer of the system (or set of systems). There are some in-
teresting features of this definition.First we realize that this definition is well suited to
describing classes of systems. A description or model of a class of systems must iden-
tify common attributes rather than specific behaviors.A second interesting feature is
that the complexity of the recognizer depends on the possible universe of systems that
it can be presented with. For example,the complexity of recognizing cows depends on
whether we allow ourselves to present the recognizer with all domestic animals, all
known biological organisms on earth, all potentially viable biological organisms, or
all possible systems. Naturally, this is an important issue in the field of pattern recog-
nition, where the complexity of designing a system to recognize a particular pattern
is strongly dependent on the universe of possibilities within which the pattern must
be recognized. We will return to this point later when we consider the properties of
human language in Section 8.4.1.

A different form of complexity related to recognition may be abstracted from the
Turing test of artificial intelligence. This test suggests that we will achieve an artificial
representation of intelligence when it becomes impossible to determine whether we
are interacting with an artificial or actual human being. We can assume that Turing
had in mind only a limited type of interaction between the observer “we” and the sys-
tems being observed—either the real or artificial representation of a human being.
This test, which relies upon an observer to recognize the system, can serve as the ba-
sis for an additional definition of complexity. We determine the minimal possible
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complexity of a model (simulated representation) of the system which would be rec-
ognized by a particular observer under particular circumstances as the system. The
complexity of this model we call the substitution complexity. The sensitivity of this
definition to the nature of the observer and the conditions of the observation is man-
ifest. In some ways this definition,however, is implicit in all of our earlier definitions.
In all cases, the complexity measures the length of a representation of the system.
Ultimately we must determine whether a particular representation of the system is
faithful. The “we” in the previous sentence is some observer that must recognize the
system behavior in the constructed representation.

We conclude this section by reviewing some of the main concepts that were in-
troduced. We noted the sensitivity of complexity to the spatial and temporal scale rel-
evant to the description or response. The complexity profile formally takes this into
account. If necessary, we can define the unique complexity of a system to be its com-
plexity profile evaluated at its own scale.A more complete characterization of the sys-
tem uses the entire complexity profile. We found that the mathematical models most
closely associated with complexity—chaos and fractals—were both relevant. The for-
mer described the influence of microscopic information over time. The latter de-
scribed the gradual rather than rapid loss of information with spatial and temporal
scale. We also reconciled the notion of information as a measure of system complex-
ity with the notion of complex systems as composed out of interdependent parts.Our
next objective is to concretize this discussion further by estimating the complexity of
particular systems.

Complexity Estimation

There are various difficulties associated with obtaining specific values for the com-
plexity of a particular system. There are both fundamental and practical problems.
Fundamental problems such as the difficulty in determining whether a representation
is maximally compressed are important. However, before this is an issue we must first
obtain a representation.

One approach to obtaining the complexity of a system is to construct a repre-
sentation. The explicit representation should then be used to make a simulation to
show that the system behavior is reproduced. If it is,then we know that the length of
the representation is an upper bound on the complexity of the system. We can hope,
however, that it will not be necessary to obtain explicit representations in order to es-
timate complexities. The objective of this section is to discuss various methods for es-
timating the complexity of systems with which we are familiar. These approaches
make use of representations that we cannot simulate, however, they do have recog-
nizable relationships to the system.

Measuring complexity is an experimental problem. The only reason that we are
able to discuss the complexity of various systems is that we have already made many
measurements of the properties of various systems. We can make use of the existing
information to construct estimates of their complexity. A specific estimation method
is not necessarily useful for all systems.

8.4
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Our objective in this section is limited to obtaining “ballpark” estimates of the
complexity of systems. This means that our errors will be in the exponent rather
than in the number itself. We would be very happy to have an estimate of complexity
such as 103±1 or 107±2. When appropriate, we keep track of half-decades using factors
of three, such as in 3 × 104. These rough estimates will give us a first impression of
the degree of complexity of many of the systems we would like to understand. It
would tell us how difficult (very roughly) they are to describe. We will discuss three
methods—(1) use of intuition and human language descriptions, (2) use of a nat-
ural representation tied to the system existence, where the principle example is the
genome of living organisms, and (3) use of component counting. Each of these
methods has flaws that will limit our confidence in the resulting estimates. However,
since we are trying to find rough estimates, we can still take advantage of them.
Consistency of different methods will give us some confidence in our estimates of
complexity.

While we will discuss the complexity of various systems,our focus will be on de-
termining the complexity of a human being. Our final estimate,1010±2 bits will be ob-
tained by combining the results of different estimation techniques in the following
sections. The implications of obtaining an estimate of human complexity will be dis-
cussed in Section 8.4.4. We start,however, by noting that the complexity of a human
being can be bounded by the physical entropy of the collection of atoms from which
he or she is formed. This is roughly the entropy of a similar weight of water, about 1031

bits. This is the value of S /k ln2. As usual, we have assumed that there is nothing as-
sociated with a human being except the material of which he or she is formed, and
that this material is described by known physical law. This entropy is an upper bound
to the information necessary to specify the complete human being. The meaning of
this number is that if we take away the person and we replace all of the atoms accord-
ing to a specification of 1031 bits of information, we have replaced microscopically
each atom where it was. According to our understanding of physical law, there can be
no discernible difference. We will discuss the implications for artificial intelligence in
Section 8.4.4, where we consider whether a computer could simulate the dynamics of
atoms in order to simulate the behavior of the human being.

The entropy of a human being is much larger than the complexity estimate we
are after, because we are interested in the complexity at a relevant spatial and tempo-
ral scale. In general we consider the complexity of a system at the natural scale defined
in Section 8.3.5, one-tenth the size of the system itself,and the relaxation time of the
behavior on this same length scale. We could also define the complexity by the ob-
server. For example,the maximum visual sensitivity of a human being is about 1/100
of a second and 0.1 mm. For either case, observing only at this spatial and temporal
scale decreases dramatically the relevance of the microscopic description. The reduc-
tion in information is hard to estimate directly. To estimate the relevant complexity,
we must consider other techniques. However, since most of the information in the en-
tropy is needed to describe the position of molecules of water undergoing vibrations,
we can guess that the complexity is significantly smaller than the entropy.
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8.4.1 Human intuition—language and complexity
The first method for estimation of complexity—the use of human intuition and lan-
guage—is the least controlled/scientific method of obtaining an estimate of the com-
plexity of a system. This approach,in its most basic form,is precisely what was asked
in Question 8.2.1. We ask someone what they believe the complexity of the system is.
It is assumed that the person we ask is somewhat knowledgeable about the system and
also about the problem of describing systems. Even though it appears highly arbitrary,
we should not dismiss this approach too readily because human beings are designed
to understand complex systems. It could be argued that much of our development is
directed toward enabling us to construct predictive models of various parts of the en-
vironment in which we live. The complexity of a system is directly related to the
amount of study we need in order to master or predict the behavior of a system. It is
not accidental that this is the fundamental objective of science—behavior prediction.
We are quite used to using the word “complexity”in a qualitative manner and even in
a comparative fashion—this is more complex or less complex than something else.
What is missing is the quantitative definition. In order for someone to give a quanti-
tative estimate of the complexity of a system,it is necessary to provide a definition of
complexity that can be readily understood.

One useful and intuitive definition of complexity is the amount of information
necessary to describe the behavior of a system. The information can be quantified in
terms of representations people are familiar with—the amount of text/the number of
pages /the number of books. This can be sufficient to cause a person to build a rough
mental model of the system description, which is much more sophisticated than
many explicit representations that might be constructed. There is an inherent limita-
tion in this approach mentioned more generally above—a human being cannot di-
rectly estimate the complexity of an organism of similar or greater complexity than a
human being. In particular, we cannot use this approach directly to estimate the com-
plexity of human beings. Thus we will focus on simpler animals first. For example,we
could ask the question in the following way: How much text is necessary to describe
the behavior of a frog? We might emphasize for clarification that we are not interested
in comparative frogology, or molecular frogology. We are just interested in a descrip-
tion of the behavior of a frog.

To gain additional confidence in this approach, we may go to the library and find
descriptions that are provided in books. Superficially, we find that there are entire
books devoted to a particular type of insect (mosquito, ant, butterfly), as there are
books devoted to the tiger or the ape. However, there is a qualitative difference be-
tween these books. The books on insects are devoted to comparative descriptions,
where various types of, e.g., mosquitoes, from around the world, their physiology,
and/or their evolutionary history are described. Tens to hundreds of types are com-
pared in a single book. Exceptional behaviors or examples are highlighted. The
amount of text devoted to the behavior of a par ticular t ype of mosquito could be
readily contained in less than a single chapter. On the other hand,a book devoted to
tigers may describe only behavior (e.g., not physiology), and one devoted to apes
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would describe only a particular individual in a manner that is limited to only part of
its behaviors.

Does the difference in texts describing insects and tigers reflect the social priori-
ties of human beings? This appears to be difficult to support. The mosquito is much
more relevant to the well-being of human beings than the tiger. Mosquitoes are eas-
ier to study in captivity and are more readily available in the wild.There are films that
enable us to observe the mosquito behavior at its own scale rather than at our usual
larger scale. Despite such films,there is no book-length description of the behavior of
a mosquito. This is true despite the importance of knowledge of its behavior to pre-
vention of various diseases. Even if there is some degree of subjectivity to the com-
plexity estimates obtained from the lengths of descriptions found in books,the use of
existing books is a reasonable first attempt to obtain complexity estimates from the
information that has been compiled by human beings. We can also argue that when
there is greater experience with complexity and complexity estimation,our ability to
use intuition or existing texts will improve and become important tools in complex-
ity estimation.

Before applying this methodology, however, we should understand more care-
fully the basic relationship of language to complexity. We have already discussed in
Section 1.8 the information in a string of English characters.A first estimate of 4.8 bits
per character could be based upon the existence of 26 letters and 1 space. In
Question 1.8.12,the best estimate obtained was 3.3 bits per character using a Markov
chain model that included correlations between adjacent characters. To obtain an
even better estimate, we need to have a model that includes longer-range correlations
between characters. The most reliable estimates have been obtained by asking people
to guess the next character in an English text. It is assumed that people have a highly
sophisticated model for the structure of English and that the individual has no spe-
cific knowledge of the text. The guesses were used to establish bounds on the infor-
mation content. We can summarize these bounds as 0.9±0.3 bits/character. For our
present discussion, the difference between high and low bounds (a factor of 2) is not
significant. For convenience we will use 1 bit/character for our conversion factor. For
larger quantities of text, this corresponds to values given in Table 8.4.1.

Our esti m a te of i n form a ti on in text has assu m ed a stri ct ly narra tive English tex t .
We should also be con cern ed abo ut figures that accom p a ny de s c ri ptive materi a l s . Doe s
the conven ti onal wi s dom of “a pictu re is worth a thousand word s” m a ke sense? We can
con s i der this both from the point of vi ew of d i rect com pre s s i on of the pictu re , and the
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Amount of text Information in text Text with figures

1 char 1 bit -
1 page = 3000 char 3x103 bit 104

1 chapter = 30 pages 105 bit 3x105

1 book = 10 chapters 106 bit 3x106

Table 8.4.1 Information estimates for straight English text and illustrated text. ❚
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po s s i bi l i ty of rep l acing the figure by de s c ri ptive tex t . A thousand words corre s pon d s
to 5 × 1 03 ch a racters or bi t s ,a bo ut two pages of tex t . De s c ri ptive figures su ch as gra ph s
or diagrams of ten consist of a few lines that can be con c i s ely de s c ri bed using a formu l a
and would have a small er com p l ex i ty. P h o togra phs are form ed of h i gh ly correl a ted
gra phical inform a ti on that can be com pre s s ed . In a bl ack and wh i te ph o togra ph 5 × 1 03

bits would corre s pond to a 70 × 70 grid of com p l etely indepen dent pixel s . If we rec a ll
that we are not intere s ted in small det a i l s , this seems re a s on a ble as an upper bo u n d .
Moreover, the text that accompanies a figure gen era lly de s c ri bes its essen tial con ten t .
Thus wh en we ask the key qu e s ti on — wh et h er two pages of text would be su f f i c i ent to
de s c ri be a typical figure and rep l ace its functi on in the text—this seems a som ewh a t
gen erous but not en ti rely unre a s on a ble va lu e . A figure typ i c a lly occupies half of a page
that would be otherwise occ u p i ed by tex t . Thu s , for a high ly illu s tra ted boo k , on aver-
a ge containing one figure and on e - h a l f p a ge of text on each page , our esti m a te of t h e
i n form a ti on con tent of the book would increase from 106 bits by a factor of 2.5 to
ro u gh ly 3 × 1 06 bi t s . If t h ere is one pictu re on every two page s , the inform a ti on con-
tent of the book would be do u bl ed ra t h er than tri p l ed . While it is not re a lly essen ti a l
for our level of prec i s i on , it seems re a s on a ble to adopt the conven ti on that esti m a te s
using de s c ri pti ons of beh avi oral com p l ex i ty inclu de figure s . We wi ll do so by incre a s-
ing the previous va lues by a factor of 3 (Ta ble 8.4.1). This wi ll not ch a n ge any of t h e
con clu s i on s .

There is another aspect of the relationship of language to complexity. A language
uses individual words (like “frog”) to represent complex phenomena or systems (like
the physical system we call a frog). The complexity of the word “frog” is not the same
as the complexity of the frog. Why is this possible? According to our discussion of al-
gorithmic complexity, the smallest possible representation of a complex system has a
length in bits which is equal to the system complexity. Here we have an example of a
system—frog—whose representation “frog” is manifestly smaller than its complexity.

The resolution of this puzzle is through the concept of recognition complexity
discussed in Section 8.3.7.A word is a member of an ensemble of words,and the sys-
tems that are described by these words are an ensemble of systems. It is only necessary
that the ensemble of words be matched to the ensemble of systems described by the
words,not the whole ensemble of possible systems. Thus,the complexity of a word is
not related to the complexity of the system, but rather to the complexity of specifying
the system—the logarithm of the number of systems that are part of the shared ex-
perience of the individuals who are communicating. This is the central point of recog-
nition complexity. For a human being with experience and memory of only a limited
number of the set of all complex systems, to describe a system one must identify it
only in comparison with the systems in memory, not with those possible in principle.

Another way to think about this is to consider a human being as analogous to a
special UTM with a set of short representations that the UTM can expand to a spe-
cific limited subset of possible long descriptions. For example, having memorized a
play by Shakespeare,it is only necessary to invoke the name to retrieve the whole play.
This is,indeed,the essence of naming—a name is a short reference to a complex sys-
tem. All words are names of more complex entities.
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In this way, language provides a systematic mechanism for compression of infor-
mation. This implies that we should not use the length of a word to estimate the com-
plexity of a system that it refers to. Does this also invalidate the use of human language
to obtain complexity estimates? On one hand, when we are asked to describe the be-
havior of a frog, we assume that we must describe it without reference to the name it-
self.“It behaves like a frog” is not a sufficient description. There is a presumption that
a description of behavior is made to someone without specific knowledge. An esti-
mate of the complexity of a frog would be much higher than the complexity of the
word “frog.” On the other hand,the words that would be used to describe a frog also
refer to complex entities or actions. Consistency in different estimates of the amount
of text necessary to describe a frog might arise from the use of a common language
and experience. We could expand the description further by requiring that a person
explain not only the behavior of the frog, but also the meaning of each of the words
used to describe the behavior of the frog. At this point,however, it is more construc-
tive to keep in mind the subtle relationship between language and complexity as part
of our uncertainty, and take the given estimates at face value. Ultimately, the com-
plexity of a system is defined by the condition that all possible (in principle) behav-
iors of the same complexity could be described using the same length of text. We ac-
cept the possibility that language-based estimates of complexity of biological
organisms may be systematically too small because they are common and familiar. We
may nevertheless have relative complexities estimated correctly.

Finally, we can argue that when we estimate the complexity of systems that ap-
proach the complexity of a human being, the estimation problems becomes less se-
vere. This follows because o f our discussion of universality o f complexity g iven in
Section 8.2.2.Specifically, that the more complex a system is,the less relevant specific
knowledge is, and the more universal are estimates of complexity. Nevertheless, ulti-
mately we will conclude that the inherent compression in use of language for de-
scribing familiar complex systems is the greatest contributor to uncertainty in com-
plexity estimates.

There is another approach to the use of human intuition and language in esti-
mating complexity. This is by reference to computer languages. For someone familiar
with computer simulation, we can ask for the length of the computer program that
can simulate the behavior of the system—more specifically, the length of the program
that can simulate a frog. Computer languages are generally not very high in informa-
tion content, because there are a few commands and variables that are used through-
out the program. Thus we might estimate the complexity of a program not by char-
acters, but by program lines at several bits per program line. Consistent with the
definition of algorithmic complexity, the estimate of system complexity should also
include the complexity of the compiler and of the computer operating system and
hardware. Compilers and operating systems are much more complex than many pro-
grams by themselves. We can bypass this problem by considering instead the size of
the execution module—after application of the compiler.

There are other problems with the use of natural or artificial language descrip-
tions, including:
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1. Overestimation due to a lack of knowledge of possible representations. This
problem is related to the difficulty of determining the compressibility of infor-
mation. The assumption of a particular length of text presumes a kind of repre-
sentation. This choice of representation may not be the most compact. This may
be due to the form of the representation—specifically English text. Alternatively,
the assumption may be in the conceptual (semantic) framework. An example is
the complexity of the motion of the planets in the Ptolemaic (earth-centered)
representation compared to the Copernican (sun-centered) representation.
Ptolemy would give a larger complexity estimate than Copernicus because the
Ptolemaic system requires a much longer description—which is the reason the
Copernican system is accepted as “true” today.

2. Underestimation due to lack of knowledge of the full behavior of the system. If
an individual is familiar with the behavior of a system only under limited cir-
cumstances,the presumption that this limited knowledge is complete will lead to
a complexity estimate that is too low. Alternatively, lack of knowledge may also
result in too high estimates if the individual extrapolates the missing knowledge
from more complex systems.

3. Difficulty with counting. Large numbers are generally difficult for people to
imagine or estimate. This is the advantage of identifying numbers with length of
text, which is generally a more familiar quantity.

With all of these limitations in mind, what are some of the estimates that we have
obtained? Table 8.4.2 was constructed using various books. The lengths of linguistic
descriptions of the behavior of biological organisms range from several pages to sev-
eral books. Insects and fish are at pages,frogs at a chapter, most mammals at approx-
imately a book, and monkeys and apes at several books. These numb ers span the
range of complexity estimates.

We have concluded that it is not possible to use this approach to obtain an esti-
mate of human complexity. However, this is not quite true. We can apply this method
by taking the highest complexity estimate o f other systems and using this as a close
lower bound to the complexity of the human being. By close lower bound we mean
that the actual complexity should not be tremendously greater. According to our
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Animal Text length Complexity (bits)

Fish a few pages 3x104

Grasshopper, Mosquito a few pages to a chapter 105

Ant (one, not colony) a few pages to a chapter 105

Frog a chapter or two 3x105

Rabbit a short book 106

Tiger a book 3x106

Ape a few books 107

Table 8.4.2 Estimates of the approximate length of text descriptions of animal behavior ❚
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experience,the complexity estimates of animals tend to extend up to roughly a single
book. Primates may be estimated somewhat higher, with a range of one to tens of
books. This suggests that human complexity is somewhat larger than this latter num-
ber—approximately 108 bits, or about 30 books. We will see how this compares to
other estimates in the following sections.

There are several other approaches to estimating human complexity based upon
language. The existence of book-length biographies implies a poor estimate of human
complexity of 106 bits. We can also estimate the complexity of a human being by the
typical amount of information that a person can learn.Specifically, it seems to make
sense to base an estimate on the length of a college education, which uses approxi-
mately 30 textbooks. This is in direct agreement with the previous estimate of 108 bits.
It might be argued that this estimate is too low because we have not inc luded other
parts of the education (elementary and high school and postgraduate education) or
other kinds of education/information that are not academic. It might also be argued
that this is too high because students do not actually know the entire content of 30
textbooks. One reason this number appears reasonable is that if the complexity of a
human being were much greater than this,there would be individuals who would en-
dure tens or hundreds of college educations in different subjects. The estimate of
roughly 30 textbooks is also consistent with the general upper limit on the number of
books an individual can write in a lifetime. The most prolific author in modern times
is Isaac Asimov, with about 500 books. Thus from such text-based self-consistent ev-
idence we might assume that the estimate of 108 bits is not wrong by more than one
to two orders of magnitude. We now turn to estimation methods that are not based
on text.

8.4.2 Genetic code
Biological organisms present us with a convenient and explicit representation for their
formation by development—the genome. It is generally assumed that most of the in-
formation needed to describe the physiology of the organism is contained in genetic
information. For simplicity we might think of DNA as a kind of program that is in-
terpreted by decoding machinery during development and operation. In this regard
the genome is much like a Turing machine tape (see Section 1.9), even though the
mechanism for transcription is quite different from the conventional Turing machine.
Some other perspectives are given in Section 7.1.Regardless of how we ultimately view
the developmental process and cellular function, it appears natural to associate with
the genome the information that is necessary to specify physiological design and func-
tion. It is not difficult to determine an upper bound to the amount of information
that is contained in a DNA sequence. Taken at face value,this provides us with an es-
timate of the complexity of an organism. We must then inquire as to the approxima-
tions that are being made. We first discuss the approach in somewhat greater detail.

Considering the DNA as an alphabet of four characters provided by the four nu-
cleotides or bases represented by A (adenine) T (tyrosine) C (cytosine) G (guanine),
a first estimate of the information contained in a DNA sequence would be
N log(4) = 2N. N is the length of the DNA chain. Since DNA is formed of two com-
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plementary nucleotide chains in a double helix, its length is measured in base pairs.
While this estimate neglects many corrections, there are a number of assumptions
that we are making about the organism that give a larger uncertainty than some of the
corrections that we can apply. Therefore as a rough estimate,this is essentially as good
an estimate as we can obtain from this methodology at present.Specific numbers are
given in Table 8.4.3. We see that for a human being, the estimate is nearly 1010 bits,
which is somewhat larger than that obtained from language-based estimates in the
previous section. What is more remarkable is that there is no systematic trend of in-
creasing genome length that parallels our expectations of increasing organism com-
plexity based on estimates of the last section. Aside from the increasing trend from
bacteria to fungi to animals/plants,there is no apparent trend that would suggest that
genome length is correlated with our expectations about complexity.

We now proceed to discuss limitations in this approach. The list of approxima-
tions given below is not meant to be exhaustive, but it does suggest some of the diffi-
culties in determining the information content even when there is a clear first nu-
merical value to start from.

a. A significant percentage of DNA is “non-coding.” This DNA is not transcribed
for protein structures. It may be relevant to the structural properties of DNA. It
may also contain other useful information not directly relevant to protein se-
quence. Nevertheless, it is likely that information in most of the base pairs that
are non-coding is not essential for organism behavior. Specifically, they can be re-
placed by many other possible base pair sequences without effect. Since
30%–50% of human DNA is estimated to be coding, this correction would r e-
duce the estimated complexity by a factor of two to three.

b. Di rect forms of com pre s s i on : as pre s en t ly unders tood ,D NA is pri m a ri ly uti l i zed
t h ro u gh tra n s c ri pti on to a sequ en ce of amino ac i d s . The coding for each amino
acid is given by a triple of b a s e s . Si n ce there are many more triples (43 = 64) than
amino acids (twen ty) some of the sequ en ces have no amino acid co u n terp a rt ,a n d
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Organism Genome length (base pairs) Complexity (bits)

Bacteria (E. coli) 106–107 107

Fungi 107–108 108

Plants 108–1011 3x108–3x1011

Insects 108–7x109 109

Fish (bony) 5x108–5x109 3x109

Frog and Toad 109–1010 1010

Mammals 2x109–3x109 1010

Man 3x109 1010

Table 8.4.3 Estimates of complexity based upon genome length. Except for plants, where
there is a particularly wide range of genome lengths, a single number is given for the infor-
mation contained in the genome, because the accuracy does not justify more specific num-
bers. Genome lengths and ranges are representative. ❚
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t h ere are more than one sequ en ce that map on to the same amino ac i d . This re-
dundancy means that there is less inform a ti on in the DNA sequ en ce . Taking this
i n to account by assigning a triple of bases to one of t wen ty ch a racters that repre-
s ent amino acids would give a new esti m a te of (N /3 ) l og(20) = 1 . 4N. To improve
the esti m a te furt h er, we would inclu de the rel a tive prob a bi l i ty of the differen t
amino ac i d s , and correl a ti ons bet ween them .

c. General compression: more generally, we can ask how compressed the DNA en-
coding of information is. We can rely upon a basic optimization of function in
biology. This might suggest that some degree of compression is performed in or-
der to reduce the complexity of transmission of the information from generation
to generation. However, this is not a proof, and one could also argue in favor of
redundancy in order to avoid susceptibility to small changes. Moreover there are
likely to be inherent limitations on the compressibility of the information due to
the possible transcription mechanisms that serve instead of decompression algo-
rithms. For example,ifa molecule that is to be represented has a long chain of the
same amino acid, e.g., asp-asp-asp-asp-asp-asp-asp-asp-asp-asp-asp-asp-asp-
asp-asp-asp-asp-asp, it would be interesting if this could be represented using a
chemical equivalent of (18)asp. This requires a transcription mechanism that re-
peats segments—a DNA loop. There are organisms that are known to have highly
repetitive sequences (e.g., 107 repetitions) forming a significant fraction of their
genome. Much of this may be non-coding DNA.

Other forms of compression may also be relevant. For example, we can ask
if there are protein components/subchains that can be used in more than one
protein. This is relevant to the general redundancy of protein design. There is ev-
idence that the genome does uses this property for compression by overlapping
the regions that code for several different proteins. A particular region of DNA
may have several coding regions that can be combined in different ways to obtain
a number of different proteins. Transcription may start from distinct initial
points. Presumably, the information that describes the pattern of transcriptions
is represented in the noncoding segments that are between the coding segments.
Related to the issue of DNA code compression are questions about the complex-
ity of protein primary structure in relation to its own function—specifically, how
much information is necessary to describe the function of a protein. This may be
much less than the information necessary to specify its primary structure (amino
acid sequence). This discussion is approaching issues of the scale at which com-
plexity is measured—at the atomic scale where the specific amino acid is relevant,
or at the molecular scale at which the enzymatic function is relevant. We will
mention this limitation again in point (d).

d. Scale of representation:the genome codes for macromolecular and cellular func-
tion of the biological organism. This is much less than the microscopic entropy,
since it does not code the atomic vibrations or molecular diffusion. However,
since our concern is for the organism’s macroscopic complexity, the DNA is likely
to be coding a far greater complexity than we are interested in for multicellular
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organisms. The assumption is that much of the cellular chemical activity is not
relevant to a description of the behavior on the scale of the organism. If the DNA
were representing the sum of the molecular or cellular scale complexity of each
of the cells independently, then the error in estimating the complexity would be
quite large. However, the molecular and cellular behavior is generally repeated
throughout the organism in different cells. Thus, the DNA is essentially repre-
senting the complexity of a single cellular function with the additional compli-
cation of representing the variation in this function. To the extent that the com-
plexity of cellular behavior is smaller than that of the complete organism,it may
be assumed that the greatest part of the DNA code represents the macroscale be-
havior. On the other hand, if the organism behavior is comparatively simple,the
greater part of the DNA representation would be devoted to describing the cel-
lular behavior.

e. Completeness of representation: we have assumed that DNA is the only source of
cellular information. However, during cell division not only the DNA is trans-
ferred but also other cellular structures,and it is not clear how much information
is necessary to specify their function. It is clear, however, that DNA does not con-
tain all the information. Otherwise it would be possible to transfer DNA from
one cell into any other cell and the organism would function through control by
the DNA. This is not the case. However, it may very well be that the description
of all other parts of the cell, including the transcription mechanisms, only in-
volves a small fraction of the information content compared to the DNA (for ex-
ample,104–106 bits compared to 107–1011 bits in DNA).Similar to our point (d),
the information in cellular structures is more likely to be irrelevant for organisms
whose complexity is high. We could note also that there are two sources of DNA
in the eukaryotic cell, nuclear DNA and mitochondrial DNA.The information in
the nuclear DNA dominates over the mitochondrial DNA, and we also expect it
to dominate over other sources of cellular information. It is possible, however,
that the other sources of information approach some fraction (e.g., 10%) of the
information in the nuclear DNA, causing a small correction to our estimates.

f. We have implicitly assumed that the development process of a biological organ-
ism is deterministic and uniquely determined by the genome. Randomness in the
process of development gives rise to additional information in the final structure
that is not contained in the genome. Thus, even organisms that have the same
DNA are not exactly the same. In humans, identical twins have been studied in
order to determine the difference between environmental and genetic influence.
Here we are not considering the macroscale environmental influence, but rather
the microscale influence. This influence begins with the randomness of molecu-
lar vibrations during the developmental process. The additional information
gained in this way would have to play a relatively minor functional role if there is
significance to the genetic control over physiology. Nevertheless,a complete esti-
mate of the complexity of a system must include this information. Without con-
sidering different scales of structure or behavior, on the macroscale we should
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not expect the microscopic randomness to affect the complexity by more than a
factor of 2,and more likely the effect is not more than 10% in a typical biologi-
cal organism.

g. We have also neglected the macroscale environmental influences on behavior.
These are usually described by adaptation and learning . For most biological or-
ganisms,the environmental influences on behavior are believed to be small com-
pared to genetic influences. Instinctive behaviors dominate. This is not as true
about many mammals and even less true about human beings. Therefore,the ge-
netic estimate becomes less reliable as an upper bound for human beings than it
is for lower animals. This point will be discussed in greater detail below.

We can see that the assumptions discussed in (a), (b), (c) and (d) would lead to
the DNA length being an overly large estimate of the complexity. Assumptions dis-
cussed in (e), (f ) and (g) imply it is an underestimate.

One of the conceptual difficulties that we are presented with in considering
genome length as a complexity estimate is that plants have a much higher DNA length
than animals. This is in conflict with the conventional wisdom that animals have a
greater complexity of behavior than plants.We might adopt one of two approaches to
understanding this result: first, that plants are actually more complex than animals,
and second, that the DNA representation in plants does not make use of, or cannot
make use of, compression algorithms that are present in animal cells.

If plants are systematically more complex than animals, there must be a general
quality of plants that has higher descriptive and behavioral complexity. A candidate
for such a property is that plants are generally able to regenerate after injury. This in-
herently requires more information than the reliance upon a specific time history for
development. In essence,there must be some form of actual blueprint for the organ-
ism encoded in the genome that takes into account many possible circumstances.
From a programming point of view, this is a multiply reentrant program. To enable
this feature may very well be more complex, or it may require a more redundant
(longer) representation of the same information. It is presumed that the structure of
animals has such a high intrinsic complexity that representation of a fully regenera-
tive organism would be impossible. This idea might be checked by considering the
genome length of animals that have greater ability to regenerate. If they are substan-
tially longer than similar animals without the ability to regenerate, the explanation
would be supported. Indeed, the salamander, which is the only vertebrate with the
ability to regenerate limbs, has a genome of 1011 base pairs. This is much larger than
that of other vertebrates, and comparable to that of the largest plant genomes.

A more general reason for the high plant genome complexity that is consistent
with regeneration would be that plants have systematically developed a high com-
plexity on smaller (molecular and cellular) rather than larger (organismal) scales.
One reason for this would be that plant immobility requires the development of com-
plex molecular and cellular mechanisms to inhibit or survive partial consumption by
other organisms. By our discussion of the complexity profile in Section 8.3, a hig h
complexity on small scales would not allow a high complexity on larger scales. This
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explanation would also be consistent with our understanding of the relative simplic-
ity of plants on the larger scale.

The second possibility is that there exists a systematic additional redundancy of
the genome in plants. This might be the result of particular proteins with chains of
repetitive amino acids.A protein formed out of a long chain of the same amino acid
might be functionally of importance in plants,and not in animals. This is a potential
explanation for the relative lengths of plant genome and animal genome.

One of the most striking features of the genome lengths found for various or-
ganisms is their relative uniformity. Widely different types of organisms have similar
genome lengths, while similar organisms may have quite different genome lengths.
One explanation for this that might be suggested is that genome lengths have in-
creased systematically with evolutionary time. It is hard, however, to see why this
would be the case in all but the simplest models of evolution. It makes more sense to
infer that there are constraints on the genome lengths that have led it to gravitate to-
ward a value in the range 109–1010. Increases in organism complexity then result from
fewer redundancies and better compression, rather than longer genomes. In princi-
ple, this could account for the pattern of complexities we have obtained.

Regardless of the ultimate reason for various genome lengths, in each case the
complexity estimate from genome length provides an upper bound to the genetic
component of organism complexity (c.f. points (e), (f ) and (g) above). Thus,the hu-
man genome length provides us with an estimate of human complexity.

8.4.3 Component counting
The objective of complexity estimation is to determine the behavioral complexity of
a system as a whole. However, one of the important clues to the complexity of the sys-
tem is its composition from elements and their interactions. By counting the number
of elements, we can develop an understanding of the complexity of the system.
However, as with other estimation methods,it must be understood that there are in-
herent problems in this approach. We will find that this method gives us a much
higher estimate than the other methods. In using this method we are faced with the
dilemma that lies at the heart of the ability to understand the nature of complex sys-
tems—how does complex behavior arise out of the component behavior and their in-
teractions? The essential question that we face is: Assuming that we have a system
formed of N interacting elements that have a complexity C0 (or a known distribution
of complexities),how can the complexity C of the whole system be determined? The
maximal possible value would be NC0. However, as we discussed in Section 8.3,this is
reduced both by correlations between elements and by the change of scale from that
of the elements to that of the system. We will discuss these problems in the context of
estimating human complexity.

If we are to consider the behavioral complexity of a human being by counting
components, we must identify the relevant components to count. If we count the
number of atoms, we would be describing the microscopic complexity. On the other
hand, we cannot count the number of parts on the scale of the organism (one)
because the problem in determining the complexity remains in evaluating C0. Thus
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the objective is to select components at an intermediate scale. Of the natural inter-
mediate scales to consider, there are molecules, cells and organs. We will tackle the
problem by considering cells and discuss difficulties that arise in this context. The first
difficulty is that the complexity of behavior does not arise equally from all cells. It is
generally understood that muscle cells and bone cells are largely uniform in structure.
They may therefore collectively be described in terms of a few parameters, and their
contribution to organism behavior can be summarized simply. In contrast,as we dis-
cussed in Chapter 2,the behavior of the system on the scale of the organism is gener-
ally attributed to the nervous system. Thus,aside from an inconsequential number of
additional parameters, we will consider only the cells of the nervous system. If we were
considering the behavior on a smaller length scale, then it would be natural to also
consider the immune system.

In order to make more progress, we must discuss a specific model for the nervous
system and then determine its limitations. We can do this by considering the behav-
ior of a model system we studied in detail in Chapter 2—the attractor neural network
model.Each of the neurons is a binary variable. Its behavior is specified by whether it
is ON or OFF. The behavior of the network is,however, described by the values of the
synapses. The total complexity of the synapses could be quite high if we allowed the
synapses to have many digits of precision in their values, but this does not contribute
to the complexity of the network behavior. Given our investigation of the storage of
patterns in the network, we can argue that the maximal number of independent pa-
rameters that may be specified for the operation of the network consists of the neural
firing patterns that are stored. This corresponds to cN 2 bits of information, where N
is the number of neurons,and c ≈ 0.14 is a number that arose from our analysis of
network overload.

Th ere are several probl ems with app lying this formula to bi o l ogical nervous sys-
tem s . The first is that the bi o l ogical net work is not fully con n ected . We could app ly a
similar formula to the net work assuming on ly the nu m ber of synapses Ns that are pre-
s en t , on avera ge , for a neu ron .This gives a va lue cNsN. This means that the stora ge ca-
p ac i ty of the net work is small er, and should scale with the nu m ber of s y n a p s e s . For the
human brain wh ere Ns has been esti m a ted at 104 and N ≈ 1 01 1, this would give a va lu e
of 0.1 × 1 04 × 1 01 1 = 1 01 4 bi t s . The probl em with this esti m a te is that in order to spec i f y
the beh avi or of the net work , we need to specify not on ly the impri n ted patterns but also
wh i ch synapses are pre s ent and wh i ch are absen t .L i s ting the synapses that are pre s en t
would requ i re a set of nu m ber pairs that would specify wh i ch neu rons each neu ron is
a t t ach ed to. This list would requ i re ro u gh ly N Nsl og (N) = 3 × 1 01 6 bi t s , wh i ch is larger
than the nu m ber of bits of i n form a ti on in the stora ge itsel f . This esti m a te may be re-
du ced by a small amount, i f , as we ex pect , the synapses of a neu ron largely con n ect to
n eu rons that are nearby. We wi ll use 101 6 as the basis for our com p l ex i ty esti m a te .

The second major problem with this model is that real neurons are far from bi-
nary variables. Indeed, a neuron is a complex system. Each neuron responds to par-
ticular neurotransmitters, and the synapse b etween two specific neurons is different
from other synapses. How many parameters would be needed to describe the behav-
ior of an individual neuron,and how relevant are these parameters to the complexity
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of the whole system? Naively, we might think that taking into account the complexity
of individual neurons g ives a much higher complexity than that considered above.
However, this is not the case.We assume that the parameters necessary to describe an
individual neuron correspond to a complexity C0, and it is necessary to specify the pa-
rameters of all of the neurons. Then the complexity of the whole system would in-
clude C0N bits for the neurons themselves. This would be greater than 1016 bits only
if the complexity of the individual neurons were larger than 105. A reasonable esti-
mate of the complexity of a neuron is roughly 103–104 bits. This would give a value of
C0N = 1013−1014 bits, which is not a significant amount by comparison with 1016 bits.
By these estimates,the complexity of the internal structure of a neuron is not greater
than the complexity of its interconnections.

Similarly, we should consider the complexity of a synapse, which multiplies the
number of synapses. Synapses are significantly simpler than the neurons. We may es-
timate their complexity as no more than 10 bits. This would be sufficient to specify
the synaptic strength and the type of chemicals involved in transmission. Multiplying
this by the total number of synapses (1015) gives 1016 bits. This is the same as the in-
formation necessary to specify the list of synapses that are present.

Combining our estimates for the information necessary to specify the structure
of neurons,the structure of synapses and the list of synapses present, we obtain an es-
timate for complexity of 1016 bits. This estimate is significantly larger than the esti-
mate found from the other two approaches. As we mentioned before, there are two
fundamental difficulties with this approach that make the estimate too high—
correlations among parameters and the scale of description.

Ma ny of the para m eters enu m era ted above are likely to be the same, giving rise to
the po s s i bi l i ty of com pre s s i on of the de s c ri pti on . Both the de s c ri pti on of an indivi du a l
n eu ron and the de s c ri pti on of the synapses bet ween them can be dra s ti c a lly simplified
i fa ll of t h em fo ll ow a pattern . For ex a m p l e , the vi sual sys tem invo lves processing of a vi-
sual field wh ere the different neu rons at different loc a ti ons perform essen ti a lly the same
opera ti on on the vi sual inform a ti on . Even if t h ere are smooth va ri a ti ons in the para-
m eters that de s c ri be both the neu ron beh avi or and the synapses bet ween them , we can
de s c ri be the processing of the vi sual field in terms of a small nu m ber of p a ra m eters .
In deed ,one would guess (an intu i ti on - b a s ed esti m a te) that processing of the vi sual fiel d
is qu i te com p l i c a ted (more than 102 bits) but would not exceed 103– 1 05 bits altoget h er.
Si n ce a su b s t a n tial fracti on of the nu m ber of n eu rons in the brain is devo ted to initi a l
vi sual proce s s i n g, the use of this redu ced de s c ri pti on of the vi sual processing would re-
du ce the esti m a te of the com p l ex i ty of the whole sys tem .

Nevertheless,the initial visual processing does not involve more than 10% of the
number of neurons. Even if we eliminate all of their parameters,the estimate of sys-
tem complexity would not change.However, the idea behind this construction is that
whenever there are many neurons whose behavior can be grouped together into par-
ticular functions,then the complexity of the description is reduced. Thus if we can de-
scribe neurons as belonging to a particular class of neurons (category or stereotype),
then the complexity is reduced. It is known that neurons can be categorized;however,
it is not clear how many parameters remain once this categorization has been done.
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When we think about grouping the neurons together, we might also realize that this
discussion is relevant to the consideration of the influence of environment and ge-
netics on behavior. If the number of parameters necessary to describe the network
greatly exceeds the number of parameters in the genetic code, which is only 1010 bits,
then many of these parameters must be specified by the environment. We will discuss
this again in the next section.

On a more ph i l o s ophical note , we com m ent that para m eters that de s c ri be the
n ervous sys tem also inclu de the mall e a ble short - term mem ory. While this may be
a small part of the total inform a ti on , our esti m a te of beh avi oral com p l ex i ty
should raise qu e s ti ons su ch as, How specific do we have to be? Should the con ten t
of s h ort - term mem ory be inclu ded? The argument in favor would be that we need
to repre s ent the human being in en ti rety. The argument against would be that
what happen ed in the past five minutes or even the past day is not rel evant and we
can re s et this part of the mem ory. Even tu a lly we may ask wh et h er the obj ective is
to repre s ent the specific inform a ti on known by an indivi dual or just his or her
“ch a racter.”

We have not yet directly addressed the role of substructure (Chapter 2) in the
complexity of the nervous system. In comparison with a fully connected network, a
network with substructure is more complex because it is necessary to specify the sub-
structure, or more specifically which neurons (or which information) are proximate
to which. However, in a system that is subdivided by virtue of having fewer synapses
between subdivisions, once we have counted the information that is present in the se-
lection of synapses,as we have done above,the substructure of the system has already
been included.

The second problem of estimating complexity based on component counting is
that we do not know how to reduce the complexity estimate based upon an increase
of the length scale of observation. The estimate we have obtained for the complexity
of the nervous system is relevant to a description of its behavior on the scale of a neu-
ron (it does, however, focus on cellular behavior most relevant to the behavior of the
organism). In order to overcome this problem, we need a method to assess the de-
pendence of the organism behavior on the cellular behavior. A natural approach
might be to evaluate the robustness of the system behavior to changes in the compo-
nents. Human beings are believed to lose approximately 106 neurons every day (even
without alcohol) corresponding to the loss of a significant fraction of the neurons
over the course of a lifetime. This suggests that individual neurons are not crucial to
determining human behavior. It implies that there may be a couple of orders of mag-
nitude between the estimate of neuron complexity and human complexity. However,
since the daily loss of neurons corresponds only to a loss of 1 in 105 neurons, we could
also argue that it would be hard for us to notice the impact of this loss. In any event,
our estimate based upon component counting, 1016, is eight orders of magnitude
larger than the estimates obtained from text and six orders of magnitude larger than
the genome-based estimate.To account for this difference we would have to argue that
99.999% of neuron parameters are irrelevant to human behavior. This is too great a
discrepancy to dismiss based upon such an argument.
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Finally, we can demonstrate that 1016 is too large an estimate of complexity by
considering the counting of time rather than the counting of components. We con-
sider a minimal time interval of describing a human being to be of order 1 se cond,
and we allow for each second 103 bits of information. There are of order 109 seconds
in a lifetime. Thus we conclude that only, at most,1012 bits of information are neces-
sary to describe the actions of a human. This estimate assumes that each second is in-
dependently described from all other seconds,and no patterns of behavior exist. This
would seem to be a very generous estimate. We can contrast this number with an es-
timate of the total amount of information that might be imprinted upon the
synapses. This can be estimated as the total number of neuronal states over the course
of a lifetime. For a neuron reaction time of order 10−2 seconds,1011 neurons,and 109

seconds in a lifetime, we have 1022 bits of information. Thus we see that the total
amount of information that passes through the nervous system is much larger than
the information that is represented there, which is larger than the information that is
manifest in terms of behavior. This suggests either that the collective behavior of neu-
rons requires redundant information in the synapses,as discussed in Section 8.3.6, or
that the actions of an individual do not fully represent the possible actions that the in-
dividual would take under all circumstances. The latter possibility returns us to the
discussion of Eq.(8.3.47) and Eq.(8.3.59), where we commented that the expression
is an upper bound, because information may cycle between scales or between system
and environment. Under these circumstances, the potential complexity of a system
under the most diverse set of circumstances is not necessarily the observed complex-
ity. Both of our approaches to component counting (spatial and temporal) may over-
estimate the complexity due to this problem.

8.4.4 Complexity of human beings, artificial intelligence,
and the soul

We begin this section by summarizing the estimates of human complexity from the
previous sections,and then turn to some more philosophical considerations of its sig-
nificance. We have found that the microscopic complexity of a human being is in the
vicinity of 1030 bits. This is much larger than our estimates of the macroscopic com-
plexity—language-based 108 bits, genome-based 1010 bits and component (neuron)-
counting 1016 bits. As discussed at the end of the last section, we replace the spatial
component-counting estimate with the time-counting upper bound of 1012 bits. We
will discuss the discrepancies between these numbers and conclude with an estimate
of 1010±2 bits.

We can summarize our understanding of the different estimates. The language-
based estimate is likely to be somewhat low because of the inherent compression
achieved by language.One way to say this is that a college education, consisting of 30
textbooks, is based upon childhood learning (nonlinguistic and linguistic) that pro-
vides meaning to the words, and therefore contains comparable or greater informa-
tion. The genome-based complexity is likely to be a too-large estimate of the influence
of genome on behavior, because genome information is compressible and because
much of it must be relevant to molecular and cellular function. The component-
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counting estimate suggests that the information obtained from experience is much
larger than the information due to the genome—specifically, that genetic information
cannot specify the parameters of the neural network. This is consistent with our dis-
cussion in Section 3.2.11 that suggested that synapses store learned information while
the genome determines the overall structure of the network. We must still conclude
that most of the network information is not relevant to behavior at the larger scale. It
is redundant, and /or does not manifest itself in human behavior because of the lim-
ited types of external circumstances that are encountered. Because of this last point,
the complexity for describing the response to arbitrary circumstances may be higher
than the estimate that we will give, but should still be significantly less than 1016 bits.

Our estimate of the complexity of a human being is 1010±2 bits. The error bars es-
sentially bracket the values we obtained. The main final caveat is that the difficulty in
assessing the possibility of information compression may lead to a systematic bias to
high complexities. For the following discussion,the actual value is less important than
the existence of an estimate.

Consideration of the complexity of a human being is intimately related to fun-
damental issues in artificial intelligence. The complexity of a human being specifies
the amount of information necessary to describe and, given an environment, predict
the behavior of a human being. There is no presumption that the prediction would be
feasible using present technology. However, in principle,there is an implication of its
possibility. Our objective here is to briefly discuss both philosophical and practical
implications of this observation.

The notion of reproducing human behavior in a computer (or by other artificial
means) has traditionally been a major domain of confrontation between science and
religion,and science and popular thought. Some of these conflicts arise because of the
supposition by some religious philosophers of a nonmaterial soul that is presumed to
animate human beings. Such nonmaterial entities are rejected in the context of sci-
ence because they are, by definition,not measurable. It may be helpful to discuss some
of the alternate approaches to the traditional conflict that bypass the controversy in
favor of slightly modified definitions.Specifically, we will consider the possibility of a
scientific definition of the concept of a soul.We will see that such a concept is not nec-
essarily in conflict with notions of artificial intelligence. Instead it is closely related to
the assumptions of this field.

One way to define the concept of soul is as the information that describes com-
pletely a human being. We have just estimated the amount of this information. To un-
derstand how this is related to the religious concept of soul, we must realize that the
concept of soul serves a purpose. When an individual dies,the existence of a soul rep-
resents the independence of the human being from the material of which he or she is
formed. If the material of which the human being is made were essential to its func-
tion, then there would be no independent functional description. Also, there would
be no mechanism by which we could reproduce human behavior without making use
of precisely the atoms of which he or she was formed. In this way the description of a
soul suggests an abstraction of function from matter which is consistent with ab-
stractions that are familiar in science and modern thought, but might not be consis-
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tent with more primitive notions of matter. A primitive concept of matter might in-
sist that the matter of which we are formed is essential to our functioning. The sim-
plest possible abstraction would be to state (as is claimed by physics) that the specific
atoms of which the human being are formed are not necessary to his or her function.
Instead, these atoms may be replaced by other indistinguishable atoms and the same
behavior will be found. Artificial intelligence takes this a large step further by stating
that there are other possible media in which the same behavior can be realized.A hu-
man being is not directly tied to the material of which he is made. Instead there is a
functional description that can be implemented in various media, of which one pos-
sible medium is the biological body that the human being was implemented in, when
we met him or her.

Viewed in this light, the statement of the existence of a soul appears to be the
same as the claim of artificial intelligence—that a human being can be reproduced in
a different form by embodying the function rather than the mechanism of the human
being. There is,however, a crucial distinction between the religious view and some of
the practical approaches of artificial intelligence. This difference is related to the no-
tion of a universal artificial intelligence, which is conceptually similar to the model of
universal Turing machines. According to this view there is a generic model for intelli-
gence that can be implemented in a computer. In contrast,the religious view is typi-
cally focused on the individual identity of an individual human being as manifest in
a unique soul. We have discussed in Chapter 3 that our models of human beings are
to be understood as nonuniversal and would indeed be better realized by the concept
of representing individual human beings rather than a generic artificial intelligence.
There are common features to the information processing of different individuals.
However, we anticipate that the features characteristic of human behavior are pre-
dominantly specific to each individual rather than common. Thus the objective of
creating artificial human beings might be better described as that of manifesting the
soul of an individual human.

We can illustrate this change in perspective by considering the Turing test for rec-
ognizing artificial intelligence. The Turing test suggests that in a conversation with a
computer we may not be able to distinguish it from a human being. A key problem
with this prescription is that there is no specification of which human being is to be
modeled. Human beings have varied complexity, and interactions are of varied levels
of intimacy. It would be quite easy to reproduce the conversation of a mute individ-
ual, or even an obsessed individual. Which human being did Turing have in mind? We
can go beyond this objection by recognizing that in order to fool us into thinking that
the computer is a human being, except for a very casual conversation, the computer
would have to represent a single human being with a name,a family history, a profes-
sion, opinions and a personality, not an abstract notion of intelligence. Finally, we
may also ask whether the represented human being is someone we already know, or
someone we do not know, prior to the test.

While we bypassed the fundamental controversy between science and religion re-
garding the presence of an immaterial soul, we suspect that the real conflict between
the approaches resides in a different place. This conflict is in the question of the
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intrinsic value of a human being and his place in the universe. Both the religious and
popular view would like to place an importance on a human being that transcends the
value of the matter of which he is formed. Philosophically, the scientific perspective
has often been viewed as lowering human worth. This is true whether it is physical sci-
entists that view the material of which man is formed as “just” composed of the same
atoms as rocks and water, or whether it is biological scientists that consider the bio-
chemical and cellular structures as the same as,and derived evolutionarily from,ani-
mal processes.

The study of complexity presents us with an opportunity in this regard.A quan-
titative definition of complexity can provide a direct measure of the difference be-
tween the behavior of a rock,an animal and a human being. We should recognize that
this capability can be a double-edged sword. On the one hand it provides us with a
scientific method for distinguishing man from matter, and man from animal, by rec-
ognizing that the particular arrangement of atoms in a human being, or the particu-
lar implementation of biology, achieves a functionality that is highly complex. At the
same time, by placing a number on this complexity it presents us with the finiteness
of the human being. For those who would like to view themselves as infinite,a finite
complexity may be humbling and difficult to accept. Others who already recognize
the inherent limitations of individual human beings,including themselves, may find
it comforting to know that this limitation is fundamental.

As is often the case,the value of a number attains meaning though comparison.
Specifically, we may consider the complexity of a human being and see it as either high
or low. We must have some reference point with respect to which we measure human
complexity. One reference point was clear in the preceding discussion—that of ani-
mals. We found that our (linguistic) estimates of human complexity placed human
beings quantitatively above those of animals, as we might expect. This result is quite
reasonable but does not suggest any clear dividing line between animals and man.
There is, however, an independent value to which these complexities can be com-
pared. For consistency, we use language-based complexity estimates throughout.

The idea of biological evolution and the biological continuity of man from ani-
mal is based upon the concept of the survival demands of the environment on man.
Let us consider for the moment the complexity of the demands of the environment.
We can estimate this complexity using relevant literature. Books that discuss survival
in the wild are typically quite short, 3 × 105 bits. Such a book might describe more
than just basic survival—plants to eat and animal hunting—but also various skills of
a primitive life such as stone knives, tanning, basket making, and primitive home or
boat construction. Alternatively, a book might discuss survival under extreme cir-
cumstances rather than survival under more typical circumstances. Even so, the
amount of text is not longer than a rather brief book. While there are many individ-
uals who have devoted themselves to living in the wild,there are no encyclopedias of
relevant information. This suggests that in comparison with the complexity of a hu-
man being, the complexity of survival demands is small. Indeed, this complexity ap-
pears to be right at the estimated dividing line between animal (106 bits) and man
(108 bits). It is significant that an ape may have a complexity of ten times the com-
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plexity of the environmental demands upon it, but a human being has a complexity
of a hundred times this demand. Another way to arrive at this conclusion is to con-
sider primitive man, or primitive tribes that exist today. We might ask about the com-
plexity of their existence and specifically whether the demands of the survival are the
same as the complexity of their lives. From books that reflect studies of such peoples
we see that the descrip tion of their survival techniques is much shorter than the de-
scription of their social and cultural activities.A single aspect of their culture might
occupy a book, while the survival methods do not occupy even a single one.

We might compare the behavior of primitive man with the behavior of animal
predators. In contrast to grazing animals, predators satisfy their survival needs in
terms of food using only a small part of the day. One might ask why they did not de-
velop complex cultural activities. One might think, for example, of sleeping lions.
While they do have a social life, it does not compare in complexity to that of human
beings. The explanation that our discussion provides is that while time would allow
cultural activities, complexity does not. Thus, the complexity of such predators is es-
sentially devoted to problems of survival. That of human beings is not.

This conclusion is quite intriguing. Several interesting remarks follow. In this
context we can suggest that analyses of animal behavior should not necessarily be as-
sumed to apply to human behavior. In particular, any animal behavior might be jus-
tified on the basis of a survival demand. While this approach has also often been ap-
plied to human beings—the survival advantages associated with culture, art and
science have often been suggested—our analysis suggests that this is not justified, at
least not in a direct fashion. Human behavior cannot be driven by survival demands
if the survival demands are simpler than the human behavior. Of course,this does not
rule out that general aspects or patterns of behavior, or even some specific behaviors,
are driven by survival demands.

One of the distinctions between man and animals is the relative dominance of in-
stinctive behavior in animals,as compared to learned behavior in man. It is often sug-
gested that human dependence on learned rather than instinctive behavior is simply
a different strategy for survival. However, ifthe complexity of the demands of survival
are smaller than that of a human being, this does not hold. We can argue instead that
if the complexity of survival demands are limited, then there is no reason for addi-
tional instinctive behaviors. Thus, our results suggest that instinctive behavior is ac-
tually a better strategy for overcoming survival demands—because it is prevalent in
organisms whose behavior arises in response to survival demands. However, once
such demands are met, there is little reason to produce more complex instinctive be-
haviors, and for this reason human behavior is not instinctively driven.

We now turn to some more practical asp ects o f the implications of our com-
plexity estimates for the problem of artificial intelligence—or the re-creation of an in-
dividual in an artificial form. We may start from the microscopic complexity (roughly
the entropy) which corresponds to the information necessary to replace every atom
in the human being with another atom of the same kind,or alternatively, to represent
the atoms in a computer. We might imagine that the computer could simulate the dy-
namics of the atoms in order to simulate the behavior of the human being. The
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practicality of such an implementation is highly questionable.The problem is not just
that the number of bits of storage as well as the speed requirements are beyond mod-
ern technology. It must be assumed that any computer representation of this dynam-
ics must ultimately be composed of atoms. If the simulation is not composed out of
the atoms themselves, but some controllable representation of the atoms, then the
complexity of the machine must be significantly greater than that of a human being.
Moreover, unless the system is constructed to respond to its environment in a man-
ner similar to the response of a human being, then the computer must also simulate
the environment. Such a task is likely to be formally as well as practically impossible.

One central question then becomes whether it is possible to compress the repre-
sentation of a human being into a simpler one that can be stored.Our estimate o f be-
havioral complexity, 1010±2 bits, suggests that this might be possible. Since a CD-ROM
contains 5 × 109 bits, we are discussing 2 × 10±2 CD-ROMs. At the lower end of this
range, 0.02 CD-ROMs is clearly not a problem. Even at the upper end, two hundred
CD-ROMs is well within the domain of feasibility. Indeed, even if we chose to repre-
sent the information we estimated to be necessary to describe the neural network of
a single individual, 1016 bits or 2 million CD-ROMs, this would be a technologically
feasible project. We have made no claims about our ability to obtain the necessary in-
formation for one individual. However, once this information is obtained, it should
be possible to store it.A computer that can simulate the behavior of this individual
represents a more significant problem.

Before we discuss the problem of simulating a human being, we might ask what
the additional microscopic complexity present in a human body is good for.
Specifically, if only 1010 bits are relevant to human behavior, what are most of the 1031

bits doing? One way to think about this question is to ask why nature didn’t build a
similar machine with of order 1010 atoms, which would be significantly smaller. We
might also ask whether we would know if such an organism existed.On our own scale,
we might ask why nature doesn’t build an organism with a complexity of order 1030.
We have already suggested that there may be inherent limitations to the complexity
that can be formed. However, there may also be another use of some of the additional
large number of microscopic pieces of information.

One possible use of the additional information can be inferred from our argu-
ments about the difference between TM with and without a random tape. The dis-
cussion in Section 1.9.7 suggests that it may be necessary to have a source of ran-
domness to allow human qualities such as creativity. This fits nicely with our
discussion of chaos in complex system behavior. The implication is that the micro-
scopic information becomes gradually relevant to the macroscopic behavior as a
chaotic process. We can assume that most microscopic information in a human being
describes the position and orientation of water molecules. In this picture, random
motion of molecules affects cellular behavior, specifically the firing of neurons, that
ultimately affects human behavior. This does not mean that all of the microscopic in-
formation is relevant. Only a small number of bits can be relevant at any time.
However, we recognize that in order to obtain a certain number of random bits,there
must be a much larger reservoir of randomness. This is one approach to understand-
ing a possible use of the microscopic information content of a human being. Another
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approach would ascribe the additional information to the necessary support struc-
tures for the complex behavior, but would not attribute to it an essential role as
information.

We have demonstrated time and again that it is possible to build a stronger or
faster machine than a human being. This has led some people to believe that we can
also build a systematically more capable machine—in the form of a robot. We have al-
ready argued that the present notion of computers may not be sufficient if it becomes
necessary to include chaotic behavior. We can go beyond this argument by consider-
ing the problem we have introduced of the fundamental limits to complexity for a col-
lection of molecules. It may turn out that our quest for the design of a complex ma-
chine will be limited by the same fundamental laws that limit the design of human
beings.One of the natural improvements for the design of deterministic machines is
to consider lower temperatures that enable lower error rates and higher speeds, and
possibly the use of superconductors. However, the choice of a higher temperature may
be required to enable a higher microscopic complexity, which also limits the macro-
scopic complexity. The mammalian body temperature may be selected to balance two
competing effects. At high temperatures there is a high microscopic complexity.
However, breaking the ergodic theorem requires low temperatures so that energy bar-
riers can be effective in stopping movement in phase space.A way to argue this point
more generally is that the sensitivity of human ears and eyes is not limited by the bi-
ological design, but by fundamental limits of quantum mechanics. It may also be that
the behavioral complexity of a human being at its own length and time scale is lim-
ited by fundamental law. As with the existence of artificial sensors in other parts of the
visual spectrum, we already know that machines with other capabilities can be built.
However, this argument suggests that it may not be possible to build a systematically
more complex artificial organism.

The previous discussion is not a proof that we cannot build a robot that is more
capable than a human being. However, any claims that it is possible should be tem-
pered by the respect that we have gained from studying the effectiveness of biological
design. In this regard, it is interesting that some of the modern approaches to artifi-
cial intelligence consider the use of nanotechnology, which at least in part will make
use of biological molecules and methods.

Finally we can say that the concept of an infinite human being may not be en-
tirely lost.Even the lowly TM whose internal (table) complexity is rather small can,in
arbitrarily long time and with an infinite storage, reproduce arbitrarily complex be-
havior. In this regard we should not consider just the complexity of a human b eing
but also the complexity of a human being in the context of his tools. For example, we
can consider the complexity of a human being with paper and pen,the complexity of
a human being with a computer, or the complexity of a human being with access to a
library. Since human beings make use of external storage that is limited only by the
available matter, over time a human being, through collaboration with other human
beings/generations extending through time,can reproduce complex behavior limited
only by the matter that is available. This brings us back to questions of the behavior
of collections of human beings, which we will address in Chapter 9.
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9 
Human Civilization II:
A Complex(ity) Transition

Conceptual Outline

A danger of thinking about collective human systems is that our perspec-
tive on the importance of the individual may be diminished. However, this is only a
problem because emergence and interdependence are not generally understood.

By treating human civilization as a complex system, we may go beyond
qualitative analogies in our efforts to understand it.

In recent years, human civilization has become manifestly interdependent.
Therefore we conclude that it is a complex organism.

There is evidence that a transition in the structure of human organizations
is occurring with intriguing consequences. Historical and contemporary evidence
suggests that human organizations are undergoing a transition away from hierarchi-
cal control. From a complex systems perspective, a hierarchical system implies that
the complexity of the behavior of the entire organization (at its own scale) must be
less than the complexity of the controlling individual. Thus, the transition away from
hierarchical control is consistent with a transition in complexity—previously human
organizations behaved in a manner that is simpler than an individual, now they are
more complex.

For an individual, the consequences of this transition are manifold and
manifest. There is increasing specialization of social and professional contexts. As
individuals, we cannot fully understand the social and economic processes that are
going on around us. However, as components of a complex organism, we are pro-
tected from many dangers.

Our ability to predict the collective behavior of human civilization is limited.
Nevertheless, there are a variety of intriguing questions that may be discussed.

❚ 9 . 6 ❚

❚ 9 . 5 ❚

❚ 9 . 4 ❚

❚ 9 . 3 ❚

❚ 9 . 2 ❚

❚ 9 . 1 ❚
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Introduction: Complex Systems 
and Social Policy

Our objective in this chapter is to consider complex systems that are composed of col-
lections of human beings. There are many such complex systems, ranging from a fam-
ily unit to the totality of civilization. This endeavor brings us to the domain of a set of
fields that we have not yet encountered in this text—social psychology, sociology, an-
thropology, political science and economics, and to the borders of public policy, so-
cial work and social welfare.Once we enter into this societal domain, we must evalu-
ate carefully how to apply scientific methods. One of the central difficulties is
ensuring that our desires and concerns don’t interfere with our observations. We must
strive to understand what is happening, and defer questions of how we would like the
society to be, or to become. In order to understand, the scientist must first act as an
observer rather than evaluator of good and bad. The questions, What is happening?
Why is it happening? and How is it happening? are primary. While there has been a
call for scientists to become involved in social policy, there are dangers to this ap-
proach. The dispassionate analytic perspective can inform, but is not a substitute for,
a compassionate social policy.

Our concern in this section,however, is not to discuss the general problems of the
scientific approach in social policy, but rather to discuss a specific way that the study
of human civilization in a scientific context may have a negative impact on social pol-
icy thinking. There are specific dangers to be avoided. Considering the collective be-
havior of human beings as a complex organism can,and historically has,led to prob-
lems in attitudes that inform social policy when the value of individuals is dismissed
in comparison to objectives of the collective. The danger is that we will cause a de-
crease in respect for the importance of the individual. In the following paragraphs we
discuss and clarify this problem as a cautionary preface to our discussion of human
civilization as a complex system.

Various forms of collective human systems are taken for granted in anthropol-
ogy, sociology, politics and economics. In much of recent history the nation-state has
been the most prominent political organization. Similarly, the corporation has been
the primary economic organization. In Western law corporations are recognized as
individuals with rights that are similar to the rights of individual human beings,
though there are some distinctions. Other collective human systems of the past and
present are the tribe, city-state and community.

In the field of biology, the existence of collective behavior of organisms has been
described using the terminology “superorganism.” The superorganism terminology
expresses the concept that the “actual”system of interest is not the individual biolog-
ical organism but rather the collective system formed out of many individuals.Applied
originally to insect colonies,this term has also been applied more broadly, even to hu-
man civilization. However, within the context of complex systems, there are impor-
tant distinctions that can be made between different kinds of superorganisms. The ex-
istence of interactions between insects does not necessarily imply that the collective is
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the relevant organism rather than the individual insect. We could try to determine the
relevant organism by comparing the complexity of the individual to that of the col-
lective. However, it is more important to understand the interdependence of individ-
ual and collective organism behavior. The primary significance of the term “superor-
ganism,” when applied to a collective,is the implicit suggestion that all of the standard
biological concepts of a living organism apply to the collective. Some of these con-
cepts—reproduction, consumption of food and production of waste—can also apply
to collections of noninteracting, or decoupled individuals. These may, however, be
modified in a collective context. Other concepts, such as interdependence and spe-
cialization, which occur in an insect colony, are directly relevant to our discussions of
complex systems.

It is not a novel concept to consider human society as analogous to a biological
organism. In some elementary biology textbooks the concept of an organism as a col-
lection of interdependent cells is explained by analogy to interdependent human be-
ings in society! The use of analogies, such as the analogy of a biological organism to
society, is sometimes helpful in pointing out similarities. However, the limitations of
analogies are not often discussed.Analogies can be misleading when they break down,
suggesting similarities that are invalid. This leads to a danger of drawing conclusions
that are really improper extrapolations. It is the objective of science to develop prin-
ciples or mathematical models that explicitly capture the commonalties and display
the differences between systems, in part so that improper extrapolations are not
made. We will discuss specific analogies in Question 9.2.1.Our objective here is to un-
derstand possible conceptual implications of a superorganism analogy for human civ-
ilization in order to clarify and bound the scientific discourse.

Implications of a sup erorganism analogy center around relationships between
the collective and a part of the collective. In a social context, there are consequences
for our understanding of rights and responsibilities. When one person hits another,
the hand is not considered responsible for the act. The individual is responsible. Why
is this the case? Is it because the hand cannot act by itself, or because the hand is un-
der direct control of the brain? A better answer is that it is due to interdependence of
the various parts of the person. What is the level of interdependence at which the part
becomes responsible for the act rather than the whole? If an individual is part of a col-
lective, when is the collective responsible for his or her acts? In another type of cir-
cumstance,a limb may be amputated to save the individual. When we consider an in-
dividual cell, we notice that for the benefit of the collective organism,many individual
cells are killed—skin cells are constantly dying to create a protective layer around the
body. When can a part of the organism be sacrificed for the benefit of the collective?
How much benefit or loss of harm justifies how much sacrifice? We will illustrate
these considerations by corporate and societal examples.

The first example pertains to the use of the superorganism concept in limiting
both rights and responsibilities of the individual as part of the superorganism. In a
corporation,the individual’s rights of commerce and communication may be super-
seded by the rights of the corporation; at the same time,the corporation relieves the
individual of responsibilities for certain actions. This is manifest in the protection of
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employees,including presidents and chairmen of the board,from direct accountabil-
ity for the consequences of decisions that are made with respect to company policy.
This release from accountability has been challenged in recent years. It is enlighten-
ing to consider the arguments both pro and con in the context of a complex system
framework. Let us say that a president of a corporation makes a decision that causes
a faulty product to be manufactured, which leads to the death of some of those who
purchase the product.Should the president be held accountable? The problem is that
the decision was made in the context of company policies that reflect the history of
the company as well as the individual. Other individuals at the corporation would by
necessity have to cooperate in order for the product to be manufactured. Moreover,
we can ask whether most other people in the same position governed by the same
corporate policies would have made the same decision. One could also ask whether
production-line employees have the responsibility to evaluate the implications of
their work,and thus responsibility for device failure and its consequences. The ques-
tion to be addressed in this context is whether the corporation and its policies should
be punished and through this punishment cause change in the corporate policies that
led to the harm to others, or whether the individual who made the decision should be
punished to change individual behavior? The answers may require more specific in-
formation about a particular case. For us,the questions reveal a balance between the
existence of a corporation as a superorganism and the individuals from which it is
formed.

Throughout this text we have focused on the interdependence of parts and the
whole of a collective complex system. When we think about this relationship in the
context of human beings, we can also identify mutual benefit and conflict. Benefit
arises when the actions of the individual and the collective are mutually advanta-
geous. Conflict arises when the actions of an individual or the collective do not ben-
efit both individual and collective. Considering the interplay between these is made
more difficult when we recognize that collective actions are manifest as actions of in-
dividuals,and individuals may misinterpret or misrepresent their actions as collective
actions. An extensive discussion of these issues is beyond the scope of this text.
However, what is pertinent is that there are many circumstances where the objectives
of individuals are subordinated to objectives of the superorganism. This may be il-
lustrated by statements of the following form: Your rights/interests are secondary to
the benefit of the society, corporation, or state. Examples include the firing of corpo-
rate employees, and the jailing of criminals or of political prisoners.

The need to protect the individual has been recognized. For example, democra-
tic ideals were designed to prevent dominance of the rights of the state over the rights
of the individual. The legal system is generally designed to delineate the rights and re-
sponsibilities of the individual with respect to society as a whole and with respect to
other individuals within the society. Most laws restrict the independence and freedom
of individual action. The concept and articulation of human rights (e.g., in the U.S.
Bill of Rights) is directly related to ensuring respect for individual goals and benefits
in the context of society. Various labor laws are designed to avoid the dominance of
corporate rights over those of employees.
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Thus, the existence of a balance between the rights of the individual and of the
collective can be seen to be necessary. Our cautionary remarks are directed at the
process of arriving at this balance.

There is a key distinction between implicit and explicit use of the superorganism
concept. Implicit use of the concept means that rights are established by directly con-
sidering the benefit to both the individual and the collective. From the ancient times
of widespread slavery to the present,the historical progression has often led to greater
rights of the individual rather than of the collective. Yet, even in the present context
of strengthened individual rights,it is understood that limitations must be placed on
the individual in the context of society. The justifications for this are either the pro-
tection of the rights of others, or the prevention of substantial financial or other loss
to the society as a whole. Such limitations are debated as social policy issues without
reference to the superorganism concept. The superorganism concept enters the dis-
cussion only through the consideration of collective benefits.

In contrast, explicit use of the superorganism concept invokes the superorganism
as a reason for subjugation of the rights of the individual. Claims that the state or cor-
poration has a greater importance than the individual may directly lead to the sus-
pension of individual rights. A telling example is the use by the Nazis of a particular
biological superorganism analogy. They described the Jewish people as a cancer to be
eradicated from the flesh of Germany. This superorganism concept was used to mo-
tivate and justify the involvement of physicians in the design of gas chambers for the
Holocaust. The main distinction between the explicit and implicit form of the super-
organism is that in the explicit form it is the concept of superorganism itself that is
used to justify actions. There is no direct accounting for individual and collective ben-
efits. Aside from the terrible consequences, we may recognize that the biological anal-
ogy is inherently ambiguous. It would be impossible to tell if the Nazi actions were an
immune response or an autoimmune disease. What is more significant for our con-
cern here is that any collective biological analogy distances us from individual human
tragedy.

The preceding paragraph is a cautionary statement about the use of superorgan-
ism concepts to direct social policy. In general,science avoids consideration of analo-
gies from physical or biological systems to social or political conditions. This is to be
commended, since such analogies have led to abuses and loss of human rights. The
advent of the field of complex systems,however, places an additional burden on sci-
ence—not to ignore the analogies but rather to test and verify or reject them. The use
of the organism analogy for the human collective may suggest that once again the
rights of individuals are forfeit to the collective. The difficulty will be to keep the use
of such models in perspective. In this regard, the most important conceptual tool is
recognition of the interdependence in a complex system that gives rise to emergent
behavior. This implies that the collective should be concerned about the well-being of
its parts. However, there is a further, more specific conclusion that we reach in this
chapter that should limit the motivation to utilize complex system models to address
social policy matters. In the previous chapter we estimated the complexity of various
organisms. In this chapter we will continue this discussion to evaluate the complexity
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of human civilization.Our analysis will suggest that traditional superorganisms such
as states and corporations have been less complex than the individuals of which they
are formed,implying the historical importance of individual rights and responsibili-
ties. However, it appears that we are making a transition to a global superorganism
that is more complex than an individual human being. Should we conclude that the
rights of an individual human being should therefore be diminished in importance?
In a sense this might be justified when we consider these rights with respect to the to-
tality of human civilization. However, there is a crucial catch.Our argument is inher-
ently based on the understanding that the superorganism is qualitatively more com-
plex than any human being. This must mean that there is no individual who can
understand it. Thus there is no individual who can be t rusted to know which,if any,
individual rights should be sacrificed. We find that in the context of individuals that
are more complex than the superorganism, the rights of the individual are para-
mount. When the rights of the individual can be said to be secondary, we can at least
be assured that no individual has the right to prescribe the nature of this sacrifice. We
conclude that it would be unreasonable to base social policy decisions on the benefit
or consequence to a system that we as individuals cannot understand.

Before we proceed with the central topic of this chapter—the complexity of the
global human superorganism—we discuss a few related issues.One of the recent pop-
ular movements has suggested that the biosphere of the earth is in some sense alive.
This suggestion is known as the Gaia hypothesis, where Gaia (from the Greek word
for Earth) is the name given to the biosphere. The central proposal is that the bios-
phere is able to react to disturbances and, for example, rebalance itself. Considered in
the context of complex system behavior, such a reactive organism is very simple.From
the point of view of conventional science, even a chemical equilibrium reacts to dis-
turbances. It would be highly unlikely that the biosphere, when affected on a global
scale, does not have similar reactive capability. However, the notion of the collective
of life on earth acting in concert is not a conventional view. We will be pursuing this
further to explore the complexity of such a global organism,though our focus will be
on the human superorganism. It should be understood that there is no clear under-
standing at this time of the nature of the boundaries of this organism.Should we ex-
pand the organism to include the flora and fauna of the earth, or even the earth itself?
It may be correct to include all of the biosphere,since at the present time it would be
impossible for the “human superorganism” to survive without the rest of the bios-
phere. This, however, is also true about any animal in its environment. For our pur-
pose, the problem of defining the boundary of the organism is not critical, since we
have considered the nervous system as a complex system despite its inseparability
from the biological organism that contains it.

The Gaia hypothesis is not generally considered to be within the fold of science.
Yet our objective is to pursue the topic of the global economy as a collective human
superorganism that is far beyond the Gaia hypothesis in many ways. It is helpful to re-
turn to the discussion in the preface to this text, where the question of addressing the
origins and destiny of man was briefly mentioned. As pointed out there, these ques-
tions have been traditionally within the domain of religion and more recently of
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science fiction. The field of complex systems is an endeavor to understand a new as-
pect of our environment as well as of ourselves. There is a natural connection between
this field and the subject of the origins and destiny of man. If we did not authorize
ourselves to enter into such areas and explore the possibility of scientific inquiry, we
would be unduly limiting the field. This is an opportunity “to boldly go” into a new
domain of scientific inquiry.

Inside a Complex System

One of the difficulties we face when discussing human civilization as a complex sys-
tem is that we know of only one example.The scientific approach inherently does not
allow discussion of a single system. An individual system can be discussed as one of a
class of systems when principles that apply to the class can be determined. This only
works when an appropriate class of systems can be described. For example,
Newtonian mechanics enables prediction of the trajectories of planets because there
is a broad class of systems that satisfy the same principles. Through observations,the
principles could be inferred and then applied to them all. Even though the solar sys-
tem is, in our experience, unique, it is still part of the class of systems that satisfy
Newton’s laws, and therefore its dynamics may be predicted.

The question we face is whether human civilization is a completely unique sys-
tem or whether it is a member of a class of systems. There are nonscientific ways of
grouping systems, or describing the similarity between one system and another. These
are analogies. Analogies suggest that distinct systems share common properties.When
we think about human civilization as a complex system, we can think about it as anal-
ogous to other complex systems about which we are more knowledgeable because there
are many instances of them. For example, we can think about human civilization as a
growing plant, or we can think about it as a colony of cells in a pond, or we can think
about it as an animal formed out of various tissues. Such analogies may suggest qual-
itative similarities and point out features of human civilization. However, they are in-
herently laden with various assumptions that are not valid. This is apparent in the
great variation between the three distinct analogies that have just been mentioned.

Mathematical models are the scientific form of analogies. This kind of analogy
shows more precisely how two systems are similar. It may also reveal limitations of the
similarities. For example, within every mathematical model are quantitative parame-
ters. The values of these parameters are often different when applied to different sys-
tems. The extent to which model parameters are similar, or the degree to which they
are different,can inform us about the similarity or difference of the original systems.
It should be understood that a mathematical model that is used to capture a particu-
lar aspect of two systems does not necessarily capture other aspects. Similar to quali-
tative analogies, the relevance of mathematical models to describing a system is lim-
ited. This is particularly true when we consider the modeling of complex systems
where, by their very nature, simplified mathematical models cannot capture the full
description or complexity of the system being modeled.

9.2
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In this context we see how the theory of complex systems has both its most diffi-
cult challenge in describing the properties of human civilization,and its greatest op-
portunity for contributing to our understanding. It is precisely the application of gen-
eral principles of complex systems that can teach us about human civilization. The
class of systems being considered consists of all complex systems,and so human civ-
ilization can be included. Moreover, rather than simply rejecting the apparent quali-
tative analogies between human civilization and other complex systems,the theory of
complex systems may reveal both their validity and their limitations. Analogies
should not be dismissed out of hand;neither should they be taken beyond their realm
of validity.

We thus anticipate that the study of human civilization will be an important ap-
plication of the study of complex systems. It should be emphasized, however, that
there is a realm beyond which science cannot go. The unique aspects of the existence
of a single organism cannot be predicted by science. A similar statement applies to
an organism’s environment. To the extent that the human organism is unique, there
will always be aspects of its environment that cannot be predicted—they must only
be experienced.

Question 9.2.1 Describe analogies between (1) a corporation and (2) a
nation-state and a biological organism. In what ways do the analogies

break down?

Solution 9.2.1 Biological organisms have many and varied properties. For
example,plants and animals are qualitatively different in their behavior and
in many of their attributes. The degree of cooperativity between cells in or-
ganisms also varies widely. Thus a discussion of analogies to biological or-
ganisms either allows for a broad class of properties, or must be made more
specific to capture intended properties. Here we consider some universal bi-
ological properties:

1. Corporation
Reproduction—Corporations can split into smaller corporations; individu-
als from one corporation can leave to start a new one. It is not clear, however,
in what way the resulting corporations are reproductions of the original one.
Specifically, what are the hereditary traits and how are they transmitted from
generation to generation? Characteristic size is typically a hereditary trait
among biological organisms,but not among corporations.Generally there is
no well-defined equivalent of sexual reproduction among corporations,un-
less we allow ourselves to consider the formation of a company by several in-
dividuals previously working at different corporations as a form of sexual re-
production. Corporations also merge and acquire other corporations. This
process seems like the reverse of reproduction. We could try to fit mergers
and acquisitions into the analogy by suggesting that they are similar to the
consumption of food. However, biological organisms generally decompose
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food into molecular components. By contrast, corporate mergers and acqui-
sitions have a wide variety of effects. The previously existing corporate struc-
tures may remain largely intact, or they may be completely dismantled. Such
variety is not characteristic of consumption in conventional biological or-
ganisms.
Growth—Like biological organisms, corporations grow. Corporations grow
by increasing net worth, number of employees, sales and net profits.
However, they also shrink.We might try to think about this as similar to trees
that grow new leaves each year and lose them, or animals adding layers of fat
and then consuming them in times of scarcity. However, the processes are
quite different. Unlike fat tissue,the growth of corporations is of functional
rather than nonfunctional tissue. Unlike trees, what is grown and lost is not
manifestly distinct from what is retained.
Food consumption and waste excretion—Corporations consume sources of
energy and raw materials. Waste is produced by corporations in the form of
used chemicals, smoke, paper or other byproducts of the work being done.
Corporations produce products.What is the biological analogy of a product?
It is hard to consider the product as excreted waste!
Differentiation of parts—Corporations have significant functional differen-
tiation of parts.
Breakdown of the analogy—The above comments point out some differences
between corporations and biological organisms. Other distinctions include
the observation that ownership defines a corporation. There is no analog of
ownership for biological organisms. In particular, there is no mechanism
for a takeover by outside agents. Diseases are not a comparable concept.
The mechanisms of reproduction of corporations and biological organisms
are quite different, even if we use the concept of reproduction loosely.
Corporations can also form spontaneously without being reproduced. This
is not the case for biological organisms. Corporations may be directed/
guided/owned by a single individual. This is not the case for biological mul-
ticellular organisms. Large substructures in complex biological organisms
cannot be traded among biological organisms the way people or e ven cor-
porate divisions can be traded among corporations.

2. State
Reproduction—The primary example of state reproduction is the formation
of a colonial settlement followed by independence of the settlement. What
are the hereditary properties? The form of governance is a possibility, but it
may not persist. The size of the state is not hereditary. Similar to corpora-
tions there is no well-defined equivalent of sexual reproduction.
Growth—States grow by increasing territory through wars; populations
grow by migrations as well as by biological reproduction. Biological repro-
duction of populations is similar to the growth of biological organisms by
cellular reproduction. However, war and migrations are not similar, because
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the growth of one state occurs at the expense of shrinking another state.
Similar to the discussion of corporations,the possibility that states shrink is
not analogous to a property of biological organisms.
Food consumption and waste excretion—States consume resources and pro-
duce wastes like biological organisms.
Differentiation of parts—Different parts of the nation may be differentiated
in function.
Breakdown of the analogy—We have pointed out several distinctions in dis-
cussing reproduction and growth. Among the most dramatic of these is the
possibility that part of, or the entirety of, one state will be conquered by an-
other. As with corporate acquisitions, this is not analogous to biological
consumption.
We see that analogies between human organizations and biological organ-
isms break down even when we consider quite fundamental biological prop-
erties. The limited usefulness of the biological analogies does not carry over
to the more general concepts of complex systems that have been developed
in this text. As will be discussed in the Question 9.4.1, these concepts con-
tinue to be useful in the context of human organizations. ❚

Is Human Civilization a Complex System?

The reader of this text is, if he or she has followed the discussions of the previous
chapters, an expert in the new field of complex systems. As a participant in human
civilization, and given information generally known about human interactions and
organizations, the reader is in a position to directly address whether we should con-
sider human civilization as a complex system. Questions 9.3.1–9.3.3 are designed to
encourage the reader to review various attributes of complex systems and consider
their application to human civilization. We rely upon collective knowledge rather
than specific references in this discussion.

For quick reference, we briefly review again the central concepts.A complex sys-
tem is composed out of many elements. These elements interact in such a way as to
give rise to collective behaviors on various scales up to that of the entire system.Our
principal approach to characterizing the properties of a complex system has been to
consider interdependence and substructure. By removing or modifying part of the sys-
tem and observing the effects of this modification on the rest, we can determine the
degree of interdependence of the system. We associate such interdependence with the
properties of a complex system. This connection was made more specific by the study
of complexity—the length of the description of a system. The complexity of a system
on its own scale was shown to be related to the dependence of its behavior on its com-
ponents’ behavior. If we have to specify the state of each of the parts of the system in
order to describe the behavior of the whole, then it requires a lot of information to
describe. We distinguished between two types of complex systems—complex materi-
als and complex organisms.A complex material has the property that removal or mod-
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ification of a large part of the system affects a smaller part of it.A complex organism
has the property that removal or modification of a small part of the system affects the
rest. Thus, we are particularly interested in whether civilization satisfies the proper-
ties of a complex organism—whether the collective behavior is affected by removing
or modifying part of it.

Question 9.3.1 To illustrate the relevance of the concepts of complex
systems in the context of collectives of human beings,discuss the nature

of interdependence in corporations.

Solution 9.3.1 In corporations, the degree of interdependence varies
tremendously.Some corporations are loose federations of smaller, essentially
independent units. Other corporations are tightly knit—interdependent or-
ganizations, where a loss of part of the system would cripple the rest. In cases
where the corporations are loose federations, a unit (division) may be re-
moved without substantially affecting either the division or the rest of the
corporation.This suggests that corporations that satisfy these properties have
simple collective behavior. On the other hand, when various parts of a
corporation participate in joint manufacture of a product, the interactions
and interdependence may be quite complex.When one factory manufactures
components that are used by another factory, there are many ways that
changing what happens in one will affect what happens in the other. Indeed,
this applies whether the two factories are part of the same corporation or part
of different corporations. Recognizing the level of interdependence is
relevant to various issues pertinent to the functioning and planning of
corporations. ❚

Question 9.3.2 Complete both of the following sentences with a list of
properties that describe human civilization.

a. Human civilization appears to be a complex system because …

b. Human civilization does not appear to be a complex system because …

The objective of this question is not to determine whether human civiliza-
tion is a complex system, but rather to list some of the necessary or typical
features of complex systems that apply to human civilization.Question 9.3.3
addresses more directly whether human civilization is a complex system.

Solution 9.3.2 Human civilization appears to be a complex system because
it is characterized by:

1. Many elements: human beings, machines

2. Interactions:

Communication: oral and written languages, mail, telecommunications

Economic: buying and selling, borrowing, renting

Social: meetings, celebrations, gatherings, conferences

Long-range interactions:
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in space (travel and telecommunications) and

in time (books, music, pictures and sculptures preserved over time)

3. Substructure:

Family, community, town, city, state

Company, industry, profession, association, organization

Nationality, religion, race, language

4. Processes of Organization:

Biological evolution, social evolution, history

5. It is interdependent (see Question 9.3.3)

6. It has a complex behavior (see Section 9.4)

Human civilization does not appear to be a complex system because:

1. It does not interact with other complex systems of the same kind.

2. Its response to the environment is not manifestly complex. ❚

Question 9.3.3 Discuss the divisibility/interdependence of human civi-
lization. Consider a few other times in the history of civilization as well

as the present. What is the evidence that changes in one part of the world af-
fect other parts of the world? Would the life of people in one place change if
dramatic changes happened in another part of the world? When possible,
give specific historical events as evidence.

Solution 9.3.3 Our discussions of interdependence (Section 1.3,Chapter 2)
were based upon considering the effect of changes in 10%–20% of the sys-
tem. Geographically this would correspond to subdividing the world into
continents: North America, South America, Asia, Africa, Europe, Australia
and Antarctica,and considering what would happen to the others if one of
them was dramatically affected. In recent years, there has been a general
awareness of global interdependence in discussions of the global economy
and various geopolitical events. We will place this in a historical context.

Over the course of history there are indications that some areas were in-
terdependent, but other areas were essentially independent over substantial
periods of time. For example, human civilization in North and South
America was essentially independent of the rest of the world during much of
recorded history. Even within the connected continents of Europe, Asia and
Africa, there are parts that were almost completely isolated from each other.
Great empires of antiquity occupied limited spheres of influence.The Persian
Empire and the Roman Empire did not generally affect events in the Far East,
including the Chinese Empires. For most purposes, Asia was separated into
three regions isolated from each other. These regions are delineated by
drainage basins of great rivers: the Tigris and Euphrates Rivers, the Indus
River, and the Huang He (Yellow River). There were migrations and cultural
transfers that did involve substantial fractions of humanity over the course
of centuries—time scales characteristically much longer than a human
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lifetime. Nevertheless, even as recently as the early 1900s,there were only lim-
ited ways in which the disappearance of a substantial fraction of the popu-
lation in one part of the world, on one of the six populated continents, would
impact the others.

One might ask, for example, how the disappearance of North America
would have affected the rest of the world. The impact would have been
greater after European settlement, but would still be limited to specific ma-
jor trade items, and mig rations from Europe to the Americas. One might
also trace the transfer of a particular technology around the world to see the
limited degree of influence. An example that comes to mind is the iron plow,
invented in the United States and then transferred to other parts of the world
in a manner that is slow on time scales that we are used to today. However,
the interdependence has increased over time. In recent times it has become
manifest. The time scale has become shorter, and the scale of interdepen-
dence has reached that of the individual.

The sign a tu re of ch a n ge became app a rent thro u gh the World Wa rs , e s-
pec i a lly World War II, wh en all i a n ces and battles spre ad thro u gh all major
p a rts of the world and direct ly invo lved a significant fracti on of the worl d ’s
econ omic and social sys tem s . Even World War I was essen ti a lly a Eu rope a n
con f l i ct . In con s i dering interdepen den ce ,we focus on how ch a n ges in one part
a f fects the others . The gl obal con f l i ct in World War II arose because of ch a n ge s
that ori gi n a lly occ u rred in on ly a few nati on s . These ch a n ges then affected in-
d ivi duals thro u gh o ut the worl d . In recent ti m e s , gl obal interdepen den ce has
been manifest in events that pri m a ri ly invo lved indivi dual nati on s , but wh i ch
re su l ted in the atten ti on and invo lvem ent of people thro u gh o ut the worl d .
Some of these are geopo l i ti c a l ,o t h ers are geoecon omic in natu re .

The following list of keywords is designed to evoke events and concerns
that indicate the global interdependence:

Political/Military—governmental changes, civil wars, local wars, nuclear
weapons

Economic—trade, depressions, industrialization, global corporations

Environmental—rain forests, polar ice caps, depletion of fish, acid rain

Na tu ral disasters and disaster rel i ef — f l ood i n g, f a m i n e , hu rri c a n e s ,e a rt h qu a ke s

Information—publication, invention, software/hardware, global science

For example, the invasion of Kuwait by Iraq in 1990 had a manifest
global response despite originally involving only a tiny proportion of the
global population. The effects of the oil embargo and OPEC in the 1970s il-
lustrated the global impact of the supply of oil from the Middle East and is
reflected in the continued global concerns in that region. The impact on con-
sumers, corporations and economies of the world of the production of au-
tomobiles and consumer electronics in Japan is well appreciated, as is the
growing impact of the exports of other Pacific Rim nations.A disruption of
the supply of products, even a partial disruption,as occurred for example in
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the wake of the earthquake in Kobe, can have global impact. The potential
impact that a small nation can cause through development of nuclear
weapons has recently been manifest in the global response to events in North
Korea. The widespread destruction that could result from use of nuclear
weapons of the arsenals of the nuclear powers is well recognized. The drug
production in specific parts of the world, such as in Colombia,has relevance
to individuals and the public in many other areas of the world. Various re-
cent occurrences of social disruption and conflict in Somalia, Bosnia and
Rwanda illustrate the global response to social disruption in what are con-
sidered relatively out of the way places of the world. Since World War II, var-
ious local conflicts have attained global significance and attention, e.g.,
Korea, Vietnam, and the Middle East. Changes of government in diverse
countries such as Iran in the 1970s and South Africa in the 1990s occurred
in an environment of global influences and consequences. The example of
South Africa is of particular interest,since the global influence (the boycott)
was directed at internal civil rights rather than external interactions. The
global aid in response to famines in Africa, and earthquakes and floods in
other parts of the world,are further indications of the global response to lo-
cal events. The impact of fluctuations of the value of currencies during the
1990s in Italy and England, Mexico, and recently the United States have il-
lustrated the power of global currency markets.

These examples illustrate how, at the present time, events on a national
scale can have global effects. However, we can also analyze smaller-scale
events that can have a global effect. One of the manifestations of the global
interdependence is the wide geographic distribution of product manufac-
turing and utilization. Manufacturing a product involves raw materials,cap-
ital, design,assembly and marketing. Today each may originate or occur in a
different part of the world, or even in several. The loss of a factory in any one
of tens of countries may significantly affect the production of a corporation.
Since individual corporations can be primary suppliers of particular prod-
ucts, this can in turn affect the lives of individuals throughout the world.

In order to consider the effects of the world on a particular individual,
we must specialize. We can consider, for example,the influx of students from
around the world into universities in the greater Boston area and analyze
how this affects faculty, students, and the Boston area economy, as well as
how the existence of Boston affects them. We might ask even more specifi-
cally how one student from one part of the world can affect another student
from another part of the world when both meet in Boston.Or how an indi-
vidual faculty member affects students that come from many parts of the
world,and how students coming from many parts of the world affect a fac-
ulty member. Even to ask these questions demonstrates the interdependence
at the individual level that now exists throughout the globe. Moreover, we
did not yet account in detail for the effects of direct information exchange
through the telephone, global mass media, international journals and con-
ferences, and recently the Internet. ❚
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Our conclusion from Question 9.3.3 is unambiguous—human civilization is a
complex organism. It is clear that the behavior of parts of the system is strongly in-
terdependent. It is also apparent that the behavior of the whole is strongly dependent
on its parts. The strength of interdependence is to be measured by the amount of in-
formation (bits) needed to describe all of the distinct ways that one part affects the
others.Our conclusion is based upon common and well-known phenomena. In this
regard we are only echoing many discussions of the global economy, global commu-
nications and global interdependence. Yet it is a significant observation. It is also sig-
nificant that the phenomena of interdependence have become manifest relatively
recently. Thus we have an indication that a transition to a manifestly complex organ-
ism has occurred during this century. Prior to this time the behavior was not charac-
teristic of a complex organism. In the following section we focus on this transition.

Toward a Networked Global Economy

In Section 9.4 we used evidence of interdependence to arrive at the conclusion that
human civilization is a complex organism. In this section we use a different approach
to arrive at the same conclusion. By taking a different route, we will reinforce our con-
clusion and gain a deeper insight into processes that are taking place in society around
us. Our primary tool in this section will be the concept of complexity and the com-
plexity profile discussed in Chapter 8.There is a fundamental connection between the
behavior of the complexity profile and interdependence of substructure. We know
this because at every level of organization the complexity of the whole arises from cor-
relations in the behavior of the components. However, there are also more direct ways
to connect the complexity profile with the functional structure of human organiza-
tions, as will become apparent in this chapter.

We begin our discussion with an effort to understand the changes that have oc-
curred in recent years that have led to greater global interdependence. This interde-
pendence led us to conclude that civilization is a complex organism. What is signifi-
cant is that arriving at this conclusion one hundred years ago, or even fifty years ago,
would have been much more ambiguous. Thus,there appears to have been a transi-
tion in the behavior of global civilization that is important for us to understand.

9.4.1. Evidence for decrease in central control
The history of human civilization has been marked by various stages identified by the
nature of social/political/economic structures and tools/technology. One of the more
recent transitions is the industrial revolution. From the point of view of technology,
the industrial revolution marked a transition to the widespread use of machines pow-
ered by coal and oil, which replaced animal and human labor. From the social point
of view, it marked the transition from rural to urban life.Economically, it marked the
transition from family agriculture to large corporation manufacturing. Politically it
strengthened but did not change qualitatively the existence of nation-states, which
emerged during the Middle Ages.

9.4
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In recent years there have been many discussions of the possibility that another
significant change in technology, society and the economy is taking place. This has
been variously characterized as the information revolution, growth of the service
economy, or emergence of the global economy. Other changes that are occurring in-
clude geopolitical changes in the significance of national boundaries—the develop-
ment of trading blocks, global free trade,the end of the cold war, and the emergence
of widespread international cooperation in addressing various geopolitical events.

We will first discuss the current change in the global economy as a change in the
manner of the exercise of control.Specifically, the hierarchical control structures that
have characterized political, economic and other social organizations since antiquity
may be disappearing in favor of cooperative networks. Such networks of interacting
elements are more characteristic of complex systems we have been considering.
Indeed, we have not discussed any specific example of control hierarchies in other
complex systems. The change from hierarchies to networked systems is a specific and
dramatic indicator of many changes that are taking place. It suggests that the present
changes are more significant than those of the industrial revolution. We will show that
these changes are related to an increase in complexity of the collective behavior of hu-
man beings and the related emergence of civilization as a complex organism. In this
section we discuss some of the evidence in historical and current events that a change
away from control hierarchies is taking place. In Section 9.4.2 we consider possible
reasons for loss of viability of central control that are not satisfactory. In Section 9.4.3
we discuss why the loss of central control is consistent with a transition in complex-
ity. Section 9.4.4 reviews historical phenomena in this light.

In the following paragraphs we review a series of changes that have occurred in
recent years, ranging from the nature of governments to the state of interpersonal re-
lations. While no one of these changes could be interpreted to suggest a dramatic
change in the structure of civilization, their collective evidence gives some weight to
this suggestion. In approaching this discussion it is important to distance ourselves
from the notion of proof. Indeed, proof is not possible except in closed mathematical
model systems. Our objective is to provide a reasonable case, where counter argu-
ments are possible and to be respected.

1. Dictatorships in the western hemisphere—During the early 1980s a series of events
occurred in the Americas and in several other countries around the world that
decreased significantly the number of nations governed by dictatorships (Table
9.4.1). In many of these countries democracy and dictatorship have come and
gone a number of times over the past century. It would be hard to conclude from
a single government change that recent events are extraordinary. However, it
should be noted that at this time there are no dictatorships in the western hemi-
sphere except Castro’s Communist regime in Cuba.Of particular importance is
that among the changes of government were revolutions that did not follow the
pattern of historical revolutions. Historically, a revolution begins from an at-
tempt to reform the government,then more extreme views and individuals take
over; these extreme views lead to a bloody conflict and finally a return to a form
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of government structurally similar to that which existed before. This pattern was
exemplified by the French and Russian revolutions, but has been realized more
recently in the revolution in Iran (1970s). It may be necessary to point out that
the American Revolution was actually a war of independence rather than a revo-
lution and did not follow this pattern. The historical pattern of revolutions sug-
gests that there are underlying reasons f or a dictatorial form of government. A
desire for change does not necessarily eliminate these underlying causes. In con-
trast,several of the recent revolutions occurred in a peaceful manner and resulted
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Table 9.4.1 List of mainland Central and South American countries and the date and kind of
their most recent major change of government. Until the late 1970s a patchwork of military
dictatorships and democracies existed. By the early 1990s a transition to almost universal de-
mocratic governments had occurred. A tilde (~) before the word Democracy indicates signif-
icant control is still exercised by military leaders within the democratic regime. For countries
whose governments have not changed since the early 1970s, no transition is indicated. While
not part of the Americas, we added Greece, South Africa and the Philippines at the bottom of
the list. Their recent governmental changes were not characteristic of the historical process
of revolutions. ❚

Country Before change After change Year of change Manner of change

Argentina Military Dict Democracy 1983 Peaceful
Belize Colony Democracy 1981 Peaceful
Bolivia Military Dict ~Democracy 1979 Peaceful
Brazil Military Dict Democracy 1985 Peaceful
Chile Military Dict Democracy 1990 Peaceful
Colombia Democracy
Costa Rica Democracy
Cuba Military Dict
Ecuador Military Dict Democracy 1979 Peaceful
El Salvador Military Dict ~Democracy 1980-92 Bloody
French Guiana Possession
Guatemala Military Dict ~Democracy 1985 Background

violence
Guyana Democracy
Nicaragua Dictatorship Democracy 1978-90 Bloody
Panama Military Dict Democracy 1989 US Military

Intervention
Paraguay Military Dict Democracy 1989 Peaceful
Peru Military Dict ~Democracy 1980 Peaceful
Suriname Military Dict ~Democracy 1985 Peaceful
Uruguay Military Dict Democracy 1984 Peaceful
Venezuela Democracy
Greece Military Dict Democracy 1974 Peaceful
Philippines Dictatorship Democracy 1986 Peaceful
South Africa Apartheid Democracy 1991 Peaceful
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in structural changes in government.Of particular interest was the revolution in
the Philippines, where violence was imminent but was averted. While violence
did occur in some other revolutions, the pattern of these transitions, and their
consistent outcome, may suggest a change in the underlying factors.

2. Communism—During the late 1980s the Soviet Union and the Soviet bloc disap-
peared along with communism as it was known before (Fig. 9.4.1). This dramatic
change did not occur in any obvious way as a result of external forces, such as the
military ones that characterized geopolitics during most of the twentieth century.
Instead it appeared to occur as a result of internal forces. The change occurred
peacefully. The change was a great surprise to most observers, as was the lack of
violence. The surprise suggests and is consistent with the observation that this
process did not fit previous patterns of governmental change. Moreover, once the
change occurred, in hindsight it appeared inevitable. Internal weaknesses, and
particularly an inability to maintain an effective modern economy, seemed to
doom the government. Effectiveness was measured by the ability to supply citi-
zens with products ranging from necessities to advanced technology. The system
appeared to simply break down. Since this change, other communist govern-
ments around the world, with the exception of Cuba and North Korea, have re-
linquished control over their economies. This is particularly apparent in China,
which still maintains a form of communist government but allows a rapidly
growing free market economy.

3. Privatization in democracies—Democracies are less centrally controlled than
countries with other forms of government. There are still ways in which elected
governments exercise control. Control is exercised through government-run ser-
vices and industries, taxes and purchases, and regulations. These should not all
be considered equivalent. One way in which control was recently reduced
in democratic countries throughout the world is through privatization of
government-run industries. In the United States there were few government-run
industries to begin with, so this has not been as manifest. On the other hand,
there has been privatization of governmental services. Even garbage
collection/recycling has been privatized in many communities.

4. Decrease in proportion of U.S. government to economy—The total amount of taxes
and the federal budget, as a fraction of the U.S. economy, has not changed sig-
nificantly in recent years. However, this includes a growing proportion of the
budget devoted to social security and interest on the national debt. These are
parts of the budget over which little control is exercised. If we measure the size of
the government by purchases that are more directly controlled,and that affect the
direction of economic activity, then the picture is quite different. Recently the
fraction of the economy represented by governmental purchases has declined sig-
nificantly (Fig. 9.4.2).

5. Decrease in proportion of large corporations to the economy—The proportion of
the economy that reflects the activity of the largest corporations has decreased in
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recent years.One company that for many years was considered to be the basis of
the economy is General Motors. It used to be said, “What’s good for GM is good
for the country.” This was not only because this company was large as measured
by sales, but also because the number of its employees was a significant fraction
of the workforce. The proportion of the workforce employed by Fortune 500
companies as a function of time is shown in Fig. 9.4.3. We note that the changes
in corporation size in this and the next two points are only relevant to our argu-
ment as long as the companies are centrally controlled. We will address whether
they are in point 8.

6. Systematic downsizing of large corporations—Since the late 1980s the predomi-
nant process in corporation change has been downsizing. More generally, the
economy has followed a time-dependent behavior that results in better and worse
times, both for the economy as a whole and for individual corporations. These
somewhat cyclical variations have been superimposed on a general trend toward
increasing value—expansion—of the economic activity. In previous decades,
some corporations followed these trends by increasing and decreasing employ-
ment when sales increased and decreased. This is to be contrasted with recent
trends. During the late 1980s and early 1990s corporations systematically de-

Figure 9.4.2 Size of the U.S. federal government measured by purchases as a fraction of the
total U.S. economy (GDP — gross domestic product). By this measure, the federal government
has declined in size since the mid-1950s. For comparison the aggregate size of state and
local governments is shown (source: Bureau of Economic Analysis, U.S. Department of
Commerce). ❚
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creased the number of their employees,almost independent of whether general
expansion or contraction was occurring. This reduction is counter to the previ-
ous dominant trend of increasing numbers of employees. In prior times, in-
creased profitability of a corporation was assumed to be based upon increased
numbers of employees. This seems natural,since a greater number of employees
implies greater production, greater market share and profits. In contrast, at the
present time,improved profitability appears to be based on reducing the number
of employees. Production appears to be largely unaffected by major cuts in em-
ployment. This suggests that changes in the underlying mechanisms of produc-
tion have occurred.

7. Growth of small corporations—While large corporations have systematically de-
creased in size, certain small corporations have increased in size. In recent years,
jobs added by rapidly growing companies have more than compensated for the
loss of jobs in large corporations. In the meantime, this suggests a turnover of
corporations rather than a change in the nature of corporations. Thus we could
interpret the changes in the economy as reflecting a transition to a service or in-
formation economy, where the new large corporations are merely different in
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Figure 9.4.3 Total employment of the 500 largest U.S. corporations as compiled by Fortune
magazine. Since the early 1980s the total employment of the largest companies has declined.
Starting much earlier, it has declined as a fraction of the total U.S. employment (source:
D. Birch, Cognetics Inc.). ❚
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their products from the industrial corporations of the past.We will not adopt this
approach, because there are more fundamental changes that appear to be occur-
ring in the management of corporations.

8. Changes in corporate management—There have been a number of changes in re-
cent years that suggest a detachment of upper-level corporate management from
production activities, and a redistribution of decision making within corpora-
tions. Upper-level management in many corporations has been active primarily
in acquisitions and mergers that often have little to do with company operations.
In the past,progressively larger corporate bureaucracies appeared to be an essen-
tial part of a corporation. Currently, the downsizing discussed in point 6 is often
primarily at the expense of the bureaucracy. Management approaches such as to-
tal quality management (TQM) are based on decision making arising from teams
of employees rather than directives passed down from up per management. In
some cases,individuals or small groups are assigned greater responsibility for the
profitability of their own work and consequent decision-making power. This im-
plies that the corporation acts not in the manner of a single entity but more as a
collection of individuals interacting in part through the external market system.
In other cases, the coordination of employee activities within a corporation are
implemented through process-oriented corporate restructuring, which relies
upon distributed decision making.

9. Boundaries of corporations—A related development that diminishes corporate
control is the existence of porous corporate boundaries. A corporation’s activi-
ties include subcontracting, and hiring consultants and temporary employees.
Companies focus on core technologies and “outsource” other aspects of their ac-
tivities.A single c ompany is also typically formed out of many smaller groupings
of individuals.One of these groups may produce a product, while a second group
may use a similar product purchased from a different corporation.

10. Military control restructuring—Even in the military, generally understood to be a
strictly hierarchical structure,there is significant local independence.One exam-
ple of this is described by General Norman Schwarzkopf in his autobiography. In
discussing logistical activities, he writes,“US logistics officers in the field could
never tolerate an unresponsive centralized decision-making process. Every unit
…[had its own logistics officer]…to take care of his troops.” (in H. Norman
Schwarzkopf with P. Petre, H. Norman Schwarzkopf: The Autobiography: It Doesn’t
Take a Hero [Bantam Books, New York, 1992], p. 423, see also pp. 358–363). The
process of decentralization of control has continued with development of deci-
sion teams and military hierarchy flattening—applications of TQM and reengi-
neering within the military.

11. In d ivi dual loss of d o m i n a n ce—A recent topic of d i s c u s s i on is a ch a n ge in inter-
pers onal rel a ti ons both in the con text of conven ti onal con trol hiera rchies and
el s ewh ere . This is espec i a lly app a rent in the rel a ti onships bet ween men and
wom en , and parents and ch i l d ren . Th ere are su b s t a n tial social forces that are
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d i rected to prevent abuse of power, or even the ex i s ten ce of power, in su ch in-
terpers onal con tex t s . This has also given rise to the ph en om en on of the “a n gry
wh i te male,” who according to reports is faced with the loss of power and
con tro l .

9.4.2 Hierarchy versus the individual
Why is there a change away from hierarchical and centrally controlled structures? We
start by considering the effects of technology on the abilities of an individual. We con-
sider the impact of technological change because it is an important driving force in
modern civilization, as it was in the industrial revolution. Moreover, individual em-
powerment is traditionally a natural counterpoint to the control hierarchy. In this
context, empowerment is the ability to perform tasks with the aid of technology. We
will find, however, that this approach is less than satisfactory.

The effects of technological advance on the abilities of an individual can be at-
tributed to at least seven major interdependent areas of progress:

1. Knowledge—the availability of shared information and tools.

2. Energy—the availability of energy and mechanisms for using it to achieve tasks.

3. Transportation—rapid movement of individuals as well as materials and
products.

4. Computation—particularly its decentralization in the form of personal
computers.

5. Duplication and storage—mass production, printing, electronic reproduction
and storage.

6. Communication—telephone, mass communication, computer networks.

7. Health—well-being through medical knowledge and technology.

How can we quantify the effect of technology on the abilities of an individual? One
approach is through the notion of slave-equivalents. It was suggested, as early as the
late 1970s, that U.S. citizens could think of themselves as slaveholders owning the
equivalent of roughly 10,000 slaves. This figure was based solely on per capita energy
consumption, and the corresponding number of slaves that would expend the same
amount of energy. By such an estimate today, not for energy consumption but for
computations by computers and other tasks facilitated by technology, we would reach
a number of slave-equivalents many orders of magnitude higher. This suggests that
modern technology greatly empowers individuals to perform tasks through control
over the equivalent of large armies of slaves.

What should be the consequences of these advances on human organizations?
There would seem to be several possibilities. The first is that the increased abilities
could lead to independent and self-sufficient individuals,each providing for his or her
own needs. Examples of such behavior do exist, but it is not the dominant trend. The
second is that these abilities could enable dictators,CEOs, etc., to control more effec-
tively. This projection was manifest in the dystopian novel Brave New World, by
Aldous Huxley. However, this projection is counter to the evidence discussed above.
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Instead,a third possibility appears to be happening—the formation of networks of in-
terdependent individuals.

A tentative argument for a transition to networks based on technological devel-
opments would require several steps, not all of which are obvious. An individual is
empowered by the development of tools. These tools allow an individual or small
group of individuals to perform tasks that would previously have been possible only
for a larger number o f people, or would not have been possible at all. As a conse-
quence,individuals can perform complementary and diverse tasks. This results in an
increasing complexity of activity. The diverse individual activities are difficult to con-
trol because it is impossible for an individual to know how to control and coordinate
many diverse activities. At the same time,the coordination of activities through a net-
work becomes possible through advances in communication.

This argument does not withstand detailed scrutiny. However, we can extract
from it that the quantity that can be tied most directly to a loss of effectiveness of cen-
tral control is complexity. Simply stated, the complex behavior of a collection of in-
dividuals is impossible for one individual to control. This argument is described more
thoroughly in the following section.

9.4.3 Hierarchy versus network: A complexity transition
We have argued that a dramatic change is taking place—the hierarchical structures
that have been part of human civilization for thousands of years are disappearing.
What are the underlying changes that have taken place that might result in this tran-
sition? Why is it happening now? What are the primary driving forces? How are they
related to the progression in development of civilization? In the following paragraphs
we begin to address these questions in the context of our study o f complex systems
and particularly through the quantitat ive concept of complexity and the complexity
profile developed in Chapter 8.

In order to understand why hierarchical structures are disappearing, we must
first understand what the hierarchical structure represents from the point of view of
complex systems.Our studies of other complex systems in previous chapters did not
reveal such structures. Structural hierarchies were discussed in Chapter 2, but not
control hierarchies. The essential point is that the nature of a hierarchically controlled
system requires that the behavioral complexity of the controlled group is smaller than
the controlling individual. Thus,a hierarchical system implies a limit to the complex-
ity of the collective behavior on whatever scale and in whatever aspect the control is
exercised. To understand this further we turn to our discussions of the complexity
profile in Section 8.3.

An extreme example of a hierarchical control structure is when a single individ-
ual is in direct (absolute) control over the behavior of a large number of other indi-
viduals. Biologically, such control structures exist—for example, the collective con-
traction of the cells of a muscle in response to control by nerve cells. It is apparent
that the descriptive complexity of the muscle contraction is not larger than the de-
scriptive complexity of the nerve cell activity that triggers the contraction. However,
this analysis is missing the essential discussion of scale. Thus we might consider the
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complexity profile of a muscle compared to that of a single muscle cell or the nerve
cell that is directing it. This is similar to our discussion of the complexity profile of
coherent movement in Section 8.3.5. There, we contrasted the complexity profile of
coherent motion with that of incoherent motion. Incoherent individuals with a com-
plexity C0 on their scale L0 would have a very small collective complexity on the col-
lective scale L1. The collective complexity was increased in two steps.First,the pattern
of behavior of the individual was modified to be simpler on the scale L0, but fully vis-
ible and thus more complex on the scale L1. This resulted in an individual complex-
ity C ′0 < C0 at both scales.Second,the movements of different individuals were made
coherent. Under these circumstances, the collective complexity at the scale L1 was
larger, but it was bounded by the simplified individual complexity C ′0. Because the in-
dividual behavior must be simplified in order to be visible on the larger scale,the col-
lective behavior on all scales is simpler than the potential behavior of an individual.

Using this model, we can also understand both similarities and differences be-
tween two classic forms of human organization associated with the exercise of con-
trol: military force and factory production. Conventional military behavior is closer
to our discussion of coherent behavior and large-scale motion in the model in
Chapter 8. Similar to this model, in the military the behavior of an individual is sim-
plified to follow a limited set of patterns. The behaviors—such as long marches—are
designed to be visible on a larger scale. Then, many individuals perform the large-
scale behaviors coherently. Consistent with our discussion of changes in the modern
military, this model is better used to understand the activities of ancient armies—
Roman legions, or even U.S. Civil War armies—than many types of modern military
activity.

A conventional industrial production line also simplifies the behavior of an in-
dividual.Each individual performs a particular repetitive task. The effect of many in-
dividuals performing repetitive tasks results in a large number of copies of a particu-
lar product. However, both the simplification of behavior and the coherence is not the
same as in the military model. The actions of each individual are not visible on a larger
scale,and all individuals do not perform the same actions. Instead,the activities of the
individual are coordinated to those of others so that the larger-scale behavior can
arise. Thus, there is a relationship between the actions of different individuals that
serves in place of direct coherence. As with the military model,the factory model we
are describing is more appropriate to early versions of the factory and less appropri-
ate to modern factory production. The differences between the factory and the mili-
tary model are relevant to our understanding of the role of hierarchical control, which
we now discuss.

We must now expand our understanding of complexity profiles in order to de-
scribe control hierarchies. It is important to recall that a complexity profile describes
the complexity of the entire system, but at different scales of observation. A military
force, a corporation, or a country has a collective behavior on various scales, includ-
ing the scale of the system as a whole. While we have discussed ways to define the scale
of observation of behavior in Section 8.3,it is not essential that we use a formal defi-
nition to appreciate the concept of collective behavior at the scale of the entire system.
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At this scale, many of the details of the behavior of individuals are not apparent. In
this context we can understand that a control hierarchy is designed to enable a single
individual (the controller) to control the collective behavior, but not directly the be-
havior of each individual. Indeed, the behavior of an individual need not be known
to the controller. What is necessary is that there be a mechanism for ensuring that con-
trol over the collective behavior be translated into controls that are exercised over each
individual. This is the purpose of the control hierarchy.

We can thus draw a com p l ex i ty profile for a sys tem con tro ll ed by a hiera rchy
( F i g. 9 . 4 . 4 ) . We assu m e , as is the case in human con trol hiera rch i e s , that the maximu m
com p l ex i ty of a ny indivi dual in the hiera rchy is essen ti a lly the same va lue C0. Th ere are
t wo referen ce com p l ex i ties—the maximum com p l ex i ty of an indivi dual on his or her
scale C0,and the “ i de a l ”com p l ex i ty of N i n d ivi duals N C0. We can understand the com-
p l ex i ty profile of a hiera rchy by com p a ri s on with the model of co h erent beh avi or — t h e
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Figure 9.4.4 Comparison of schematic complexity profiles of collective systems that are con-
trolled in distinct manners. The maximum complexity of an individual C0 is indicated by a
dashed line. The scale of an individual L0 and the scale of the collective L1 bracket the scales
that are shown. The individual curves are as follows.(a) Coherent behavior of simplified indi-
viduals, with complexity C ′0, whose entire behavior is visible on the collective scale. (b) A sys-
tem coordinated by a control hierarchy. (c) A system that has the maximum complexity a con-
trol hierarchy can achieve. (d) A network which has emergent collective behavior of higher
complexity than an individual. ❚
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simplest con trol hiera rchy. Th ere are two pri m a ry differen ces bet ween them that per-
tain to the com p l ex i ty at the scale of the indivi dual and at the scale of the co ll ective .
These differen ces can be unders tood by referen ce to the factory model .

The first differen ce is that the com p l ex i ty on the scale of the indivi dual—the com-
p l ex i ty of de s c ri bing the beh avi or of a ll of the indivi duals—can be high er for the con-
trol hiera rchy. In deed , the com p l ex i ty on the scale of the indivi dual can be mu ch larger
than C0. Th ere are two re a s ons for this. F i rs t ,s i n ce the beh avi or of e ach indivi dual need
not be manifest on the scale of the co ll ective , it need not be limited by a specific small er
com p l ex i ty C ′0 and may be cl o s er to the maximum com p l ex i ty C0. Secon d , the beh av-
i or of d i f ferent indivi duals is not the same; t h erefore de s c ri bing one indivi dual is not
en o u gh to de s c ri be what all the indivi duals are doi n g.Thu s ,the com p l ex i ty of de s c ri bi n g
a ll of the indivi duals on the scale L0 m ay be gre a ter than C0. Th ere is, h owever, a limit
to the com p l ex i ty at the scale of the indivi dual—it must be sign i f i c a n t ly small er than
N C0. This limitati on arises because the indivi dual beh avi ors must be correl a ted so that
the co ll ective beh avi or can ari s e . The correl a ti on / co h eren ce / coord i n a ti on of d i f feren t
i n d ivi duals is impo s ed by the hiera rchy. The assu m pti on is that lateral com mu n i c a ti on
is not essen tial for the functi oning of the sys tem , and therefore does not play a role in
c re a ting the correl a ti ons that en a ble the co ll ective beh avi or to occ u r.

The second difference is that the complexity on the scale of the entire system can
be higher than C ′0—the complexity of the simplified individual designed for coher-
ent actions. Since the individuals do not act coherently, the complexity of their actions
is not directly related to the complexity of the system. What is not changed, by the ex-
istence of the hierarchy of control,is that the complexity on the scale of the collective
must still be smaller than C0, because this is the complexity of the controlling indi-
vidual—a group of individuals whose collective behavior is controlled by a single in-
dividual cannot behave in a more complex way than the individual who is exercising
the control. This must be true as long as the individual exercises control over the col-
lective behavior. Thus, while the complexity of the whole can be larger than the sim-
plified individual C ′0, it cannot be larger than the maximum complexity of an indi-
vidual C0. We can now understand why control hierarchies did not appear in our
earlier studies of complex systems in previous chapters. In those studies, we were in-
terested in the emergence of complex collective behavior from simple individuals.
Hierarchical control structures are symptomatic of collective behavior that is no more
complex than one individual.

The limit we have established on the collective complexity of a hierarchy does not
yet explain why such hierarchies should disappear. More generally, we would like to
understand the forces that cause changes in human organizations over history. To un-
derstand this we must understand that corporations and other human systems exist
within an environment that places demands upon them.If the complexity of these de-
mands exceed the complexity of a system,the system will fail. Thus,those systems that
survive must have a complexity sufficiently large to respond to the complexity of en-
vironmental demands. As a result,a form of evolutionary change occurs due to com-
petition between organizations. As discussed in Chapter 6, such competition is a nat-
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ural process by which complexity may increase. While the detailed process of evolu-
tion involving processes of reproduction, variation and selection can be discussed in
the context of human organizations,our purposes are served by simply postulating a
progressive complexity of the collective behavior of organizations. This is a self-con-
sistent statement, because the environment itself is formed out of organizations of
human beings. Thus, there is a self-consistent process of complexity increase where
competition between organizations causes the complexity of one organization to
serve as the environment in which others must survive. Using the progressive increase
of complexity, we can understand the nature of the transition that is under way. To do
this we must assume that the complexity of demands upon collective human systems
have recently become larger than an individual human being. Once this is true,the hi-
erarchy is no longer able to impose the necessary correlations/coordination on indi-
viduals. Instead, interactions and mechanisms characteristic of networks in complex
systems like the brain are necessary.

We can now make a powerful connection between the apparent transition toward
networked structures from hierarchical structures in the economy and in society and
our discussion of human civilization as a complex organism. The transition is con-
sistent with a collective behavior that is more complex than the behavior of an indi-
vidual. Thus, it implies that various collectives of human beings are now behaving in
a manner that is more complex than an individual. This statement could not be made
tens or hundreds of years ago. The breakdown of hierarchies at scales up to essentially
the scale of civilization as a whole (e.g., the Soviet Union) is consistent with our ob-
servation of the recent increase in interdependence of civilization,and the conclusion
that civilization is a complex organism. We will pursue this discussion further in the
following section.

Question 9.4.1 Consider the properties of a hierarchical organization in
response to its environment. How does this contrast with sensorimotor

response in an animal?

Solution 9.4.1 In a hierarchical organization, there are various sources of
information that might affect the organization’s behavior. The information
that is obtained about the environment generally flows up the hierarchy. The
response to this information may occur at any level of the hierarchy, but this
response can only involve the part of the organization that is under the con-
trol of the manager that directs the response. If the entire organization must
respond to the information,the information must reach the individual who
controls the entire organization. Thus the rate of response of the organiza-
tion is limited by the rate of response of the individual in control,and his or
her complexity as indicated above.

The sensorimotor system in an animal also involves a process of filter-
ing of the necessary information. However, the response is dictated by the
collective behavior of the network, and is not dependent on a single indi-
vidual component, i.e., on a single neuron. ❚
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9.4.4 Historical review of the complexity transition
If we review history, we can see how the development of hierarchies enabled progres-
sively more complex behaviors up until the present time, when this process broke
down in favor of networks (Fig. 9.4.5). There are two complementary aspects to the
development, complexity at the scale o f the individual and at the scale of the collec-
tive. In general they do not relate directly to each other. In the context of a control hi-
erarchy, however, there is an association of greater complexity of the individual be-
haviors with greater complexity of the collective behavior.
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Figure 9.4.5 A brief history of human organizations capturing the effect of increasing col-
lective complexity as illustrated in Fig. 9.4.4. (a) In the first stage a single individual directs
the behavior of a large number of other individuals. This coordinates their activities, which
are simple when viewed individually and collectively. (b) As the organizations become more
complex, intermediate layers of hierarchy are added to the control structure. They filter in-
formation about the activities of the workers so that only a simplified picture of the activi-
ties reaches higher levels. They also elaborate the directives given by the higher levels so as
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Ancient empires replaced various smaller kingdoms that had developed during a
process of consolidation of yet smaller associations of human beings. The degree of
control in these systems varied, but the progression toward larger more centrally con-
trolled entities is apparent. As per our discussion of the difference between indepen-
dent individuals and coherent behaviors, this led to a decrease of complexity of be-
havior of many individuals, but a more complex behavior on the larger scale.

During the time of ancient empires,large-scale human systems executed relatively
simple behaviors, and individuals performed relatively simple individual tasks that
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to implement them in the workers’ activities. This control structure is effective only if the col-
lective behavior can be meaningfully simplified. (c) The transition occurs when the collective
complexity exceeds the maximum complexity of an individual. Then, filtering of information
on the way up, and elaboration of directives on the way down, are ineffective. (d) The sys-
tem structure becomes a network of individuals exerting mutual influence similar to other sys-
tems with complex emergent collective behavior. ❚
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were repeated by many individuals over time to have a large-scale effect. This applies
to soldier armies,as well as slaves working in agriculture, mines or construction. The
scale of ancient empires controlled by large armies,as well as the scale of major pro-
jects of construction, would be impressive if performed today. However, the activity
was simple enough that one individual without much of a hierarchy could direct a
large number of individuals. The scale of activity was possible, without modern tech-
nology, because of the large number of individuals involved. Thus, hierarchies had a
large branching ratio—a large number of controlled individuals for each controller.

As time progressed, the behavior of individuals diversified as did the collective
tasks performed by them. Diversity of individuals implies that the behavior o f the
entire system on the scale of the individual became more complex. This required re-
ducing the branching ratio by adding layers of management that served to exercise lo-
cal control. As viewed by higher levels of management, each layer simplified the be-
havior to the point where an individual could control it. The hierarchy acts as a
mechanism for communication of information to and from management. In our per-
spective,the role is also a filtering one, where the amount of information is reduced
on the way up. Conversely, commands from the top are elaborated (made more com-
plex) on the way down the hierarchy. As the collective behavioral complexity at the
scale of an individual increases,the branching ratio of the control structure becomes
smaller and smaller so that fewer individuals are directed by a single manager, and the
minimum possible number of layers of management increases.The formation of such
branching structures allows an inherently more complex local behavior of the indi-
viduals, and a larger complexity of the collective behavior as well.

However, at the point at which the collective complexity is the maximum indi-
vidual complexity, the process breaks down. Hierarchical structures are not able to
provide a higher complexity. We can recognize,however, that a hierarchy serves to cre-
ate correlations in the behavior of individuals that are similar in many ways to the be-
havior of a network. The hierarchy serves as a kind of scaffolding for creating a com-
plex system. At the complexity transition, it becomes impossible to exercise control,
so the management effectively becomes divorced from the functional aspects of the
system. Lateral interactions that replace the control function must be introduced.
These interactions act like those of other networks to achieve the correlations in be-
havior that were previously created by management. As such mechanisms are intro-
duced,layers of management can be removed. Over the course of the transition, the
hierarchy exercises control over progressively more limited aspects of the system be-
havior. Some of the behavior patterns that have been established through the control
hierarchy may continue to be effective; others will not, since an increase in system
complexity must come about through changes in behavior. Among these changes are
the coordination mechanisms themselves, which must be modified to involve lateral
interactions. It could be argued that this picture describes much of the dynamics of
modern corporations. Upper levels of management have often turned to controlling
fiscal rather than production aspects of the corporation. Corporate downsizing has
often been primarily at the expense of the middle management, with a subsequent
lowering of payroll and little change in production. Hierarchical control has been re-
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placed by decision teams that are introduced by corporate restructuring; and the
reengineering of corporations has focused on the development of processes that are
task related and do not depend on direct hierarchical control.

Ultimately, the development of greater complexity of collective behavior must
continue to involve correlations/coordination of activities of various individuals.
Without central control, coordination involves groups of interacting individuals
achieving a collective behavior both through external influences and through mutual
agreement. Among the many forms of modern corporations discussed are adhocra-
cies, virtual corporations and networked corporations. Some of these structures may
act similarly to the networks we used to describe the brain in Chapter 2. However, it
is not likely that we understand at this time the various forms that coordination net-
works may take.

Using this argument we can understand in a straightforward way why control
structures ranging from communism to corporate hierarchies could not perform the
control tasks required of them in current times. As long as the activities of individu-
als are uniform and can be simply described—for example, soldiers marching in a
row, or manufacturing workers producing a single product by a set of repetitive and
simple activities (pasting eyes on a doll,screwing in bolts)—control can be exercised.
The individual’s activities can be specified once for a long period of time, and the
overall behavior of the collective can be simply described. The collective behavior is
simple when it can be summarized using a description of a simple product and the
rate of its production. In contrast, central control cannot function when activities of
individuals produce many products whose description is complex; when production
lines use a large number of steps to manufacture many different products; when the
products vary rapidly in time; and the markets change rapidly because they them-
selves are formed of individuals with different and rapidly changing activities.

It is useful to distinguish networks that coordinate human activity from markets
that coordinate resource allocation. Markets are a distinct type of system that also re-
sults in an emergent collective behavior based upon the independent actions of many
individuals. Markets such as the stock exchanges or commodity markets coordinate
the allocation of resources (capital,labor and materials) according to the dynamically
changing value of their use in different applications.Markets function through the ac-
tions of many agents (individuals, corporations and aggregate funds).Each agent acts
according to a limited set of local objectives, while the collective behavior can coordi-
nate the transfer of resources across many uses. Markets are distinct from networks in
that they assume that the interactions among all agents in regard to a single resource
can be summarized by a single time-dependent variable, which is the value of the rel-
evant resource.

To illustrate the problem of central control of a complex economic system, we
might consider examples of the problem of resource allocation. An example might be
the supply of oil to a country. For an individual to allocate the supply of oil,all of the
needs of different users in amounts and times, the capabilities of different suppliers,
and the transportation and storage available must be taken into account. Even if one
were to suggest that a computer program might perform the allocation, which is
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recognized as a formally difficult computational problem, the input and output of
data would often eliminate this possibility. One of the crucial features of such an al-
location problem is that there are both small and large suppliers and small and large
users. As the number of independent users and the variation in their requirements in-
creases,the allocation problem becomes impossible to solve. At the same time,a mar-
ket is effective in performing this allocation with remarkable efficiency.

A more familiar example, which in many ways is more salient,is the problem of
food supply to a metropolitan area. The supply of food is not a market,it is a network
based upon a market structure. In a metropolitan area, there are hundreds to thou-
sands of small and large supermarkets,thousands to tens of thousands of restaurants,
each with specific needs that in the optimal case would be specified by immediate
requirements (on demand) rather than by typical or average ne ed over time. The 
suppliers of foods are also many and varied in nature. We might start by considering
general categories of foods—produce, canned goods, baked goods, etc. The trans-
portation and storage requirements of each are subject to different constraints. The
many types of vehicles and modes of transportation represent another manifold of
possibilities. The market-based system achieves the necessary coordination of food
supply without apparent hitch and with necessary margins of error. To consider
conceptually the dynamic dance of the supply of food to a city that enables daily avail-
ability is awe-inspiring. Even though there are large supermarket chains that them-
selves coordinate a large supply system, the overall supply system is much greater.
When we realize that this coordination of effort relies upon the action of many indi-
viduals,it g ives meaning to the concept of emergent behavior. We can also understand
why in a centrally controlled system, consistent and adequate food supply becomes a
problem. In order to have any hope of controlling such a supply problem, it would
have to be simplified to allow for only a few products in only a few stores. These were
well-known characteristics of food supply in communist regimes. They were seen to
reflect the general economic ineffectiveness of such forms of government. In this con-
text we see that the connection is quite direct. While considering the allocation prob-
lem in the context of food supply may illustrate the problems associated with central
control, the same argument can be applied to various resource allocation and other
coordination problems in large and small corporations.

In conclusion, the result of this discussion is that we can understand the impli-
cation of the disappearance of central control structures. The implication is that the
behaviors of collections of human beings do not simplify sufficiently to be controlled
by individuals. Instead of progressive simplification from an individual to larger and
larger collections of individuals, we have the opposite—an increasing complexity that
is tied to an increasing complexity of the demands of the environment. This makes it
impossible for an individual to effectively control collective behaviors. While specific
individuals have been faulted for management errors that have led to corporate fail-
ures,the analysis we have performed suggests that it is inevitable for management to
make errors under these circumstances.

In Chapter 8 we estimated the complexity of various systems by several ap-
proaches. The first approach used linguistic descriptions, either imagined or actual,
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of the systems. The complexity of a human being was estimated to be roughly 30
books (108 bits)—the length of an encyclopedia. If we consider the functioning of the
global economy and the behavior of its intermediate scale components (corporations,
states, etc.) we can readily see that the complexity of its description using language is
much larger than the estimate given for a human being. This conclusion may apply to
a single product manufactured by a single company. The number of pages of text nec-
essary to describe an airplane,a car, a computer or the processes necessary to produce
them would exceed the length of an encyclopedia. It is generally acknowledged that
large computer programs exceed the ability of a single person to understand. The
UNIX operating system, found on many computers, requires a storage of 4 × 109 bits,
which is comparable to our estimate of human complexity. This is only a very small
part of the information necessary to describe the operation of civilization. Estimates
of complexity of a product or an operating system are relevant to understanding the
complexity of the internal functioning of civilization. This does not by itself imply
that the complexity of the behavior of collections of human beings is of this size.
Thus, more directly relevant to obtaining an estimate are: the inability of one indi-
vidual to coordinate human activities,the apparent breakdown of central control,and
the manifest interdependence of human civilization. As we have argued in the previ-
ous chapter, an actual estimate of the complexity of civilization should be impossible
for an individual to obtain if the human being is less complex than civilization.

Finally, we can rethink our previous discussion of the global economy and global
civilization in this context. In Question 9.3.3 we discussed the growing interdepen-
dence of the global system. This interdependence is directly related to increasing com-
plexity. After all,it is precisely the dependence of events in one place on events in an-
other place that leads to much of the complexity that affects all decision making.
Thus, we have established a connection between increasing global interdependence,
increasing complexity, and the breakdown of hierarchical control in political and eco-
nomic systems. What is still missing is a realization of the implication that global hu-
man civilization is manifestly a complex organism in relation to which we, as indi-
viduals, are elementary parts.

Consequences of a Transition in Complexity

The result of our discussion up to this point is the suggestion that a complexity tran-
sition is occurring in human civilization at this time.Prior to the transition,the com-
plexity of various organized structures of human beings was less than the complexity
of the individual; now the organized structures have greater complexity. When we say
there is a growing complexity to life,this appears to be justified. What are the conse-
quences of such a transition? The disappearance of central control is one that we have
discussed and utilized to argue the existence of the transition. There are other impor-
tant consequences. We will discuss these in two parts (Section 9.5.1 and 9.5.2). The
first part is the consequences for an individual human being in the context of an
environment that has recently become more complex than himself or herself. The
second part reflects the relationship of human civilization as an organism to the

9.5
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individual human being. When we consider an individual in the context of a more
complex environment, we find a strong motivation for specialization and for insecu-
rity. When we take into account the relationship of the human organism to the hu-
man individual, we find reasons to eliminate the insecurity.

9.5.1 Consequences for the individual
We can develop a perspective on the complexity transition by recognizing that until
the present, an individual human being was,as far as we know, the most complex or-
ganism. We pointed out in Chapter 8 that the demands of survival are much simpler
than a human being. How are we to understand the consequences of the existence of
a more complex organism which is now the environment of individual human be-
ings? We consider the circumstances of other organisms that are in environments
more complex than themselves. Most animals are simpler than the environment in
which they live. They survive by limiting their exposure to the environment—re-
stricting themselves to only a limited part of the possible environments that might be
found. This results in a substantial simplification. A second strategy is to reproduce
rapidly, where the excess reproduction compensates for low probability of individual
survival.

The former strategy can be applied to human beings. We can anticipate that in-
dividuals will specialize professionally and socially so as to limit their exposure to the
complexity of modern civilization. The degree of professional specialization has been
increasing. Specialization occurred because of the existence of an increasingly large
body of knowledge. This can be understood by comparing the number of books in
the Library of Congress, 107, with the number of textbooks (courses) in a college ed-
ucation,30. The existence of a large amount of knowledge does not necessarily mean
that all of the knowledge is relevant to the functioning of human civilization.
However, for other reasons discussed in this chapter, we see that the functional com-
plexity of civilization has increased as well. This should motivate still more dramatic
forms of specialization that relate not only to the information necessary for an indi-
vidual to know, but also to the nature of his or her interactions with various aspects
of the environment.

The complexity of civilization suggests that there are many possible sets of knowl-
edge that an individual might need to know in order to achieve the analog of survival
in society—beyond physical survival,this may include other goals such as a success-
ful social and professional life. These sets of knowledge are analogous to ecological
niches. In a sense we can consider them to be possible realities. The social and profes-
sional reality of one individual may be qualitatively different from the social and pro-
fessional reality of another individual. This implies,for example,that decision-making
strategies cannot be transferred in a simple way from one such reality to another.
Moreover, it will be difficult if not impossible for an individual to be suited to more
than one such reality. It will be impossible for an individual to address all possible re-
alities. The specific skills inherent in performing a particular task become of crucial
relevance to the ability of an individual to perform it. This also implies that education
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should be directed toward specific and individualized professions,and that these pro-
fessions must be well suited to the individual’s talents in order to enable success.

One oversimplified way to understand specialization is to consider examples
where professional specialization is apparent. We might consider singers or athletes as
examples. Viewed in an oversimplified way, we can argue that the existence of mass
communications, recording and duplication makes it possible for a few singers to per-
form for a large number of people. This means that fewer singers are able to support
themselves, the few that do are wildly successful, and the competition for the atten-
tion of the audience increases. Moreover, there are more opportunities for potential
singers to try to sing, and the best of these will be the ones selected. In this way only
the best of the best are professional singers. The high degree of competition is equiv-
alent to the selection of one from among many. This corresponds (by information
theory) to the high complexity of the tasks involved. In order for an individual to be
selected,he or she must be well suited in every way, genetically and educationally, to
this specific task. Similar statements can be made about the selection of the best ath-
letes in a particular sport, or in a particular competitive event.

The suggestion that only a few—the best of the best—can succeed in a particu-
lar profession is not a complete picture. The intensive competition for a single pro-
fession is complemented by the increasing existence of diverse professions,including
diverse forms of music,and diverse athletic events,in which different individuals can
be successful. Thus, while each niche must be filled by a very specific individual,there
are many such niches that are to be filled by distinct individuals. Moreover, this over-
simplified view does not take into account the nature of collective behavior. We have
chosen examples of professions where individual competition is apparent. By virtue
of the nature of human civilization as a complex system,the tasks to be performed oc-
cur at many levels of organization and involve various numbers of individuals. Thus,
while specialization is essential,the nature of competition as a process of selection is
not well described by these professions.

A generally recognized feature of the present economy is a dramatic increase in
changes of profession by individuals. This is not restricted to changes in employment,
but also reflects rapid changes in projects and activities in a single job. We can at-
tribute this to the rapid development of diversification and the rapid changes of tech-
nology. We might consider this as symptomatic of economic rest ructuring, which
may resolve itself and result ultimately in a return to stability. This would be similar
to the dislocation in employment and changes of profession that occurred during the
industrial revolution. However, we can also consider this process in light of the ne-
cessity of placing individuals into occupations (niches) that are best suited to their
abilities. In a complex system where diversity of professions is a principal property of
the system, it may be essential to have such a dynamic flow of individuals until each
finds optimal or near optimal suitability to a profession. This process would occur
during the transition,and might not continue afterward.On the other hand,an indi-
vidual in the complex system may also play a number of different roles, requiring var-
ious combinations of skills and capabilities. This would be similar to a network of
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neurons with various collective states,each composed out of a distinct set of activities
of individual neurons, as discussed in Chapter 2.

Another implication of the complexity transition is a shift in the objectives and
goals of individuals. Since control becomes impossible,the traditional goals of achiev-
ing authority, power and control become largely obsolete. For many individuals, as
well as entire professions, achieving a position of power and control is the definition
of accomplishment and fulfillment. We can already see a significant change in popu-
lar literature of the United States away from the traditional descriptions of an indi-
vidualistic superhero/superachiever and toward the description of team players,net-
works of interacting individuals, and other more cooperative mo dels for behavior.
This is true even in circumstances where control appears to be exercised.A good ex-
ample may be found in the difference between the original Star Trek TV series and the
subsequent Star Trek: The Next Generation TV series, where the importance of crew
members, teamwork,specialization, and complementary functions are more promi-
nent. This change reflects the transition we have been discussing, which must be
echoed in a change of personal goals and perspectives on success. While our objective
is not to place value on developments, we can see that while some may applaud dis-
appearance of the abuses of central control,the loss of the opportunity to exercise au-
thority may be a disappointment in the context of the individual goals of the past.
This is consistent with negative emotional reactions when an individual recognizes
his or her inability to control, or even to understand, his or her environment.

When we consider an individual encountering a system of greater complexity, we
may ask how the individual will model it. The construction of models by a simple ob-
server of complex systems was discussed briefly in Section 8.3.7,and we continue the
discussion here. Our discussion is an effort to gain perspective on how an individual
human being will understand his or her environment. Any model developed by the
individual must remove some features of the more complex system.One possibility is
to ignore all but a limited part of the environment. In this case an individual’s model
of reality denies the existence of many of its aspects. A second possibility simplifies
the complexity to a random process. Events are considered to be random, uncorre-
lated and thus unpredictable. This reflects our understanding that a random process
has a low behavioral complexity. Finally, a model may presume associations or rela-
tionships that are overly simplified and therefore inconsistent with reality under all
but a limited set of circumstances.

The discrepancy between models of reality and the reality itself has implications
for individual actions, decision making and attitudes toward this decision making.
Individuals are faced with the necessity for making decisions based upon their mod-
els of reality; this is the primary reasons for such models. Models take the form of an
expectation that particular actions lead to anticipated outcomes. When the models
are incomplete,the anticipated outcomes are not always realized.One of the primary
conventional human responses to such inconsistency is to learn and adapt by im-
proving the model. This is the usual process of trial-and-error learning. As long as the
complexity of the individual is larger than the environment, adaptation can enable the
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individual to respond correctly to all circumstances. However, when the complexity
of the environment is larger, adaptation becomes less effective.

To understand this point, we consider the behavioral complexity of the individ-
ual as a measure of the length of description of his or her pattern of responses to the
environment. By our discussion in Question 8.3.8,different responses to distinct en-
vironmental conditions must be correlated. The degree of complexity of the individ-
ual reflects the extent to which independent responses can be made to distinct condi-
tions. The complexity of the environment is a measure of the complexity an organism
needs to survive in the environment. Thus, for an environment with higher complex-
ity, there are more distinct conditions that require independent responses. If a sim-
pler organism adapts to one subset of these conditions, then its responses to others
are dictated by this,and are inadequate. Thus, it does not help to adapt to every new
condition that arises,since this adaptation causes the individual to lose the ability to
respond to conditions that the individual was suited to before. This may explain why
simpler animals are not as adaptive as human beings: adaptation is less effective when
the organism’s complexity is smaller than that of its environment.

There are direct implications for the ability of an individual to perform common
and special tasks—to find and retain jobs or conduct interpersonal interactions. We
may assume that for many individuals,this inability to develop an effective set of re-
sponses to the environment will lead to frustration. Indeed, such frustration has be-
come widespread. We note that in the complex environment, both success and failure
are temporary; success at one time does not imply continued success, failure at one
time does not imply continued failure.

Another aspect of this problem is the response by one individual to the behavior
of another. This has relevance in various aspects of interpersonal and professional in-
teractions. In a complex environment, the reality of one individual may not have a
large overlap with the reality of another.We infer that one individual will view another
individual as behaving in a random or incomprehensible fashion. Due to the increas-
ing exposure to occurrence of such behavior, individuals may presume that others will
not be comprehensible. This may either lead to respect for incomprehensibility or dis-
dain for others. Both are manifest in scientific discourse and are likely to appear in
other social and professional contexts.

The increasing specialization of individuals also implies and is consistent with an
increasing specialization in sources of information. In this context it might be antic-
ipated that conventional news sources which report on globally important events may
become progressively irrelevant to an individual. This occurs because of the general
inability of the individual to retain large amounts of information and because of the
increasing irrelevance of general news to an individual’s decision making. Instead, a
system of more individually directed communication is likely to become dominant.
In such a system, each individual would be better able to select the nature of infor-
mation to which he is exposed. This self-consistent process of information exposure
and selection may have all of the interesting properties of iterative maps that were dis-
cussed in Section 1.1, or self-consistent collective behaviors discussed in Section 1.6.
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A better mo del, however, may be the pattern-formation processes in Chapter 7, in
which the pattern of activities of individuals ultimately forms the basis for collective
function of the human superorganism.

9.5.2 Relationship of the individual to civilization
Thus far our discussion of consequences of the complexity transition has taken the
approach of considering an individual human being in the context of an environment
whose complexity is greater than him or herself. We now turn toward considering the
implications of the relationship between an individual and the complex organism of
which he or she is a part. The difficulty in discussing this relationship is the inherent
one—that we must assume that we cannot understand the behavior of the collective.
Nevertheless, we will attempt to proceed in part by analogy and by assuming that the
interdependence of a system and its components has universal implications. We can
evaluate the consistency of the conclusions by comparison with observations.

In order to set the stage for this discussion we may note that the number of hu-
man beings in the world is of order 5 × 109, roughly comparable to the number of
neurons in the brain. No functional analogy between the brain and humanity should
be assumed. If we were to adopt a physiological analogy, we might be better off con-
sidering the analogy of human beings with mobile cells such as the immune cells in
the body. However, there should be no assumption that the physiological analogy can
be direct. The main purpose of the numerical analogy is to establish some sense of
scale. It suggests that the relationship of an individual to the collective may be much
more impressive than we might otherwise assume. The elimination of central control
may be only a first step toward the potential complexity of the global system of which
we are a part. As long as the human collective did not function as an organism, it
played a small role in our perspective on the world, and on our actions. This may
change rapidly in upcoming years so that our conscious recognition of this relation-
ship as well as its effects becomes an important part of our existence.

As just described, the various changes that are taking place have led to an in-
creasing sense of insecurity in individuals that are unable to plan for the future in a
complex system whose behavior cannot be anticipated. However, when we consider
the relationship of a complex organism to its components, rather than an individual
in an environment of greater complexity, we see that this insecurity may be only tem-
porary. The complex organisms we know act at least in part to protect and support
the existence of their components. We may suggest that the human collective will pro-
tect individual human beings. It is likely to protect the individual better than the in-
dividual would be able to protect him or herself.

We can test this perspective in the light of historical developments. One way to
measure the possibility that the human superorganism will protect individual human
beings is through the improvements of life expectancy and quality of life from an-
cient to modern times. We have argued in the previous chap ter that survival of a
primitive human was possible because an individual was more complex than his en-
vironment. This survival was a statistical one (of order 10%–50% is sufficient) and
required only survival to reproductive age. We can contrast this with the ongoing in-
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crease in life expectancy and quality of life,particularly during the twentieth century.
The improvement in life expectancy occurred first in the West and has been spread-
ing throughout the world. It was achieved through eradication of diseases and other
hazards. It originates in technological and social advances that require collective ac-
tions of many individuals. This improvement in the human condition does not have
as its objective the reproductive success of an individual human being. It is related to
collective objectives of societal progress. More recently, collective actions have led to
an alleviation of major sources of suffering and death around the world. Famines and
natural disasters as well as other forms of social disruption have been addressed by
global responses that are historically unprecedented. Moreover, the risk of self-
inflicted worldwide cataclysm by nuclear destruction has been dramatically reduced
in recent years.

The continued existence of local wars or revolutions in such places as Bosnia and
Chechnya may be interpreted as a gap in this argument. The possibility of global con-
flict may be reduced, but local conflicts appear to continue. This,however, is likely to
be temporary, since there is a growing recognition that the main cause of such con-
flicts—a desire for territory and control—has diminished in importance or practical-
ity. Wealth no longer accumulates from national territory per se. Much of modern
wealth is achieved through technological developments in industrial production,ser-
vices and information. Moreover, from our previous discussion, in many cases con-
trol is only possible in name. It is likely that the current local conflicts are a residuum
of outdated perspectives. The collapse of the Soviet Union released individuals to act
on these perspectives. The individuals involved must interact with the new circum-
stances in a direct way before they recognize that gain cannot be achieved through
military conflict.

At the same time as actions have been taken to alleviate global disease and suf-
fering, there are other d evelopments that increase life expectancy and quality in de-
veloped nations. In the United States, deaths from major disease categories, such as
heart disease and cancer, have been declining. Deaths from the largest source of acci-
dental death, automobiles, have consistently declined over the last few years. We
should contrast the goal of an individual with the goal of the collective in relation to
accidental death or death by disease. If we think about the goals of an individual, we
realize that it is sufficient to reduce the p robability of accidental death to the point
where it is unlikely for the individual—say 1 in 100 in a lifetime. From the point of
view of the collective, this is unacceptable, because it means that 1 in 100 individuals
will die from this cause. We can argue that a new attitude is appearing that the loss of
an individual human being has become unacceptable. This is a fundamental change
of perspective. A goal of no loss of life is an inherently collective one. Various forms
of factory work or building construction are known to have a certain statistical prob-
ability of injury or death. These probabilities give rise to a certain number of deaths
each year. In the past,this death rate was known and considered to be acceptable. In
more recent times goals have been set to reduce the risks to the point where even a
single death is improbable. In addition to occupational hazards,this discussion is con-
sistent with standards for product safety (from toys to buildings), where the basic
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criteria for safety is not just that products are safe under proper use, but that even im-
proper use does not result in death or injury.

If the collective system serves in part to protect its components—individual hu-
man beings—then the relationship between the individual and the complexity of the
environment changes. Rather than inducing a continuing struggle for survival, which
currently appears to be manifest in the struggle for financial well-being, the collective
may accommodate individual needs. There is some evidence for this, though the
eventual resolution is not yet apparent. The evidence that exists is in the relative lack
of dislocation when compared to the magnitude of changes that are taking place.
Whether we consider the collapse of the Soviet Union or the job loss in the U.S. econ-
omy, the changes have been dramatic. However, the individual dislocations have been
relatively mild compared to what can be easily imagined. In particular, there has not
been general violence in the former Soviet Union despite several opportunities. In the
United States, despite the dramatic reduction in employment at large corporations,it
has been possible for small companies to more than compensate for the job loss. Thus
it is possible that the collective organism is functioning constructively to transfer in-
dividuals from one framework to another in at least a partially effective manner.

In the context of considering human civilization as an organism in relation to in-
dividuals, we should revisit the traditional conflict between individual and collective
good and rights.This philosophical and practical conflict manifested itselfin the con-
flict between democracy and communism. It was assumed that communism repre-
sented an ideology of the collective while democracy represented an ideology of the
individual. If we accept the transition to a complex organism, we may consider this
conflict to be resolved, not in favor of one or the other, but rather in favor of a third
category—an emergent collective formed out of diverse individuals. The traditional
collective model was a model that relied upon uniformity of the individuals rather
than diversity. Similarly, the ideology of the individual did not view the individual in
relation to the collective, but rather the individual serving himself or herself. It should
be acknowledged that both philosophies were deeper than their caricatures would
suggest. The philosophy of democracy included the idea that the individualistic ac-
tions would also serve the benefit of the collective,and the philosophy of communism
included the idea that the collective would benefit the individual. Nevertheless, the
concept of civilization as an emergent complex organism formed out of human be-
ings is qualitatively different from either form of government.

Civilization Itself

Our discussions of the relationship of the individual to civilization apply only to the
finest scale of civilization as a complex organism formed out of human beings. In this
section we turn to discussion of various other aspects of civilization as a complex or-
ganism. It is important to accept that there are many matters that we will not be able
to describe or predict. This is consistent with the perspective that human civilization
is more complex than we are as individuals. When we strive to understand, we expect
that this knowledge will,at least in part, enable us to gain additional control. The pre-

9.6
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vious statement makes clear that our knowledge may be limited in its ability to serve
this function when applied to the entirety of human civilization.

From this discussion we should realize that there are limits to useful speculation
due to lack of predictability. This limit was anticipated in the discussion in Section 9.1.
In a sense,it points to a difference between our model and Newtonian models of sim-
ple systems with predictable behavior. The study of complex systems is more akin to
quantum mechanics, where it is understood that certain questions cannot be an-
swered within the context of science. Moreover, even if we were discussing a phase
transition in a thermodynamic system (Sections 1.3 and 1.6), we would find an in-
herent lack of predictability. In a first-order phase transition,the ability to predict the
specific behavior of the system is limited by the properties of nucleation that are sen-
sitive to impurities. In a second-order transition,fluctuations make the local proper-
ties of a system inherently unpredictable. The inherent lack of predictability, however
frustrating, does not mean that other questions cannot be asked and addressed.
Interesting examples of questions follow.

Question 9.6.1 The basis of our discussion of human civilization as a
complex system in Section 9.4 was the disappearance of central control

in social and economic systems. Do our conclusions about the complexity of
these systems mean that we can predict a further decline, or even the com-
plete disappearance of hierarchical structures in human civilization?

Solution 9.6.1 One of the seemingly natural predictions of the model of
loss of central control due to increasing complexity is that hierarchical sys-
tems or instruments of central control that exist today will continue to dis-
appear over the upcoming years. However, the model of emergence of a
collective complex organism suggests that this prediction is not a definite
one. Functional segregation in a complex system may lead some parts of
the system to retain central control, while others become networks. This is
analogous to the existence of a neural network on the one hand, and mus-
cles on the other. Thus,hierarchies may well continue to exist. Without any
prior knowledge about the eventual structure that human civilization is to
attain, we cannot predict where and in what way. Even though we might ex-
pect that dictatorships or centrally controlled economies which still exist in
some parts of the world will completely disappear, such predictions may
not be valid due to functional segregation.

An example is the relatively centrally controlled economy of Japan.
Compared to the U.S. economy, the Japanese economy has a much more hi-
erarchical (centrally controlled) structure. If it is generally true that such sys-
tems must fail due to increasing complexity, then we should anticipate that
the Japanese economy will experience difficult times.These will occur due to
inevitable mistakes made by the central authorities. Eventually the central
control will be abandoned. However, a different scenario is possible—that
the Japanese economy will continue to be effective and centrally controlled,
but that the products of this economy will be limited to those that can be ef-
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fectively produced in such a system. This is consistent with the model of
functional segregation. A second example can be identified in the instru-
ments of central control in the U.S. economy. At present the most powerful
instrument of central control over the economy appears to be the Federal
Reserve. It may be suggested that this mechanism of control will also fail due
to the problem of increasing economic complexity. However, the argument
may not apply here as well. In physiology there are glands, such as the
adrenal gland,that control various aspects of the overall behavior of the sys-
tem, such as metabolic activity. By such an analogy, the Federal Reserve may
serve its function through controlling the overall level of financial activity
even in the complex economy. ❚

Question 9.6.2 Consider global civilization as a single complex organ-
ism. What are the implications for the possibility of colonization on

other planets?

Solution 9.6.2 Standard scenarios of colonization follow the model of col-
onization that occurred on Earth. A few individuals are sent to a new loca-
tion and they independently function as a new society. This scenario does
not work in the context of a complex organism. The interdependence of the
complex organism implies that we cannot take part of it away and expect the
part to function in the same manner as the whole. This is precisely the prop-
erty of interdependence that we have used to characterize the complex
organism.

There are two different models for how colonization might work. One
of these is that the colony is not separate from the rest of human civilization
but continues to function as a part of it. The second is that the process of col-
onization follows the same historical process that was followed by human
civilization. This would be akin to a process of reproduction that occurs in
other complex organisms. In order for the colony to follow the same devel-
opmental process, rather than beginning from modern technology it would
have to start from a primitive state and develop technology through a simi-
lar process to that which occurred on Earth. ❚

Question 9.6.3 (for further thought) Discuss the possible origins of
human civilization as a complex organism. Consider the various possi-

ble mechanisms for forming complex systems—spontaneous formation by
a dynamical process, evolution,and development. Which of these can be rel-
evant to the formation of a single complex organism? What conditions are
necessary for it to occur? Which of the mechanisms for forming complex
systems might apply to the formation of human civilization as a complex
organism?
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Question 9.6.4 (for further thought) We have concluded that global
civilization (as a collective organism) is more complex than an individ-

ual human being. We have also concluded that an individual human being is
more complex than the environmental demands upon him or herself. What
process would cause an organism to form that is more complex than the
environment?
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Additional Readings

The following is a list of additional readings rather than a bibliography. The range of
topics discussed in this text does not allow for a comprehensive bibliography. Our fo-
cus is on the effort to develop concepts and methodologies that enable the study of
complex systems in a unified manner. Nevertheless, this effort must be informed by
many fields and their phenomenologies. The following list attempts to address this by
providing accepted keywords for literature searches as provided by the Library of
Congress.

In addition to the keywords,a few references are provided with comments. Many
of these texts were obtained from literature searches, and have been checked as rele-
vant to the concepts we have been discussing. These references serve several purposes.
First,they provide the student with an opportunity to pursue the phenomenology or
theory in greater depth. Second, in a more specific domain, they provide a point of
entry into the literature through a bibliography. Third, some references have an ap-
proach that is particularly compatible with the material presented in this text, or to
the field of complex systems generally.

This list,however, does not serve three conventional purposes. It does not serve
to trace the historical origin of concepts presented, or to motivate them from phe-
nomenological grounds, or to prove them using experimental observations. Any of
these would be a worthwhile but equally challenging endeavor to the objective of
demonstrating the unity of concepts, which is the motivating force behind this text.

As is fitting for concepts that are to be a general underpinning of our under-
standing of complex systems, points made in this book appear in many contexts in the
literature. A stronger statement may be made—the g enerality of the concepts pre-
sented in this text must imply that there are many ways to arrive at them,and many
conclusions that may be drawn from them that can be compared with a large body of
experimental literature. The effort in this text to draw conclusions from a very small
set of assumptions is only a beginning in the effort to understand how widely applic-
able such concepts can be. In the few cases where we have made a greater effort to
make contact with specific phenomenology and thus where support is necessary for
material presented in the text (e.g. the discussion of sleep in Chapter 3), we have pro-
vided a few more specific references.

Chapter 0
keywords: system theory; autopoiesis; biological systems; chaotic behavior in systems;
cybernetics;linear systems;social systems;system analysis;systems engineering; com-
plexity (philosophy)

[0.1] Herbert A. Simon, The Sciences of the Artificial, 3d ed. (MIT Press: Cambridge,
1996). See the last chapter for an alternate overview of this text.

There are a remarkable number of popular or semipopular books on various con-
cepts in the study of complex systems. For a number of reasons these books have ap-
peared instead of textbooks. They are of two types: books written by observers of the
field, and books written by researchers presenting their ideas to a popular audience.
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There are both positive and negative aspects of this approach,the ultimate benefit of
which will be judged by others. Here we provide a few references to this literature:

[0.2] James Gleick, Chaos: Making a New Science (Penguin: New York, 1987).
Concept and personality history, focusing on chaotic and nonlinear dynamics
(Section 1.1), and fractals (Section 1.10) but relevant to the study of complex
systems in general.

[0.3] Douglas R. Hofstadter, Gödel, Escher, Bach (Vintage: New York, 1989).
Semipopular and creative romp emphasizing mathematical and philosophical
aspects of logic (Section 1.9).

[0.4] Roger Lewin, Complexity: Life at the Edge of Chaos (Macmillan: New York,
1992).

[0.5] M. Mitchell Waldrop, Complexity: The Emerging Science at the Edge of Order
and Chaos (Simon & Schuster: New York, 1992).

[0.6] John L. Casti, Complexification: Explaining a Paradoxical World through the
Science of Surprise (HarperCollins: New York, 1994).

[0.7] Brian Goodwin, How the Leopard Changed its Spots: The Evolution of
Complexity (Charles Scribner’s Sons: New York, 1994).

[0.8] Stuart A. Kauffman, At Home in the Universe (Oxford University Press: New
York, 1995).

[0.9] John H. Holland, Hidden Order: How Adaptation Builds Complexity (Helix
Books, Addison-Wesley: Reading, Mass., 1995).

[0.10] Peter Coveney and Roger Highfield, Frontiers of Complexity: The Search for
Order in a Chaotic World (Fawcett Columbine: New York, 1995).

[0.11] Per Bak, How Nature Works: The Science of Self-Organized Criticality
(Copernicus, Springer-Verlag: New York, 1996).

More technical references include some with classic and others with modern
approaches:

[0.12] James Grier Miller, Living Systems (McGraw-Hill: New York, 1978).

[0.13] George J. Klir, Architecture of Systems Problem Solving (Plenum: New York,
1985).

[0.14] Gérard Weisbuch, Complex Systems Dynamics (Addison-Wesley, Reading,
Mass., 1991).

[0.15] Thomas J. Sargent, Bounded Rationality in Macroeconomics (Carendon,
Oxford, 1993). Title is inadequate.

[0.16] Mikhail V. Vo l ken s tei n , Physical Approa ches to Biol o gical Evol u ti o n ( S pri n ger-
Verl a g : Berl i n ,1 9 9 4 ) . To u ches on many classic con tri buti ons in com p l ex sys tem s .

A series of books under the collective title “The Santa Fe Institute Studies in the
Sciences of Complexity” published by Addison-Wesley, collects various workshops
and lectures sponsored by the Santa Fe Institute on subjects relevant to complex sys-
tems. This series illustrates the great diversity of concepts and applications of this
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field. We do not include a full list of these books here.A few volumes in this series are
mentioned below as appropriate.

Chapter 1
Section 1.1
keywords: chaotic behavior in systems

[1.1.1] Predrag Cvitanovic, ed. Universality in Chaos: A Reprint Selection, 2d ed.
(Adam Hilger: Bristol, 1989).

[1.1.2] Robert L. Devaney, A First Course in Chaotic Dynamical Systems: Theory and
Experiment (Addison-Wesley: Reading, Mass., 1992). Excellent undergradu-
ate-level textbook on basic mathematics of iterative maps and chaos.

[1.1.3] Robert L. Devaney, Introduction to Chaotic Dynamical Systems, 2d ed.
(Addison-Wesley, Reading, Mass., 1989). More advanced mathematical
treatment than [1.1.2].

[1.1.4] Steven H. Strogatz, Nonlinear Dynamics and Chaos. With Applications to
Physics, Biology, Chemistry, and Engineering (Addison-Wesley: Reading,
Mass., 1994). Undergraduate textbook on nonlinear dynamics that arise
from differential equations.

[1.1.5] Edward Ott, Chaos in Dynamical Systems (Cambridge University Press:
Cambridge, 1993).

Section 1.2
keywords: probabilities; combinatorial probabilities; correlation (statistics); distribu-
tion (probability theory); games of chance (mathematics); limit theorems (probabil-
ity theory); random variables; stochastic processes; stochastic sequences; random
walks (mathematics)

Probability and statistics is a traditional field of study in many fields with vary-
ing emphasis depending on whether it is used for analysis of data, for modeling of sys-
tems, or for more abstract formal concepts.A reference that is particularly relevant to
our purposes is:

[1.2.1] N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-
Holland, Amsterdam, 1981). Outstanding graduate text on the concepts and
applications of stochastic processes. Somewhat more formal than this text,
while still providing a useful conceptual framework.

Section 1.3
keywords: thermodynamics; statistical physics; statistical mechanics; phase transfor-
mations (statistical physics); statistical thermodynamics

Thermodynamics/statistical physics is a traditional field of physics covered by
undergraduate and graduate textbooks with various approaches and flavors.
Examples include:

[1.3.1] Kerson Huang, Statistical Mechanics, 2d ed. (Wiley: New York, 1987).
Undergraduate text.
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[1.3.2] Edward A. Guggenheim, Thermodynamics: An Advanced Treatment for
Chemists and Physicists (North-Holland: Amsterdam, 1967). Graduate text
with elegant review of basics.

[1.3.3] Lev Davidovich Landau and E. M. Lifshitz, Statistical Physics (Course of
Theoretical Physics, vol. 5) 2d ed. (Pergamon: Oxford, 1969). Classic ad-
vanced text.

Section 1.4
keywords: chemical reaction, conditions and laws of; chemical kinetics

The two-state system analysis is based on classic transition-state theory covered
in many physical chemistry books as a model for chemical reaction kinetics.

Section 1.5
keywords: cellular automata

[1.5.1] Stephen Wolfram, ed. Theory and Applications of Cellular Automata (World
Scientific, Singapore, 1983). Many of the original articles are collected in
this book. Includes an extensive bibliography.

[1.5.2] Doyne Farmer, Tommaso Toffoli and Stephen Wolfram, eds. Cellular
Automata (North-Holland: Amsterdam, 1984). A conference proceedings
volume.

[1.5.3] Tommaso Toffoli and Norman Margolus, Cellular Automata Machines: a
New Environment for Modeling, (MIT Press: Cambridge, Mass., 1987). Many
useful concepts and methods discussed.

Section 1.6
keywords: phase transformations (statistical physics); ferromagnetism; Ising model

Most books on statistical physics (Section 1.3) include a discussion of the Ising
model. See especially:

[1.6.1 H. Eugene Stanley, Introduction to Phase Transitions and Critical Phenomena
(Oxford University Press: New York, 1971).

[1.6.2] Giorgio Parisi, Statistical Field Theory (Addison-Wesley, Reading, Mass.,
1988). Advanced formal treatment.

Section 1.7
keywords: simulation methods; mathematical models; computer simulation; Monte
Carlo method

[1.7.1] M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Oxford
Science Publications: Oxford, 1987). Readable, practical guide to modern
simulation strategies.

[1.7.2] Malvin H. Kalos and Paula A. Whitlock, Monte Carlo Methods, vol. 1: Basics
(Wiley & Sons: New York, 1986).
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Section 1.8
keywords: information theory; statistical communication theory

[1.8.1] C. E. Shannon, “A Mathematical Theory of Communication,” in Bell Systems
Technical Journal, July and October 1948; reprinted in C. E. Shannon and W.
Weaver, The Mathematical Theory of Communication (University of Illinois
Press: Urbana, 1963). The original manuscript on this subject is still the best
discussion. Note the change in the first word of the title from original to
reprint.

Section 1.9
keywords: logic, symbolic and mathematical; machine theory; computer science;
Turing machines

[1.9.1] Ira Pohl and Alan Shaw, The Nature of Computation: An Introduction to
Computer Science (Computer Science Press, Potomac, Md., 1981). Pleasant
introduction to concepts and language of computer science.

[1.9.2] John N. Crossley, What is Mathematical Logic? (Oxford University Press:
Oxford, 1972). Dense overview.

[1.9.3] Elliott Mendelson, Introduction to Mathematical Logic, 2d ed. (Van
Nostrand: New York, 1979).

[1.9.4] Herbert B. Enderton, A Mathematical Introduction to Logic (Academic Press:
New York, 1972).

[1.9.5] H. (Hartley) Rogers, Theory of Recursive Functions and Effective
Computability (McGraw-Hill: New York, 1967; MIT Press: Cambridge,
1987). Formal discussion of the theory of universal computation.

Section 1.10
keywords: fractals; renormalization group;scaling laws (statistical physics); multigrid
methods numerical analysis

The subject of fractals has strong overlaps with the topic of chaos (Section 1.1)
due to the connection between multiscale phenomena and chaotic dynamics dis-
cussed in Chapter 9. Thus, see also the references in Section 1.1.

[1.10.1] Benoit B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman:
New York, 1983). The original source.

[1.10.2] R. J. Creswick, H. A. Farach and C. P. Poole, Jr., Introduction to
Renormalization Group Methods in Physics (Wiley: New York, 1992). A rela-
tively accessible discussion of renormalization methods.

[1.10.3] Albert-Laszlo Barabasi, H. Eugene Stanley, Fractal Concepts in Surface
Growth (Cambridge University Press, New York, 1995).

[1.10.4] F. Family and T. Vicsek eds. Dynamics of Fractal Surfaces (World Scientific:
Singapore, 1991). A collection of articles on the application of scaling ideas
to surfaces. The principal relevance to us is the scaling treatment of spatial

Add i t i on a l  Re ad i ng s 831

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 831
Title: Dynamics Complex Systems Short / Normal / Long

Bar-YamEndMatter.pdf  3/10/02 10:59 AM  Page 831



and temporal properties of these systems. References on the application of
scaling to polymers are given in Chapter 5.

[1.10.5] James H. Bramble, Multigrid Methods (Longman: Harlow, Essex, 1993;
Wiley: New York, 1993).

[1.10.6] William L. Briggs, A Multigrid Tutorial (SIAM: Philadelphia, 1987).

Chapter 2
keywords: neurophysiology; brain—localization of functions; neural networks (neu-
robiology); cognitive neuroscience;artificial intelligence;neural networks (computer
science); pattern-recognition systems

Discussions of neural function from a biological perspective:

[2.1] Michael S. Gazzaniga, Richard Ivry and George R. Mangun, Fundamentals of
Cognitive Neuroscience (W.W. Norton: New York, 1997).

[2.2] Eric R. Kandel, James H. Schwartz, Thomas M. Jessell eds. Principles of Neural
Science, 3d ed. (Elsevier: New York, 1991).

[2.3] Gordon M. Shepherd, Neurobiology (Oxford University Press: New York,
1983).

[2.4] Scientific American (September 1992). Issue devoted to the biological ap-
proach to brain function, specifically cellular function and brain imaging.

Almost any book on neural networks, of which there are a number, will offer a
basic introduction to various types of neural networks including the attractor net-
work and the feedforward network, variations on these networks and other simple
models. Unfortunately, the field is polarized, with distinct camps taking different ap-
proaches and claiming priority on ideas, realism or other issues. The complexity of bi-
ological neural systems enables various approaches to coexist without much more
than acknowledging each other. A collection of articles that are central to the devel-
opment of various threads in the field of neural networks is contained in:

[2.5] J. A. Anderson and E. Rosenfeld eds. Neurocomputing (MIT Press, Cambridge,
Mass., 1988).

While it is important to resp ect the value of all approaches, the treatment em-
phasized in this chapter originates from J. J. Hopfield. This approach emphasizes sim-
plicity of the microscopic components so that collective behavior can be more easily
(but still not trivially!) understood. Books expanding on this:

[2.6] Daniel J. Amit, Modeling Brain Function: The World of Attractor Neural
Networks (Cambridge University Press, Cambridge, 1989). A systematic de-
scription of the analysis of attractor networks using techniques developed in
statistical mechanics. The early chapters motivate the use of the attractor net-
work from a biological perspective and introduce the models.

[2.7] Marc Mezard, Giorgio Parisi, and Miguel Angel Virasoro, Spin Glass Theory
and Beyond (World Scientific: Singapore, 1987).
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Specific references:

[2.8] P. Baldi and S. Venkatesh, “Number of Stable Points for Spin-Glasses and
Neural Networks of Higher Orders,” Phys. Rev. Lett., 58, 913 (1987). The max-
imum number of stored independent bits cannot be greater than 2N 2, or 2N
uncorrelated patterns—note that the synaptic matrix is not required to be
symmetric.

Chapter 3
Section 3.1
keywords: sleep; sleep—physiological aspects

Discussions of sleep phenomenology and models of its function are contained in:

[3.1] James A. Horne, Why We Sleep: The Functions of Sleep in Humans and Other
Mammals (Oxford University Press, Oxford, 1988). Excellent review focusing
on sleep-deprivation studies. Counters notion that sleep serves physiological
restorative function.

[3.2] Andrew Mayes, ed. Sleep Mechanisms and Functions in Humans and Animals:
An Evolutionary Perspective (Van Nostrand Reinhold (UK): Wokingham,
1983). See particularly Chapter 1 by W. B. Webb for the evolutionary perspec-
tive on sleep criticized in this chapter.

[3.3] William Fishbein, ed. Sleep, Dreams and Memory: Advances in Sleep Research
vol. 6, (Spectrum Publications Medical and Scientific: New York, 1981). This
and the next reference suggest that sleep serves a role in memory.

[3.4] David B. Cohen, Sleep and Dreaming: Origins, Nature and Functions
(Pergamon: Oxford, 1979).

[3.5] J. Allan Hobson, The Dreaming Brain (Basic Books: New York, 1988).
Dissociation of neural function from sensory information is discussed on pp.
209–210.

[3.6] Ernest L. Hartmann, The Functions of Sleep (Yale University Press: New
Haven, 1973). Mention of the similarity of aspects of dreams to cognition of
postlobotomy patients, pp. 136–138.

Specific references:

[3.7] F. Crick and G. Mitchison, “The Function of Dream Sleep,” Nature 304, 111
(1983).

[3.8] J. J. Hopfield, D. I. Feinstein and R. G. Palmer, “‘Unlearning’ Has a Stabilizing
Effect in Collective Memories” Nature 304, 158 (1983).

[3.9] T. Geszti and F. J. Pázmándi, “Learning within Bounds and Dream Sleep,” J.
Phys. A20, L1299 (1987); “Modeling Dream and Sleep,” Physica Scripta T25,
152 (1989).

[3.10] L. M. Mukhametov, “Sleep in Marine Mammals,” in A. A. Borbély and J. L.
Valatx, eds. Sleep Mechanisms (Springer-Verlag, 1984) pp. 227–238. Studies
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of dolphins sleeping half brain at a time. Among other arguments, refutes
the evolutionary perspective of ref. [3.2].

[3.11] M. A. Wilson and B. L. McNaughton, “Reactivation of Hippocampal
Ensemble Memories During Sleep,” Science 265, 676 (1994).

Section 3.2
keywords: knowledge,theory of;intellect; perception; human information processing;
artificial intelligence; philosophy of mind; cognitive science; memory; psychology of
learning

[3.12] Marvin Minsky, Society of Mind (Simon and Schuster, New York, 1985).

Specific references:

[3.13] L. Standing, “Learning 10,000 pictures,” Quarterly Journal of Experimental
Psychology 25, 207 (1973). Testing recognition.

[3.14] R. D. Hawkins, T. W. Abrams, T. J. Carew, and E. R. Kandel, “A Cellular
Mechanism of Classical Conditioning in Aplysia: Activity-Dependent
Amplification of Presynaptic Facilitation” Science 219, 400 (1983); E. R.
Kandel and R. D. Hawkins, Scientific American (September 1992) pp. 78–86,
Experimental studies of the biology of neurons showing synapses that cou-
ple three neurons; e.g. implementing the logical AND operation.

Chapter 4
keywords: proteins; proteins–conformation; protein folding

Note: the problem of identifying time scale can also be seen in other fields. In
computer science see keyword: computational complexity.

[4.1] Jack Kyte, Structure in Protein Chemistry (Garland: New York, 1995).

[4.2] Carl Branden and John Tooze, Introduction to Protein Structure (Garland: New
York, 1991).

[4.3] Alan Ferscht, Enzyme Structure and Mechanism, 2d ed. (Freeman: New York,
1985).

[4.4] Thomas E. Creighton, Proteins: Structures and Molecular Principles (Freeman:
New York, 1983).

Chapter 5
keywords: macromolecules; polymers; polymer solutions; biopolymers

Books on the scaling properties of polymers:

[5.1] Pierre-Gilles de Gennes, Scaling Concepts in Polymer Physics (Cornell
University Press, Ithaca, N.Y., 1979).

[5.2] Masao Doi and Sam F. Edwards, The Theory of Polymer Dynamics (Oxford
University Press, Oxford, 1986).
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A discussion of parallel-processing simulations is found in:

[5.3] B. M. Boghosian, Computers in Physics 4, 14 (1990).

Specific references:

[5.4] P. G. de Gennes, “Kinetics of Collapse for a Flexible Coil,” Journal de Physique
Lettres 46 L639 (1985).

[5.5] B. Ostrovsky, M. A. Smith and Y. Bar-Yam, “Applications of parallel comput-
ing to biological problems,” Annual Review of Biophysics and Biomolecular
Structure 24, 239 (1995).

[ 5 . 6 ] Y. Bar-Yam, “Polymer Simulation Using Cellular Automata: 2-d Melts, Gel-
Electrophoresis and Polymer Collapse,” in G. Bhanot, S. Chen, and P. Seiden
eds. Some New Directions in Science on Computers (World-Scientific:
Singapore, 1996).

Chapter 6
keywords: evolution; evolution (biology); heredity; adaptation(biology); variation
(biology); natural selection; genetics; population genetics; cytoplasmic inheritance;
egoism; genetic algorithms

[6.1] Charles Darwin, On the Origin of Species (By Means of Natural Selection) (a
facsimile of the first edition, 1859) (Harvard University Press: Cambridge,
Mass., 1964). The original discussion is still enlightening, and shows the
strong phenomenological basis for the conceptual developments.

[6.2] Douglas J. Futuyma, Evolutionary Biology, 2d ed. (Sinauer Assoc., Sunderland,
Mass., 1986). Outstanding discussion of phenomena in biological evolution
and their relation to conceptual issues in the theoretical understanding of
evolution.

[ 6 . 3 ] Robert N. Bra n don and Ri ch a rd M. Bu ri a n , ed s . Gen e s ,O rga n i s m s , Popu l a ti o n s :
Co n troversies Over the Units of S el e cti o n (MIT Pre s s , Ca m bri d ge , Ma s s . ,1 9 8 4 ) .

[6.4] Richard Dawkins, The Selfish Gene, 2d ed. (Oxford University Press: Oxford,
1989). Presents the extreme reductionist view criticized in this chapter.

[6.5] Stephen Jay Gould, Wonderful Life: The Burgess Shale and the Nature of History
(Norton, New York, 1989). Punctuated equilibria. See also ref. [0.11]

[6.6] Stuart  A. Kauffman, The Origins of Order: Self Organization and Selection in
Evolution (Oxford University Press: New York, 1993). A complex systems per-
spective.

[6.7] Karl Sigmund, Games of Life: Explorations in Ecology, Evolution, and Behavior
(Oxford University Press: Oxford, 1993). Many fine points on mathematical
treatment of evolution.

[6.8] Wi lliam Day, Genesis on Pl a n et Ea rth: The Search for Li fe’s Begi n n i n g, 2d ed . (Ya l e
Un ivers i ty Pre s s : New Haven , Con n . ,1 9 8 4 ) . Mo l ecular to cellular evo luti on .
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Artificial life references include:

[6.9] Christopher G. Langton, ed. Artificial Life: The Proceedings of an
Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems
(Addison-Wesley, Reading, Mass., 1989). See also the sequels in the same se-
ries, Artificial Life II–IV. See the video for Artificial Life II.

[6.10] Christopher G. Langton, ed. Artificial Life: An Overview (MIT Press,
Cambridge, 1995).

For genetic algorithms, see:

[6.11] John H. Holland, Adaptation in Natural and Artificial Systems, 2d ed. (MIT
Press: Cambridge, Mass., 1992).

[6.12] Melanie Mitchell, An Introduction to Genetic Algorithms (Bradford, MIT
Press: Cambridge, Mass., 1996).

For discussions of the philosophy of egoism—self-interest vs. altruism, see:

[6.13] David P. Gauthier, ed. Morality and Rational Self-interest (Prentice-Hall:
Englewood Cliffs, N.J., 1970).

[6.14] Robert M. Axelrod, The Evolution of Cooperation (Basic Books: New York,
1984). Shows the marginal stability of the most primitive form of coopera-
tion (tit for tat); i.e. upon introduction of spatial correlations (correlations
in selective forces).

[6.15] David P. Gauthier, Morals by Agreement (Clarendon: Oxford, 1986).

Chapter 7
keywords: developmental biology; embryology; pattern formation (biology); chemi-
cal reactions

[7.1] Lee A. Segel, Modeling Dynamic Phenomena in Molecular and Cellular Biology
(Cambridge University Press: Cambridge, 1984).

[7.2] James D. Murray, Mathematical Biology (Springer-Verlag, New York, 1989).

[7.3] Hans Meinhardt, The Algorithmic Beauty of Sea Shell Patterns (Springer-
Verlag: New York, 1994).

[7.4] H. F. Nijhout, “Pattern Formation in Biological Systems,” in Lynn Nadel and
Daniel L. Stein, eds. 1991 Lectures in Complex Systems (Addison-Wesley:
Reading, Mass., 1992). A brief presentation.

[7.5] Przemyslaw Prusinkiewicz and Aristid Lindenmayer with James S. Hanan, The
Algorithmic Beauty of Plants (Springer-Verlag: New York, 1990). L-systems.

Chapter 8
keywords: Kolmogorov complexity

[8.1] http://www.fmb.mmu.ac.uk/~bruce/combib/. An extensive bibliography on
complexity.
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[8.2] Gregory J. Chaitin, Algorithmic Information Theory (Cambridge University
Press: Cambridge 1987).

[8.3] W. H. Zurek, ed. Complexity, Entropy and the Physics of Information (Addison-
Wesley: Reading, Mass., 1990).

[8.4] Ming Li and Paul Vitanyi, An Introduction to Kolmogorov Complexity and Its
Applications (Springer-Verlag: New York, 1993).

Specific references:

[8.5] J. E. Lovelock, Gaia, A New Look at Life on Earth (Oxford University Press:
Oxford, 1979).

[8.6] E. R. Cohen and B. N. Taylor, “The 1986 Adjustment of the Fundamental
Physical Constants,” Rev. Mod. Phys. 59, 1121 (1987). Value of the electron
magnetic moment.

[8.7] Neville H. Fletcher, The Chemical Physics of Ice (Cambridge Univ. Press:
London, 1970). Excellent review of basic knowledge of the low temperature
properties of ice.

[8.8] Charles H. Bennett, “The Thermodynamics of Computation—A review,”
International Journal of Theoretical Physics 21, 905 (1982).

Chapter 9
keywords: civilization—history,civilization—philosophy; social history; social change;
technology and civilization; organization; management; management science; eco-
nomic history; international economic relations; man—origin

For modeling using system dynamics, a method that was not discussed in this
text, see:

[9.1] George P. Richardson and Alexander L. Pugh III, Introduction to System
Dynamics Modeling with DYNAMO (MIT Press: Cambridge, Mass., 1981).

Books on the structure of corporations and the recent changes in civilization
include:

[9.2] Henry Mintzberg, The Structuring of Organizations: A Synthesis of the Research
(Prentice-Hall, Englewood Cliffs, 1979). Remarkable phenomenologically-
driven discussion.

[9.3] David Mitchell, Control Without Bureaucracy (McGraw-Hill, London, 1979).
Experience-driven discussion.

[9.4] Gregory Stock, Metaman: The Merging of Humans and Machines into a Global
Superorganism (Simon & Schuster: New York, 1993). Includes an extensive set
of references.
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Index

7±2 rule, 9, 348, 356, 362, 424, 623, 87
-helix, 423-4, 454, 467

abstraction, 396, 404
accept, 195, 489. See Monte Carlo
activated dynamics, 173
activated processes, 57, 95
activation and inhibition, 629, 638, 641, 658, 690, 695
active sites, 423, 470
activity, 5, 297, 300, 417, 622
acyclic matrix, 192, 204, 227
adaptive, 4, 298, 376, 426, 573, 574-5, 818-9
address (location), 11, 303, 416
adiabatic process, 63, 69, 83, 724
adrenaline (epinephrine, norepinephrine), 296, 396-7, 

824
affinity, 478, 620
aggregation, 92, 478, 502-27, 565, 676
aggression, 566, 615-9
alien life, 701
align, 166
alleles, 543, 605-11, 613
alphabet, 214
altruism, 566, 604, 615-9
amino acids, 421-2

glycine, 429f
proline, 459
propensity, 431

amorphous solid, 211
analog/analogy, 256, 784, 786, 788-91, 816, 820
analytic continuation, 282
AND (&), 237, 403
animals, 93, 386-7, 529
anneal, 90, 106-108, 211. See also ensemble, simulated
ant, 618
anticorrelated, 255
antiferromagnet. See magnet
antifreeze proteins, 183
apes, 414, 602
approximations, 186, 272, 425
area, 62, 75-6, 253
artificial intelligence, 296, 340, 758, 775-81
ASCII, 216, 218
aspects. See attributes
associations, 392, 394, 410

associative memory, 302-4, 331. See neural 
network—attractor

assumptions, 89, 91-95, 102, 244, 258, 548, 652, 689
logic, 236

asymmetry, 464, 563, 576, 615, 617, 716
asymptotic, 482, 502
asynchronous, 300, 307, 632
attention, 416
attractor, 23, 116, 622, 625. See also neural network
attributes, 339, 394-5, 611
audition, 329. See also sensory processing
avalanches, 565-6
average, 39, 43, 90-1, 148, 179, 186, 188, 272
Avogadro’s number, 13, 723
awareness, 416
axon, 297, 399, 418

-sheet, 424, 454, 467
back-flow assumption, 102
back-propagation algorithm 323, 325
bacteria, 536-7
ballistic, 111, 192, 198, 204, 476
barriers. See energy—barrier
basin of attraction, 212, 302-322, 377, 407, 470
behaviorism, 404-5, 757
bias, 48, 52, 111, 182, 542, 558, 560, 611
bifurcation, 32, 33f, 283
binary digit (bit), 214
binary variable, 19, 97, 114, 146, 220, 299, 543
binomial coefficients, 44
bipartite lattice, 162, 446
bloodstream, 296, 396, 418
Boltzmann constant, 68
Boltzmann distribution, 84
Boltzmann factor, 97, 182
Boltzmann probability, 70-1, 77, 90, 94, 97, 146, 

190, 192
Boltzmann normalization, 73
Boolean algebra, 239, 716
boredom, 391, 398
bottleneck. See entropy
boundary, 446-8, 465-6, 471, 487
boundary conditions, 114, 132, 257, 447-56
brain, 296, 328-9, 365, 393

Bold numerals identify a key or defining reference.
Numbers followed by the letter “f” indicate figures.
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Brownian dynamics, 198
bubble chamber, 183-4

canonical ensemble, 71, 97
Cantor set, 259
capacity. See memory—capacity
casino, 54-6
catalyst, 536-7
categorization, 303, 343
causality, 255
cell, 113, 297, 421, 536-7, 619, 622, 667. See also

cellular automaton, neuron, glial cell
membrane, 536, 678, 688
adhesion, 678
differentiate, 621-6. See specialization
division, 621
intercellular fluid, 629
pigment (melanophore), 627, 676
programmed cell death, 678

cellular automaton (CA), 9, 112-145, 187, 250, 477, 
488-527, 627-48, 665-7, 690. See lattice gas, 
majority rule

machine (CAM), 122
Margolus (partitioned) rule, 133-139, 494
mod2 rule, 114-120
multiple spaces, 132
pattern formation, 627-48, 665-7, 690
polymer, 488-98

center of mass, 485
central control, 796-804, 823
central limit theorem, 47-52, 56, 110, 174, 197, 222, 309
cerebellum, 365, 414
cerebrum, 337, 365
chain. See polymer
chain of influence, 368, 612. See also order
channels, 331, 338, 339, 475-7, 555, 564, 598
chaos, 32-4, 120, 258, 283-8, 570, 579, 666, 725, 737, 

759
characters, 216
chemical, 60, 296-7, 392, 396, 418, 470, 478, 627, 648, 

787
catalysis, 652, 655
chemical switch, 687
stoichiometry, 653
reaction, 137, 629, 652-8

classification, 304, 394-5, 701
chromosome, 537, 605, 611
Church-Turing hypothesis, 236
cluster, 180, 446
cognition, 404. See also mind
coherence, 13, 746-51, 806-8. See collective, cooperative
coherent noise, 355 
coherent transition, 432
coin toss, 38, 40, 41, 217, 256
collective, 153, 169, 456, 529, 533, 566, 604, 620, 819, 

821-2. See also coherent, cooperative, social
collision, 84, 96-7, 103
communication, 214, 233, 489, 530, 707, 812
communism, 799, 822
compass directions, 493, 496, 520
compatibility, 343, 412
competition, 530, 532, 535, 548, 550, 582, 615-6

completeness (logic), 240, 403
complex by design, 621
complex material, 92, 348, 366-70, 701, 791
complex organism, 92, 348, 366-70, 529, 623, 701, 751, 

791
complex systems, 2, 91-95, 745

field of, 1-2, 700, 789
complexity, 2, 6, 12-4, 162, 214, 269, 292-3, 406, 530-1, 

602, 695, 700-1, 703, 791
algorithmic, 235, 253, 693, 705-15, 724, 730
behavioral, 92, 716, 741, 752-7
collective, 6, 746-51, 806-9
computational, 269, 409
estimation, 704, 759-79, 814-5
frozen information, 719-22
human intuition, 761-6
human value, 778
increase, 529, 532, 559-62, 597, 602, 619, 808-9, 

824-5
limits, 781, 825
of a human being, 759-779
of numbers, 714
of physical systems, 716
of sets, 715
plants and animals, 770-1, 816
profile, 14, 717, 722, 725-51, 755, 759, 805-15
recognition, 715, 757-9 763
transition, 805-25

components. See part, subdivision
composite patterns, 333-335, 340, 342, 345, 347-8, 372, 

389, 403, 407, 538, 611-4
compression, 232, 256-8, 692-3, 706, 764, 767, 773, 775
compulsion, 306, 397-8
computation, theory of, 6, 112, 235-258, 694, 703, 706
computer, 6, 253, 776. See development—program, 

pseudo-random numbers
architectures, 112, 497
cellular automaton machines, 122, 488
memory, 11, 303
nonuniversal, 409
parallel, 113, 187, 331, 488-9, 491, 497, 508, 597
simulations, 7, 9, 19, 33, 40, 113, 476, 186-214, 288,

305, 312-319, 347, 419, 424, 488-508, 513-6, 
519-27, 632, 779-80

universal, 122, 236, 403, 409, 530, 777
concentration. See density
condensation, 122
conditional probability, 223
conformations, 425, 428
conjugate gradient, 210
consciousness, 329, 394, 411-6, 419. See also attention
consumption, 530, 562, 695-6
contingent. See conditional
continuity equation, 57, 649
continuum, 57, 78, 109, 251, 543, 551
control, 622, 804
convexity, 224, 739
Conway’s Game of Life, 123, 127-130, 251, 641
cooperative, 106, 179, 270, 431, 441, 454, 468, 530, 548,

696, 818. See also collective
coordination, 809, 812-4
coordination number, 155
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corporation, 783-7, 789-90, 792, 799-803, 806
corpus collosum, 338
correlation, 13, 91, 155, 166-170, 222, 254-6, 268-9, 

306, 308, 333, 335, 338, 340, 409, 434, 481, 
485, 500-1, 604-11, 746-51, 809. 
See also independent

function, 500
length, 91, 94, 168, 227, 480, 638, 743
time, 91, 94, 177, 743

cost function. See minimization
counting, 77, 94, 150
covalent bond, 421
covering, 261-3
creation, 532
creativity, 253, 296, 396, 406-9, 419, 780
Crick, 387
critical cluster. See critical nucleus
critical nucleus, 182, 446-54, 465
critical temperature. See phase transition
critical value, 311
crossover, 268, 468, 512, 538, 611
cubic lattice, 152, 162, 463
Curie temperature, 153. See phase transition
current, 102, 109, 193, 204, 648
cycle, 25-34, 116, 127, 283, 306, 405, 738-40

Darwin, 532
data compression. See compression
death, 123, 387, 535, 575, 821
decay (exponential), 20, 104, 168, 267, 501
decimation, 270, 276
decoding, 232
decomposition of memories, 388, 407
decoration, 461-2
deduction, 236
de Gennes, 478
degrees of freedom, 34, 112, 145
delta function, 40
democracy, 789, 822
dendrites, 297
density, 57, 66, 481, 486, 648, 652, 674
detailed balance, 193, 494, 498
deterministic, 35, 113, 186-188, 255, 625, 738. 

See also chain of influence
determinism, 411, 569-72
design and engineering, 623, 625, 691-695, 781
Devaney, 36
development (biology), 6, 530, 533, 537, 548, 569, 

621-5, 691, 766, 769
blueprint, 622, 692
program, 622-3, 625

dictatorship, 797-8, 804, 823
diencephalon, 397
differential equation, 9, 19, 139, 187, 257, 289, 577, 

648-51
diffusion, 97, 108-112, 197-8, 476-7, 483, 506, 648, 695

constant, 110, 507, 520, 525, 565, 629, 663, 666
driven (biased), 111-2, 445, 470-1, 517, 532
equation, 110, 648-9

digit, 214
dimension. See fractal
dimensionality, 169, 430, 482, 567, 692-3

dinosaurs, 535, 566, 571
disjunctive normal form, 241
disordered phase, 154
dissipative, 476, 550, 737
dissociation. See subdivision
distinguishable. See indistinguishable
DNA, 421, 424, 477, 530, 532, 536, 542, 605, 611, 

622. See also genome
non-coding, 767
persistence length, 480

dolphins, 387
double well potential, 96
DOWN, 146
dreams, 385, 387-8, 389, 407. See also sleep—

REM

ecosystem, 529, 697
effective field. See mean field
effectiveness, 582
efficiency, 586, 590
eigenvalues, 204
Einstein-Podalsky-Rosen paradox, 113
elastic string, 484
electrochemical pulse, 297, 418
electroencephalography (EEG), 386, 388-9
elementary particles, 183, 292
emergence, 2, 5, 10-2, 292-4, 625, 822
emotions, 396
encoding, 232, 249, 257, 298
endochrine-system, 396
energy, 393

barrier, 95, 103, 182, 193, 195, 426, 430, 
447-8, 457-8, 467, 474-7, 510, 555-6, 575

consumption/flow, 537
in evolution (fitness), 532, 550-2
fluctuations, 73, 89
landscape, 398, 550
neural network, 301, 324
polymer, 479-83
protein, 429-30
surface, 92
thermodynamics, 58, 66
well, 95

English, 13, 218, 231
ensemble, 9, 19, 38, 84, 91, 186, 188, 219, 226, 

234, 255, 439, 489, 550, 566, 713
annealed, 90
canonical, 71
microcanonical, 71
quenched, 90, 94, 224, 308, 435

entropy, 13, 58, 62-3, 64, 68, 100, 220-1, 477, 533, 
537, 558, 560, 596, 717-23

bottleneck, 193, 475-7
Ising model, 148-151, 220-1
polymer, 479

environment, 5, 8, 410-1, 529-32, 541, 552, 
572-4, 604, 617, 619, 622, 693, 716, 752-7, 
808-9, 819, 824

enzymes, 423-4, 470, 474
equilibrium, 13, 59-66, 94, 95, 190, 505, 539, 595

far from, 476, 612-3, 627, 630, 653-4
equipartition theorem, 80
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ergodic theorem, 90, 94, 188, 190, 637, 716, 721, 
781

nonergodic, 107, 153, 173, 179, 235, 611, 716, 
718, 743 

source, 226-31
error, 47, 201-203, 292, 335, 406-9, 501, 507, 515, 625, 

693, 731, 733
error function (erf(x)), 330
eukaryotes, 536-7
evolution, 410, 528-620, 625-6. See fitness, resources, 

selection
artificial, 620
artificial selection, 535, 559, 571
bravery, 618
coevolution, 590
collective, 604, 614-9
convergent, 535
driving force, 541
equilibrium, 539, 554, 568, 595
extinction, 535, 541, 568, 573, 597, 601, 603, 697
eye color, 544
forest fire, 573, 603
fossil, 535, 537, 566
heritable traits, 530, 532, 604, 637
horse, 535, 543
incremental changes, 532, 538-42, 554-9, 615, 617, 

619
interactions, 530, 548, 562-6, 569, 614, 620
gene-centered view, 604-5, 613-4
global, 533, 566-9, 590, 598, 619
growth rate models, 577-81
migrations and domains, 535, 572-4, 789
model limitations, 552, 556-7, 563, 566-9, 575-6, 

595-6, 598-601, 604
Monte Carlo random walk model, 550-76, 595-7, 

619
molecular, 531, 538, 618-20
mule, 547, 613
niches (specialization), 602, 697, 816
persistence, 535, 697
physical constraints, 547-8
punctuated equilibria, 565-6
randomness & history, 548, 568, 569-72
rate of, 603-4, 612
renewable-resource model, 582-6, 591-6, 599, 697
reproduction and selection models, 576-604, 596, 

599, 601, 603, 620
social, 617-9, 808
space and time, 572-4, 603
space of possibilities, 543-6
survival, 550, 608, 816
survival of the fittest, 599
systematic change, 540-1, 554, 564, 592
trait distribution, 543-6
trait divergence, 541, 546, 555, 564, 567, 574, 597, 

605, 611, 619, 697
tree of life, 597, 697

excitatory synapse, 298, 301
experiment, 90-1, 389-93, 404, 414, 419, 471, 503, 519, 

530, 626, 676, 688, 700, 720, 759
exploration of space, 425, 475, 503, 550, 553
exponential. See decay, growth

extensive, 60, 62, 66, 69, 268, 456
external field, 153. See magnetic field

factorial, 45, 78-9. See Sterling’s approximation
factory, 806, 808
failure. See neural network—failure
false (F), 236
fast processes, 90
feedback, 298, 397, 616
feedforward. See neural network
Fermi function, 99
ferromagnet. See magnet
fetus, 624, 691
Fibonacci numbers, 707, 710
field. See external field, local field, magnetic field
fight or flight response, 396
filter, 369, 374, 376, 404, 410, 812
fitness, 531-3, 542, 546-9, 563, 574, 586, 589, 696

and population ratios, 552, 566-9, 589-90, 697
class, 591
collective, 603-4, 612, 619
domain of viability, 546-8
energy valley (well), 555, 564, 574
global, 533, 566-9, 590, 598, 601, 619
landscape, 550-1, 553-9, 615
maximum, 593
neutral, 546, 599
neutralist/selectionist, 546, 549, 555, 562
viability, 546-9, 593, 611, 613

fixation, 306, 397-8
fixed point, 21-38, 209, 275-83, 306
flock, 529, 746-51
Fletcher, 719
Flory, 481
fluctuations, 89, 169, 586, 616
fluid, 57, 483-8, 619
food web, 536, 565
force, 62, 75, 484, 489
Fourier representation, 47, 49, 51, 272-3
fractal, 9, 258-63, 744, 759

stochastic, 262, 744
free energy, 72, 85, 100, 191, 479-83, 533, 558

ideal gas, 79
Ising model, 148, 156

free will, 411
freezing transition, 106, 430
Freud, 329
frontal lobes, 414
frustration, 162, 467-8, 819
function, 4, 421, 426, 623
fundamental constants, table of, 723
fundamental law, 292

Gaia, 787
galaxies, 187, 292
gambling, 41, 54-6
gamete, 537
gas, 58, 60, 62, 85, 137

ideal 64, 74-85, 718, 722, 727-35
Gaussian distribution, 46, 50-1, 54, 110, 112, 174, 309, 

479-80, 484, 539, 543, 558, 648, 732
Gaussian integral, 51, 79, 81, 189
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gene, 538, 604-5, 613, 622, 688
generalization, 35, 186, 196, 227, 396, 495

neural network, 303-4, 324, 335, 403-4
genetic, 298, 410-1, 611, 637, 674. See also genome
genome, 530, 532, 542-9, 557-9, 574, 695

length, 545, 559, 766-771
Geszti, 388
giraffe, 626, 641-8
glass, 4, 89, 95, 105, 193, 211, 430, 719, 743
Glauber dynamics, 173-185, 195, 302, 316, 378, 631
glial cell, 417-8
glider, 127
global economy, 700, 796-815, 820-5
Gödel’s theorem, 252, 715
grammar. See language, linguistics
graphical method, 21, 155, 243
ground state, 164-166
growth (exponential), 20, 425-7, 449, 453, 457-8, 468, 

577, 595. See also nucleation and growth

halt (Turing machine), 245
halting problem, 251-2, 713, 715
Hamiltonian (energy function), 270
Hamlet, 11, 303
Hamming distance, 307, 311, 394
Hardy-Weinberg theorem, 606
harmonic well, 101
Hartmann, 389
heart attack, 34, 821
heat transfer, 58, 62, 64
Hebb, 298
Hebbian imprinting, 173, 298, 301, 306, 319, 349, 373, 

396
hemispheres, 337, 365
heterogeneous, 60
heteropolymer, 435, 519-25
heterozygous, 606
hexadecimal, 215
hexagonal honeycomb lattice, 162
hierarchy, 347, 364-70, 367, 373, 410. See also spin glass

control, 797-815
higher information processing, 296, 328, 371, 393
hippocampus, 393, 416
history, 131, 700, 793-5, 806, 810-15, 824
homogeneous, 35, 58, 60, 113, 435, 627, 637
homologue, 538, 605-6
homopolymer, 435, 477, 520
homozygous, 606-7
Hopfield, 173, 387. See neural network-attractor
hopping, 95, 110, 432, 507
Horne, 385
horse, 535
human being, 89, 369, 562, 602, 615-9, 701, 740, 756, 

758, 760, 775-81, 815, 818
communication, 233-235
consciousness, 414
error, 406-9
thought, 253-4, 404, 407
information processing, 296, 328, 371, 393
rights, 784-5

human civilization, 7, 699-701, 782-825
Huxley, 804

hydrodynamics, 4, 34, 139, 142, 483-9, 507, 515-6
hydrogen bonds, 423-4, 467
hydrophilic and hydrophobic, 523-4, 536
hypothalamus, 397

ice, 86-7, 90, 183, 719
ideal gas. See gas
imagination, 406-9
immune system, 617, 620, 702, 820
imprint, 298, 394. See also Hebbian imprinting
impurities, 106, 182-3
in vitro, 424, 519
in vivo, 9, 424, 519
independent, 41, 44, 91, 166, 168, 216, 226, 228, 254-6, 

333, 338, 409, 427, 434, 435, 451, 465, 500, 538, 
545, 571-2, 605, 610, 611, 614, 747, 759. See also
correlation

indistinguishable, 78, 80-2
individual, 529, 534, 604, 617, 637, 700, 784-7, 803-5, 

808, 820-2
individuality, 408, 409-10
industrial revolution, 796
inference, 236, 254, 689
influence, 269, 297. See also interdependence
infinite, 252
information, 6, 12, 214-235, 253-4, 530, 532, 536-7, 

617, 622, 693-4, 700, 703, 713, 809, 819
processing. See higher information-processing
transfer. See communication

inhibitory synapse, 298, 301
inhomogeneous, 263, 435, 454, 458-471
initial conditions, 20, 94, 116, 132, 140, 258, 469-70, 

471, 518-9, 570-1, 632, 637, 676
inner product, 306-7
input-output, 300-1, 322
intensive, 10, 60, 66
interactions, 5, 12, 58, 66, 84, 145, 269, 430, 435, 471, 

530, 548, 551, 557, 562-6, 615, 630, 695, 812
local, 467, 471
long-range, 170-173, 367, 456, 466, 468, 471, 565-6, 

569, 629-30, 695
infinite-range, 171, 367

interdependence, 12, 92, 426-7, 471, 536, 565-6, 590, 
601, 605, 617, 620, 751, 784-7, 791-6, 824

evolution of, 614-9
internal dialog, 404-6, 407, 418
inverse, 118, 133, 306
invertible, 232, 254, 712
irreducible matrix, 192, 203, 227
irrelevant, 258, 278-9, 288, 293, 452, 564, 637
irreversible, 62, 503-5, 510, 724-5
Ising model, 64, 145-186, 188, 194, 258, 270-83, 301-2, 

430-1, 468, 544, 548, 627, 629-30, 719. 
See also dimensionality

iterative map, 9, 19, 35, 39, 187, 209, 274, 576, 612, 666,
819

superstable point, 286
iterative refinement, 36-8, 207-14, 289

joint probability, 41, 43, 166
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Kelvin temperature scale, 64
kinetic energy, 78, 192, 429, 476
kinetic pathways, 426, 470, 472-7, 510, 518-9, 525
kinetic theory of gases, 74
kinetics, 102, 153, 173-186, 473, 503
knots, 518
Koch curve, 263-4
Kolmogorov complexity. See complexity—

algorithmic 

L-system, 686
label, 303, 341, 416, 492
landscape. See energy
language, 296, 329, 340-5, 702, 761
lattice. See cellular automaton, multigrid
lattice gas, 139, 141-3, 691
left-right universe, 333-338, 372, 409
levels of description, 292-4, 329, 620, 744
Library of Congress, 232, 622, 816
life, 7, 89, 123, 293, 366, 529-42, 621, 624, 702, 740, 

789-91
phenomenology, 530, 534-6, 549, 571-2
senescence, 535, 604, 687
traits, 534-5
variety/diversity, 5, 534, 549, 555, 573, 816

life expectancy, 820-21
lifetime of the earth, 533
lifetime of the universe, 254, 552
linguistics, 340. See also language
Lindenmayer, 686
linear stability analysis, 68, 671-3, 690
limb, 626, 678, 687
lobotomy, 389
local field, 302, 308, 431, 435, 467. See also magnetic 

field
local process, 510, 554
local properties, 60, 61f, 92
local relaxation time, 454
logic, 253, 296, 399

propositional, 236-239
theory of. See computation

logistic map. See quadratic iterative map
long-range. See interactions—long-range
Lotka-Volterra predator prey model, 586
Lyaponov exponents, 737

macroscopic, 10, 58, 66, 187, 278, 293, 570-2, 726, 775
macrostate, 13, 66
magnet, 58-9, 94, 145, 152, 270, 367, 630, 719

antiferromagnet, 152, 160-6, 171, 431, 435, 440, 
446, 629

ferromagnet, 152-160, 170, 431, 435, 440, 446, 
468-9, 611, 629

magnetic bubble memories, 630
magnetic field, 58, 146, 153, 179
magnetic resonance imaging (MRI), 392, 404, 624
magnetization, 58-9, 148-9, 179, 221
majority rule, 114-5, 320
man-made, 293
Margolus rule, 133-139, 494
market, 813-4

Markov chain, 39, 191-2, 198, 203, 576, 226-31, 234, 
551-2, 713, 738

mass, 58, 75, 486, 566
Master equation, 56, 104, 109, 432
material, 58-9, 91, 211

growth 142-144
Mathematica, 201
matrix, 194, 203, 289, 291
Mattis model, 172-3, 468-9
mean field, 154-160, 170, 269, 445, 481-2, 485, 

508-10, 548, 563-4, 604-11, 614, 620, 695
mechanical work. See work
meiosis, 537-8, 605, 611
memory, 11, 173, 255, 298, 302-4, 328, 389, 393, 

404, 407. See decomposition, neural 
network

capacity, 305, 308, 331, 345-364, 372
consolidation, 385-7
content-addressable, 302-4, 338
false, 404, 407
forget, 404
reimprinting, 374-385
repetition, 397-8
retrieval, 302-4, 394
short-term, 348, 405, 774
spurious, 316, 319-22, 373, 408

metastable, 183, 446, 454, 465
microcanonical ensemble, 71
microorganisms, 571-2. See prokaryotes
microscopic, 10, 58, 66, 187, 278, 293, 570-2, 726, 775
microstate, 13, 66
Migdal-Kadanoff transformation, 279-82
military, 4, 803, 812, 896
mind, 298, 329, 371, 393-419
minimization, 207-214, 324-32
Mitchison, 387
mod2 rule. See cellular automaton
model, 228, 278-9, 296, 365, 393, 419, 427, 507, 529-30,

538, 576, 600, 632, 688, 690, 692, 705-16, 757, 
788, 818

molecular dynamics, 186-187, 488-9
momentum, 13, 66, 190-2, 198
monkey, 414
monomer, 477
Monte Carlo 173, 188-203, 226, 302, 476, 550, 631. 

See computer—simulations
errors, 201-203
evolution, 531
local moves, 197, 491
Metropolis, 194, 495, 550-1
minimization, 210, 550
nonlocal moves, 198, 213, 502-3, 575, 614
polymer, 488-527
time, 508
walkers, 550, 614

motor control, 296, 329, 337, 414
multigrid, 258, 282, 288-92, 293
mutation, 537-8, 538, 590

NAND, 242
nanotechnology, 781

844 I n d ex

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 844
Title: Dynamics Complex Systems Short / Normal / Long

INadBARYAM_29412  3/10/02 11:02 AM  Page 844



nation-state, 700, 783, 787, 789-91, 806
natural language. See language
natural process, 62, 64
nature versus nurture, 410-1, 776
Navier-Stokes equation, 139, 142, 485-6
Nazis, 786
neighborhood, 113, 463-5, 492-3, 496-8
neighbors, 151, 179, 367, 463-5
network, 626, 797, 805, 812-3
neural network, 7, 295-419, 622, 631. See activity, 

hierarchy, pattern
activity bias, 417
attractor, 11, 173, 298, 300-5, 306-332, 338, 393, 

401, 405, 412, 414, 462, 468-71, 772
auto-associative. See neural network—attractor
biological, 297-8, 320, 337, 772
capacity. See memory—capacity
dilution, 345, 364
failure, 306, 319, 335-6, 390, 397-8, 405, 407, 416. 

See also overload
feedforward, 298, 300, 322-328, 328-9, 338, 393-4, 

401, 405, 412, 414, 462, 471
hidden layers, 324
Hebbian imprinting. See Hebbian imprinting
Hopfield. See neural network—attractor
objective, 372, 404
subdivided, 328-365, 371-4, 462
training, 301, 322, 371
plasticity, 298

neuromuscular control, 805
neuron (nerve cell), 11, 296-7, 623, 772, 805

metaneuron, 418
refractory period, 307, 405

neuron probe, 392-3
neurophysiology, 329, 345, 365
Newton, 258
Newtonian mechanics, 58, 75, 90, 191, 489, 532, 787
Newton’s laws, 62, 75, 187, 476, 486, 787
Newton’s method, 36
noise, 218, 316, 581. See fluctuations, temperature
noise (standard deviation). See signal-to-noise analysis
nonanalytic, 267, 487
nonequilibrium, 62, 89, 108, 596, 703
noninvertible, 254
nonlinear, 25, 299, 546, 551, 652, 655, 695-6
nonuniform, 732
nonuniversal, 235, 409, 531, 714, 777
NOR, 242
not (^), 237
nucleation and growth, 179, 445-54, 465-6, 470
nucleation time, 449
number of components, 5, 94, 296, 424-7, 435, 771, 820
number of states, 12-3, 67-74, 150, 538, 559
number of particles, 60, 66, 92, 137

O (order) 439. See scaling
objects, 339, 394
observer, 14, 254, 268, 716, 752-9
obsession, 306, 397-8
Occam’s razor, 257, 688, 731
optimization, 533, 545. See also minimization

or (|), 237
orbit, 25
order, 476, 518, 527, 740
ordered phase, 154
organ, 626, 678
organization by design, 6, 527, 530, 625, 691
origin of complex organisms, 528-620, 824-5
origin of life, 528-620
orthogonal patterns, 373-4
oscillator, 20, 306, 484, 586, 632, 666
oscillation frequency, 101, 103, 140
outer product, 305
overload catastrophe, 305, 332, 372-8, 390. 

See memory—capacity

palimpsest memory, 319, 372, 375-8
parallel processing, 331, 338, 426-7, 432-71, 473, 476, 

488, 534, 602. See also computer
parameter space, 275, 632, 665
parenthesis, 238
parse, 341
part, 5, 11, 60, 92, 94, 259, 604-20, 792, 820-2. 

See also subdivision
partition function, 73, 101, 148, 191, 272
parts of speech, 341
pattern, 11, 298, 301-4, 324, 393-4, 611, 614, 622, 

625-85, 818
evolved random, 380-5, 627-48

pattern formation, 530, 621-85, 690, 819. 
See reaction-diffusion

activation and inhibition, 627-85
activator-inhibitor model, 659, 668
activator-substrate model, 659, 689
animal skins, 614, 622, 625-85
CA models, 627-48
evolution, 695-8
fast and slow diffusers, 690

pattern recognition, 296, 304, 324, 394-5, 403, 612
Pázmándi, 388
periodic. See cycle
Perron-Frobenius theorem, 192, 203-7, 226
perturbation, 367, 587, 625, 665, 668
phase, 60
phase transition, 10, 85-89, 168, 611. See nucleation 

and growth
diagram, 87, 160, 469
disorder-to-order, 429, 469
first-order, 86, 179, 440, 446, 469
glass, 105, 193, 721
kinetic, 112, 123, 142
lower & upper critical dimensions, 170
magnetic, 153-5
second-order, 87, 156, 269, 278, 745
temperature 86, 153, 5

phase separation, 211, 509
phenome, 530, 542-9, 557-9, 574-5, 605, 695
phenomenological approach, 404-5, 531-3, 688-9
philosophy (egoism), 614-9
physiology, 366, 369, 387
physiology and behavior, 542, 575, 611. See phenome
Picasso, 408
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piston, 58, 62, 83
Planck’s constant, 13, 78
plants, 92, 529, 770-1, 816
point particles, 58, 75
polyethylene, 477
polymer, 198, 268, 421, 471, 476-527, 536

ball-and-string model, 489-91
bond fluctuation algorithm, 491
collapse, 426, 477, 503-527
collapse time, 517, 525
connectivity, 491, 493, 496-7, 506, 520
contour, 508, 510, 512
curvature, 510, 515
end-to-end distance, 478, 489, 512
end-dominated collapse, 508, 517-9
ends, 508, 510, 520
excluded volume, 480-527
flexibility, 480, 495-7
knots, 518
melt, 497, 519
one-space algorithm, 492-6, 520-5
persistence length, 480
precipitate, 478
radius of gyration, 498
relaxation and diffusion, 483-8, 489
reptation, 502-3, 519
ring, 519
scaling, 477-88, 499-502, 509-17
simulations, 488-508, 513-6, 519-27
smoothing, 512
two-space algorithm, 488, 496-502, 505-8, 513-6

polymerase, 537
polysaccharides, 421, 477, 536
polystyrene, 477
population dynamics, 530, 577, 604-20, 612
position, 13, 66, 187, 190-2, 479
positron emission tomography (PET), 392, 404
postsynaptic potential, 302
potential energy, 95, 192, 429
power law, 168, 267, 427, 499-502, 511-2, 515, 543, 566
predator-prey, 562, 565, 576, 586-90, 599, 603, 615, 

617, 626
prediction, 32, 255, 389, 424, 431, 515, 688, 789, 818, 

823. See chaos
pressure, 10, 58, 60, 62, 74-77, 80-85, 486
prior knowledge, 235
probability current 102, 109
probability distribution, 38, 44, 53, 216, 234, 479-80, 

551. See conditional probability
prokaryotes, 536-7, 571, 602
proof by contradiction, 205-6, 252, 498
propagation, 470
propositions (logic), 236
protein, 366, 420-527, 536. See -helix, -sheet, 

conformation, relaxation time, polymer
amino-acid sequence. See protein—primary 

structure
backbone, 423
dihedral angles, 427
driving force for folding, 453, 471
excited states, 439-40
extrusion, 519

folding, 7, 423-7, 518, 526-7, 532, 534
folding problem, 424, 518
frustration, 467-8
fundamental folding problem, 425-7
globular, 423, 518
kinetic effects. See kinetic pathways
local interaction model, 467-8
molten globule, 518-9
nucleation and growth model, 454
persistence length, 480
predictive models, 431
primary structure, 421, 468
quaternary structure, 423-4
secondary structure, 423-4, 454, 465
short and long range interactions, 467
space & time partition model, 465
structure, 421-4
tertiary structure, 423-4, 454, 465
three-dimensional (3-d) structure, 423-5, 468
turns, 424

proteolytic reactions, 474
pseudo-random numbers, 198-200, 253, 258, 713
psychology, 329, 393-419, 757
psychotherapy, 398

quadratic iterative map, 26-38, 127, 283-8, 578
quantum, 13, 35, 62, 66, 78, 99, 187, 270, 429
quench, 90, 106-108, 211, 430. See also ensemble
quantum, 718, 727, 781
quasi-equilibrium, 653
quasi-static, 653-4
question, 332, 427, 703, 823

Ramachandran plot, 429f
random, 34, 195, 216, 232, 233, 256, 485, 494, 532, 548,

570-2, 606, 632, 637, 818. See pseudo-random 
numbers

numbers, 198, 253, 508
patterns, 306-8, 312, 374-5
variable, 38

random walk, 40-56, 108-112, 194, 223, 268, 306, 
308-12, 359, 476, 478-9, 485, 506, 532, 560, 648. 
See self-avoiding random walk

reaction-diffusion, 627, 652, 658, 676, 690, 695
read-write head, 244
real numbers, 20, 33, 251, 299
real world, 89, 254
recipient, 234, 412, 711
recognition, 398-403, 616, 715, 757-9, 763
reductionism, 11, 533
reject, 194-5, 489, 616. See Monte Carlo
relationships, 8, 394, 404
relaxation, 57, 95, 102-5, 214, 290, 427-71, 473-477, 

483, 551
relaxation time, 104, 177, 420-427, 500, 517, 525. 

See also correlation time
relearning, 374
relevant, 258, 278-9, 288, 297, 481, 564, 606
reliable, 403, 507, 625
religion, 532, 776-8
renormalization, 89, 168, 258, 269-88, 293, 454, 462, 

481, 504
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replication, 537. See self-replication, reproduction
representation, 692-3, 716, 759
reproduction, 123, 530-1, 533, 535-6, 548, 562, 575-6, 

590, 695-6, 789
asexual, 612
sexual, 531, 535, 543, 604-14, 620, 694, 696

resolution. See scale
resources, 535, 539, 550, 600, 612, 695, 697, 813-4

multiple, 600-4, 611, 619, 620, 697
retrieval. See memory
reversible, 62, 83, 117
revolution, 797-9
ribosome, 519
RNA, 421, 536
robot, 253, 781
robust, 92, 403, 506-7, 519, 525
root mean square (RMS), 43, 48, 52
Rouse relaxation, 483-488, 502, 511

sandpile model, 566
scaffolding, 692, 812
scale, 5, 32, 168, 258, 283, 638, 700, 806, 809

length, 89, 91, 168, 629, 668, 673, 725, 774. 
See also correlation length

time (separation of ), 89, 94, 97, 106-8, 193, 653
time, 5-6, 421, 425-6, 471, 473, 533, 571, 593-5, 725.

See also correlation time, relaxation time
scaling, 258, 267-9, 282, 293, 427, 435, 471, 477-488, 

509-17, 525, 667
dynamic, 483
exponent, 267-8, 482, 506, 511-8
function, 267, 512

schizophrenia, 392
science, 1-3, 257, 776-8, 783
select, 174, 194, 375, 489, 508, 518, 520, 819
selection, 409-10, 531-2, 537-8, 539, 552, 559, 561-2, 

572, 576, 585, 596, 605, 615-6
and entropy, 596
by organism, 573
scope of, 599, 620

self-action, 26, 300, 307
self-averaging, 168
self-avoiding random walk, 481, 512
self-awareness, 296, 389, 411-6
self-consistency, 154, 293, 397, 405, 549, 564, 692, 809, 

819
self-image, 413
self-organization, 6, 426, 527, 530, 623, 625, 691
self-replication, 531, 537, 619
self-similar, 258-9, 283
selfish, 604, 615-9
semantics. See language, linguistics
sensory-motor system, 253, 298, 324, 328, 394, 412, 809
sensory processing, 296, 299, 328, 338, 411
separation of time scales. See scale
Shakespeare, 11, 303
Shannon, 214
Sherrington-Kirkpatrick spin glass, 172
sickle-cell allele, 607
Sierpinski gasket, 259
sigmoidal, 299, 323-4
signal-processing, 299, 411. See sensory processing

signal-to-noise analysis, 305, 308-12, 347, 352-64, 374
silicon, 142, 211, 299
simplicity, 257, 292-3, 488, 505, 818
Simpson’s rule, 201
simulated annealing, 211
size, 60, 536
sleep, 371-93, 407, 419. See also dreams

creativity and, 407
cycle, 386
deprivation, 386-7, 390-2
doctors, 386, 391
hypnogram, 386
insomnia, 386
phenomenology and theory, 385-8
rapid eye movement (REM), 386-8
slow wave (SWS), 386, 389
substances, 389, 392

slow processes, 90 
social behavior, 604, 614-20, 626, 695, 700, 779. 

See human civilization, evolution—social
ostracism, 616-7

social consequences, 616
social policy, 783-7
socialization, 617
solvent, 478, 504, 510
soul, 775
source, 219, 819
Soviet Union, 799-800, 809, 821-2
space-time, 19, 113, 131, 188, 254-5, 269, 572
space partitioning, 133, 488, 491, 497
specialization, 2, 602, 617, 816-9. See differentiation
species, 529, 603, 604, 614
specific heat, 74, 89
specific knowledge, 711
spin, 146, 270, 301, 431, 629
spin glass, 172, 311, 320, 466

engineered. See neural network—attractor
spontaneous generation, 532
spontaneous magnetization, 153
spring, 484. See oscillator
stable fixed point. See fixed point, attractor
standard deviation, 52, 498
Star Trek, 538, 788, 818
starvation, 618
state of a system, 19. See also pattern, conformation
statistical approach, 365
statistical mechanics, 6, 10, 58, 66-89, 270
statistical fields, 145-186
steady state, 193, 301, 539, 590, 627, 637
steepest descent, 208, 211, 325, 597
Sterling’s approximation, 45, 46, 53, 79, 151, 218, 728
stimuli. See experiment
stochastic systems, 38, 131, 192
Stokes’ law, 487, 507, 511, 515, 520-1, 667
storage capacity. See memory—capacity
stress, 391, 396
string (character), 215, 544
subconscious mind, 329, 393, 411-6
subdivision, 60, 61f, 92, 296, 328-370, 395, 404, 407, 

461, 529, 619, 623, 774, 791, 823. See hierarchy
biological brain, 337
creativity and, 406-8
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dissociation, 374-6, 388, 392, 407
dynamics, 374
generalization and, 403-404
language, 340-5
object recognition and, 394-6
partial, 338, 340, 342, 347
time scale, 461-5, 471
vision, 338-340

substrings, 229
substructure, 6, 367. See subdivision
superorganism, 618, 699, 783-7
superposition, 40
superstition, 257
surface properties, 92, 455
switch, 299
symmetry, 137, 277, 300, 435, 563, 650
symmetry breaking, 153, 611
synapses, 11, 296-8, 388, 399, 622, 773
synchronous, 300, 306, 349, 577, 632

θ-point, 478, 503-5, 509-10, 518
tautology, 238, 563
technology, 799, 804, 817, 824
telomere shortening, 687
temperature, 10, 58-9, 63, 64, 68, 89, 131, 317, 457, 459,

486, 489, 533, 550, 552, 638
theoretical biology, 688
theorem, 238
thermal equilibrium, 58. See also equilibrium
thermal length scale, 79
thermal motion, 486
thermal reservoir, 58, 69-70, 84, 95-7, 191, 198, 476, 

489
thermodynamics, 10, 58-66, 192, 479, 489, 533, 579, 

703, 716
first law, 59, 61
principles/assumptions, 89-95
second law, 59, 62-3, 533
zeroth law , 59

thermodynamic limit, 66, 94, 439, 465, 637, 743
time scale. See scale
trait. See evolution, life, genome, phenome
transformational grammar, 340
transition, 102, 182, 191, 203. See also phase transition, 

freezing transition
coherent, 432 

transition probability, 39, 192, 489
tree (like), 89, 263-7, 284-5, 625, 678
triangular lattice, 162
true(T), 236

truth, 689
truth table, 236
Turing machine, 243-251, 622, 713, 715, 766
Turing patterns, 648, 652
Turing test, 777
two-level system. See two-state system
two-spin system, 432-435
two-state system, 95-108, 146, 177, 182, 195, 212-3, 

273, 427, 430, 483, 529, 543, 555, 577-8

United States, 799, 821-2
universal Turing machine, 247, 706
universality, 1-2, 257, 278, 288, 512, 531, 689-90, 710, 

714. See also computer
UP, 146

Van der Waals bonds, 423, 524
variation, 254. See also mutation, life
velocity, 20, 52-56, 75, 187, 446, 486, 648
Verlet, 187
vigilance test, 387, 391
virial coefficient, 504
viscosity, 105, 486
vision, 298, 329, 338-40, 391, 394, 411, 693, 773

computational, 395
volume, 58-60, 62, 64
voluntary motor control, 414
voting. See cellular automaton—majority rule

wall, 75
war, 618, 789, 794, 821
washboard potential, 111, 446-8
wave equation, 140
wavelength, 273, 484
weather, 366
well. See energy
water, 86-7, 89-90, 179, 183, 429
will (consciousness), 413
Wilson, 393
Wolfram, 120
worlds, external and internal, 406, 408
work (mechanical) 58, 62, 83, 393

XOR, 399-403

zebra, 626, 678
zero temperature, 186, 302
Zimm relaxation, 483, 485-8, 502, 510-1, 515
zygotes, 538
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